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ABSTRACT WCO06] and technigues such as stress point integration

eliminate or at least attenuate these instabilities. The

insufficient order of completeness is attributed to the
A meshless shell method for dynamic fracture problems SPH formulation itself. The classical SPH formulation
based on normalized Smoothed Particle Hydrodynamics s not able to reproduce even a constant function exactly.
(SPH) is presented. The SPH method is corrected by Therefore, procedures have been developed that correct
a normalization in order to fulfill completeness require- the SPH formulation in a way constant and linear func-
ment. Instability are controlled by stress-point integra- tions can be reproduced exactly [RL97, KHG08, BKOO,
tion. The method is modified for Mindlin-Reissner shell | j795 BKO"96, KB97, JB96].
analysis. Stress based fracture criterion is incorporated
based on the visibility method. The method is appliedto The SPH method is a continuum based method. How-
two dynamic fracture problems in thin-walled pipes in-  ever, in the case of thin structures, three-dimensional con
cluding fluid-structure interaction. The results are com- tinuum formulation becomes computationally inefficient.
pared to experimental data and they are very promising. Therefore, the possibility to model these structures with

a single layer of nodes is very attractive. Meshless shell
Key words: shell, fracture, SPH. methods already exist [KB96, NKM0O, RABO7, RA06,
Lei01, LCO4] but they are all based on weak formula-
tions and therefore computationally expensive. More-
over, most of these methods do not account for fracture
1. INTRODUCTION of the shell.
In this paper, we present an SPH shell method for dy-
namic elastoplastic fracture problems. The most per-
tinent feature of our new formulation is its simplicity
and computational efficiency. We firstly present classi-
VEO6] are complex and costly to model with classical cal SPH formulation and corrected SPH formulation that

numerical methods that are based on meshes. Therefore,duarantees first-order completeness, i.e. the ability-to re
so-called meshless methods have been developed that arepmduce linear functions. Secondly, the corrected SPH

well-suited to model problems involving large deforma- formulation is extended to model shell-structures. Fi-
tions, fracture and other complex problems that could nally, the elasto-plastic constitutive model and fracture

for example involve the interaction between a fluid and S'It€'ia are presented before two examples demonsrate
the capability of our method.
a structure [FBO7, RB04, BLG95, BT96].

The simulation of complex fracture-phenomena of thin-
walled structures using traditional tools such as the finite
element method is extremely difficult. Large deforma-
tions and the cracking of solids [VE99, OR99, JVCO04,

One of the most efficient meshless method is the

Smoothed Particle Hydrodynamics (SPH) method 2, NORMALIZED SMOOTHED PARTICLE HY-
[GM77]. In contrast to many other weak-formulation DRODYNAMICS (NSPH)

based meshless methods, SPH is a collocation method

based on the strong formulation of the problem. The

advantage of high computational efficiency unfortunately The SPH formulation is based on a representation of the

comes at cost of two major drawbacks: field through a set of particles given by
. | b.l. . N
o Numerical Instabilities uy = Z Nyjuy (1)
J=1

o Insufficient polynomial order of completeness

where u; is the node of interestu; are neighboring
Numerical instabilities occur due to under-integration. nodal parametersy is the number of neighboring parti-
These instabilities were discussed extensively in the SPH cles for which the SPH shape functioNs ; are unequal
literature [VCLOO, SHA95, RLOO, RPB05, CWYYO01, to zero. In the classical SPH theodyy ; is calculated
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from the SPH kernel functiod’ (r; s, h):

Nij=VyW(rrs, hry) (2)
wherer; ; represents the distance between parti€lasd

J, Vj is the volume associated with particleandh; ; is

the averaged smoothing length between partitkesd./,

that determines the size of the support domain. The ker-
nel function and hence also the shape functions do com-
monly have compact support, meaning they are unequal
to zero in a certain neighborhood and equalize zero be-
hind this neighborhood. A common kernel function is
the B-spline:

1 — 6524853 — 35t

{1

that has circular support size determined by the smooth-
ing lengthh. Gradients of functions in SPH formulation
is approximated by

W (s)

<1 _
s>1 %7

N

VUI:ZVNIJ®(UJ—UI)
J=1

(4)

The second term in the brackets is added to ensure that

SPH fulfills at least zero-order completeness. That zero-

order completeness is violated can easily be observed by

considering the derivatives of the constant function, e.g.
1, that cannot be reproduced, i¥1 = Zf}’:l VN;j #

0. First-order completeness is not achieved in classical
SPH. This means that gradient of a constant field can-
not be enforced at the boundaries of the volume and that
linear strain fields cannot be reproduced exactly. The
corrected SPH formulation we adopted is based on nor-
malization of derivatives of the shape functions [RLOO],
therefore called NSPH subsequently. NSPH modifies eq.
(4) with correction matrixB:

N

Vur = ZVN[J@(UJ—UI)'B (5)
J=1

B = H (6)
N

H = ) (X;-X;)®VNy (7
J=1

thatis constructed in a way eq. (5) fulfills first-order com-
pleteness. Defining

VN;;=VN;;-B (8)
we can rewrite eq. (5)
N A~
Vu; = Z VN ® (uy —uy) 9)
J=1

The conservation of linear momentum in the absence of
body forces is given by

oii = VP (10)
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Figure 1. Stress points are added in order to avoid insta-
bilities

and in NSPH formalism by

N

oiir =>» (P;—P;) VN,
7=

(11)

We use Total Lagrangian formulation instead of updated
Lagrangian formulation used in early SPH-formulation
since recent studies have shown that certain numerical
instabilities can be related to the use of Eulerian kernels
expressed in spatial coordinates instead of material coor-
dinates. It was also demonstrated that these instabilities
can be avoided by using Lagrangian kernels expressed in
material coordinates [RBX04]. This is especially impor-
tant for fracture. One would like to avoid spurious mate-
rial fracture that often occurs when Eulerian kernels are
employed.

Numerical instabilities due to under-integration are &lim
nated by introducing stress-points. Stresses are evaluated
at stress points instead of the collocation points leading
to the following equation:

Ns

oiir = Y (Px —P1) VN,
K=1

(12)

where Ng is the set of stress points. Stress points are
added into the structured discretization as illustrated in
figure 1.

3. NSPH SHELL FORMULATION

In this section, we extend the continuum NSPH-
formulation to MindlinReissner shell NSPH formulation.
Therefore, the behavior of the shell is determined using
a model discretized only on mean surface alone that con-
sists of a single layer of particles. Each point on the mean



Figure 2. SPH shell particle

plane is assigned a thickness that varies in space and time.
Each particle has five degrees of freedom (DOF): three
translational DOFs and two rotational DOFs lying in the
plane tangent to the shell, figure 2. Particles have no
degree of freedom perpendicular to the plane, i.e. no
drilling rotation. The position vector in the initial con-
figurationX of any point)M located at a distancgfrom
the mean plane can be expressed as
X=Xy +&n (13)
with £ € [-0.5¢,0.5¢], t being the thickness of the shell,
n is the pseudo-normal vector that represents the orien-
tation of the material with respect to the mean plane and
X s being points on the mean surface. Similarly, we ob-
tain the displacement vector
u=uy +£&(n—ng) 14)
with ny being the pseudo-normal vector in the initial
configuration. The technique for updatingwill be de-
scribed later.

Firstly, we define the local coordinate system associated
with the shell in the initial configuration that is denoted
by L, subsequently. The initial local coordinates, of
each point are defined from the general initial coordinates
x¢ through a rotation matrix

xo = Gg' - xp, (15)
With these definitions, the displacement vectorin eq. (14)
can be rewritten as

Since fibers are initially perpendicular to the mean plane
of the shellng is parallel to thezz,, axis, which implies
thatzr, = £. Then, inLy , one calculates the total La-
grangian NSPH shape function§,, leading to the ex-
pression of the gradient of a field in the global coordinate
systemL¢:

Vu=Go - Vu 17)
Now, one can define the gradient matFxXor a point on
the mean planezg, = £ = 0):

F=Gy- Fs (18)
with
waO ‘Tnyo Ny
Fs=| Yo, Yy, ™ (19)
Zary, Zun, Nz

We now express the Green-Lagrange strain tensor:

Eij =05 (uij +uji) = Emij + Epij(§)  (20)
with
Epij = 0.5 (unrij + unrje) (21)
and
13
Epij(§) = 5 (Anij + Angi) (22)

with An = n — ng. As indicated by above equations,

E is divided into a parE,; which is constant throughout
the thickness, associated with membrane and transverse
shear effects, and a p&tz (£) which is linear throughout

the thickness, associated with bending effects. For geo-
metrical non-linear applications (especially for large ro
tations), the usual non-linear membrane strains are added
to the linear membrane ones. The non-linear bending and
shear strains are neglected as usual for non-linear shell
formulations. Then, strains must be written in the lo-
cal coordinate system of the current position of the mean
plane of the plate, denoted iy , in order to calculate

the stresses in agreement with the plane stress assump-
tion. In order to define this coordinate system, one de-
termines two vectora), andn. of the mean plane. The
normal to the plane is defined by

aX(l‘L yL)

/ — ) 2
ny 733@ (23)
n, — 0X(zrL,yL) (24)

oYL
ng = HIQ A ng (25)
The basis is completed with a third vector:
n; = ngAng (26)

Using these three basis vectors, the rotation magx

WXL, Yry) = unm(Zr,,YLe)+2L, (M(zLy,vyr,) — no(zL,,yrd$)defined that connects the current local systemto

(16)

the global systeni.. One should note that in the case



of an updated Lagrangian formulation in which the ref-
erence configuration is regularly updated the equality
G, = G, holds. The expression of the local membrane
shear strains;,,, and bending straing, ,, follows

Gp-F ' Ey -F!.GY
G,-F ' Epz F'.GI

27)
(28)

€Lm

€Lp

which can be rewritten, still in thé~ coordinate system,
in the form of generalized strain vectegsande, defined

by:

€L,
€L"‘ry Swz

€Lty
ELfyy
€Ly,

(29)

Syz

The generalized stress vectorsando, are obtained ac-
cordingly. The membrane and shear stress resulfépts
ands; along with the bending moments;; are obtained
by integration through the thickness:

h/2

Nij = /
—h/2
h/2

. /
—h/2

h/2 3
i = / (€)=

7h/2

ULm (f) df = hO’L
or,, (§)d§=hor,,
(30)

O’Lfb

Hookes law in plane stress is used to link stresses to

strains, and the transverse shear stresses are connecte

to the corresponding strains through the usual relations:

0g=C-¢g , 0s=G ¢ (31)
whered is the shear modulus and with
C o
C = N 32
58] (32)

whereC is the first-order elasticity tensor for plane stress
conditions.
through the thickness are rewritten in the form of two ma-

trices:
S=| Nay Nyy Ty , m= | Mgy My, 0 | (33)
z y 0 0

The nominal stress tensbr can then be obtained from
P=Gr.s.G, - FT =s.FT (34)

Similar to the 3D case, the membrane and transverse
shear equilibrium equation follows

Pl . V=0 (35)

Then, the generalized stresses integrated

Next, the angular acceleratiodls, andé,, are calcu-
lated using the two moment equilibrium equations de-
fined in the local coordinate system by
I-0,,
I-6,,

Myy,y + Mayz +1-0y:

t 0w (36)

mzz,z + mzy,y -
or in matrix form
I-éL:L-div(m

Y+ T, =L-m” -V, +T, (37)

with the rotation moment of inertiaand

0 1 0 h'Uyz
L:[l 00|, T, = —h~am} (38)
0 0 0

Eq. (37) can be also obtained in tlig; coordinate sys-
tem by

Iy-6=M".Vy+T (39)

with

M=J-F'.Gl m- LT -G, , To=J -G T (40)
Thus,M is the equivalent for the bending stresses of the
nominal stress tensd@ for the stresses that are constant

throughout the thickness. Following the total Lagrangian
formalism, one obtains the following pair of equations:

N
Io-6 ZM]*MI VNors + To
J=

P;-

=

o-u = P;)VNors (41)
%he vector of angular acceleratiofisthus obtained is
used to updata. One defines a new matri®! that ex-
presses the rotation afwith respect to its initial position
np, and whose incremelf G,, expresses the rotation of
n during a time step. Usin@, one determines the incre-
mental rotation vectoAd that defines the rotation af
during a time step, thanks to time integration. The cor-
responding rotation matriA G,, is then calculated using
the Rodrigues formula:
GLHat AG, -G

nt+At G;JrAt

‘g

(42)

4. ELASTO-PLASTIC CONSTITUTIVE MODEL
AND FRACTURE CRITERION

For elasto-plastic material, MindlinReissner assumption
that the stresses vary linearly throughout the thickness
is no longer valid. Therefore, stresses have to be inte-
grated through the thickness. One of the most usual tech-
niques in shell applications of the finite element method
consists in performing the integration using a number of
additional Gauss points distributed throughout the thick-
ness. A simpler and less expensive method enables the



OLm,eqO0Lb,eq

direct calculation of the plastic stresses from the mem-

brane and bending generalized stresses. This approach is

based on the assumption that the whole section becomes
plastic at once: this assumption is true when the shell is
subject to membrane loads alone. Thus, in the case of a
perfectly plastic material, one can express the plasticity
criterion as follows:

(43)

2 2
f=0vm—0yo

with the equivalent stress

1 1
O'%/]\/] = O%m,eq + @U%b,%g\ljgw OLb,eq + K'o-%s.,eq (44)

2 _ 2 2 2
OLmeq = OLmyg, + O Limy,y + 30’mey — OLmgy OLmy,

2
ULb,eq

_ 2 2 2
= OLb,, t 0Ly, T 30mey — OLb,y OLby,

OLmay OLbyy + OLmy, OLby,, T 30Lm,, OLb,,
= 0.5 (0Lma, OLb,, + OLmy, OLb..)

0lseq = 301s.+307%,,. (45)

Let us assume that transverse shear stresses are not in-

volved in plasticity, which is equivalent to setting the pa-
rameterx equal to zero. The paramet@rcan be used

to adjust the occurrence of the plastic hinge through the
thickness. In the case of pure bending loadifig= 1
means that a plastic hinge occurs as soon as the skin
becomes plastic, and = 1.5 means that the plastic
hinge occurs only once the whole thickness of the shell
has become plastic. For a shell in pure bending, the mo-
ment/curvature law reveals an apparent strain hardening
effect due to the progressive development of plasticity
through the thickness. To take this effect into account,
Crisfield modified eq. (44) by allowing the parameier

to vary between 1 and 1.5 depending on the equivalent
plastic strain in bending. Eq. (43) can then be easily ex-
tended to the case of materials with isotropic strain hard-
ening by taking into account the strain hardening of the
materials traction curve as a function of the equivalent
plastic straire,,:

(46)

f= U\Q/M - UY(Ep)2 = ‘72 ‘H-oy4 *UY(G;D)Z

with

A 1

1
2\/§\IIA

___A 1 —05 0
2@:& ,A=| —05 1 0|47
vz 0 0 3

The plastic projection is obtained by radial recovery.
Fracture is modeled by visibility method. Therefore, the
link between adjacent particles are removed. We employ
stress-based criterion and fracture is introduced once a
certain maximum principal stress-value is exceeded at the
stress-points. Commonly, this threshold is equal to the
tensile strength of the material.

5. NUMERICAL EXAMPLE: FRACTURE OF
CYLINDRICAL SHELL

Experimental studies of fracture of cylindrical thin skell
due to gas explosion were done by [ChaO4]. In their ex-
periments, they attached a thin-walled cylindrical shell
made of aluminium to a rigid detonation tube. The rigid
detonation tube had a length of 1.52m and the cylindrical
aluminium tube had length of 89.6cm. The inner radius of
the aluminium tube is; = 1.975¢m and shell thickness

is 0.089cm. The aluminium tube contained notches of
different length. We consider two notch length: 2.54cm
and 7.6cm that is subsequently called short notch and
long notch. In the experiment, [Cha04] sealed up the up-
per end while the lower end of the device was closed.

Similarly, the equivalent generalized stresses are giyenb  Then, combustible gas was introduced in the tubes and

thermally ignited. The combustion quickly turned into
detonation. Since this is very difficult to model in numer-
ical simulation, we modelled the detonation by pressure-
time history on the inner walls of the cylinder that was
also provided by [Cha04].

We now discuss results for short notch: At the beginning
of the simulation, the crack extends from the two existing
crack tips in a straight line in axial direction of the tube.
The crack moving away the rigid tube slows down and
the crack moving towards the rigid tube turns direction.
It begins propagating in combined axial/circumferential
direction with turning angle of approximately 45 degrees.
Then this turning crack turns again and continues propa-
gating only in circumferential direction. Simultaneoysly
crack growth at the opposite end is arrested. Final dis-
placed configurationis illustrated in figure 3a and 3c. The
displaced tube and failure pattern is similar to the experi-
mental failure pattern.

We now discuss the results for long notch: First, crack
starts propagating from two crack tips in straight line
in axial direction. Then, both propagating cracks begin
branching and change propagation direction mainly in
circumferential direction. Several other small cracks at
other location are nucleated that later join with the orig-
inal main cracks. At the end of the simulation, the tube
is split into three large pieces. The middle piece contains
many smaller internal cracks. Also the tube in the exper-
iment showed this behavior and was divided into 3 larger
pieces where the middle piece contained internal cracks.
The displaced tube at the end of the simulation is shown
in figures 3b and 3d. It is shown next to the tube with
short notch to emphasize the difference.

)
6. CONCLUSION

The fracture of thin-walled structures was studies with
SPH shell formulation based on Mindlin Reissner theory.
Therefore, the continuum SPH formulation was modified
such that the behavior of the shell is determined using a
model discretized only on mean surface alone. The mean
surface consists of a single layer of particles in which



each point on the mean plane is assigned a thickness that
varies in space and time. Correction and stabilization of
the classical SPH formulation is adopted from methods
available in the literature. Moreover, elasto-plastic-con
stitutive model is developed for the SPH shell and frac-
ture criterion based on visibility method is used. The
formulation is applicable to large deformations and fi-
nite rotation. The main contribution of this manuscript is
a novel method for elasto-plastic fracture of thin walled
structures. The major advantage over most existing for-
mulations is computational efficiency.

We applied our method to two problems and compared
(a) short notch results obtained from our numerical solution to experi-
mental data. First example is tearing of plates with dif-
ferent notch-length. We did mesh refinement study and
showed that results are independent of mesh. Agreement
of our solution with experimental data are promising. The
second more complex example is fracture of cylindrical
shells due to a gas explosion. The gas explosion was
modeled by pressure impulse on the inner walls of the
cylinder according to experimental data. The cylindrical
shells contained also pre-cracks of different length and
failure mechanism depend on pre-crack length. When
the notch is long, the tube broke into three large pieces
while for short notch, the crack first propagates straight
and then slightly curves. This behavior is also verified in
our numerical model.

(b) long notch
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