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ABSTRACT

A meshless shell method for dynamic fracture problems
based on normalized Smoothed Particle Hydrodynamics
(SPH) is presented. The SPH method is corrected by
a normalization in order to fulfill completeness require-
ment. Instability are controlled by stress-point integra-
tion. The method is modified for Mindlin-Reissner shell
analysis. Stress based fracture criterion is incorporated
based on the visibility method. The method is applied to
two dynamic fracture problems in thin-walled pipes in-
cluding fluid-structure interaction. The results are com-
pared to experimental data and they are very promising.
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1. INTRODUCTION

The simulation of complex fracture-phenomena of thin-
walled structures using traditional tools such as the finite
element method is extremely difficult. Large deforma-
tions and the cracking of solids [VE99, OR99, JVC04,
VE06] are complex and costly to model with classical
numerical methods that are based on meshes. Therefore,
so-called meshless methods have been developed that are
well-suited to model problems involving large deforma-
tions, fracture and other complex problems that could
for example involve the interaction between a fluid and
a structure [FB07, RB04, BLG95, BT96].

One of the most efficient meshless method is the
Smoothed Particle Hydrodynamics (SPH) method
[GM77]. In contrast to many other weak-formulation
based meshless methods, SPH is a collocation method
based on the strong formulation of the problem. The
advantage of high computational efficiency unfortunately
comes at cost of two major drawbacks:

• Numerical Instabilities

• Insufficient polynomial order of completeness

Numerical instabilities occur due to under-integration.
These instabilities were discussed extensively in the SPH
literature [VCL00, SHA95, RL00, RPB05, CWYY01,

WC06] and techniques such as stress point integration
eliminate or at least attenuate these instabilities. The
insufficient order of completeness is attributed to the
SPH formulation itself. The classical SPH formulation
is not able to reproduce even a constant function exactly.
Therefore, procedures have been developed that correct
the SPH formulation in a way constant and linear func-
tions can be reproduced exactly [RL97, KHG08, BK00,
LJZ95, BKO+96, KB97, JB96].

The SPH method is a continuum based method. How-
ever, in the case of thin structures, three-dimensional con-
tinuum formulation becomes computationally inefficient.
Therefore, the possibility to model these structures with
a single layer of nodes is very attractive. Meshless shell
methods already exist [KB96, NKM00, RAB07, RA06,
Lei01, LC04] but they are all based on weak formula-
tions and therefore computationally expensive. More-
over, most of these methods do not account for fracture
of the shell.

In this paper, we present an SPH shell method for dy-
namic elastoplastic fracture problems. The most per-
tinent feature of our new formulation is its simplicity
and computational efficiency. We firstly present classi-
cal SPH formulation and corrected SPH formulation that
guarantees first-order completeness, i.e. the ability to re-
produce linear functions. Secondly, the corrected SPH
formulation is extended to model shell-structures. Fi-
nally, the elasto-plastic constitutive model and fracture
criteria are presented before two examples demonstrate
the capability of our method.

2. NORMALIZED SMOOTHED PARTICLE HY-
DRODYNAMICS (NSPH)

The SPH formulation is based on a representation of the
field through a set of particles given by

uI =
N

∑

J=1

NIJuJ (1)

where uI is the node of interest,uJ are neighboring
nodal parameters,N is the number of neighboring parti-
cles for which the SPH shape functionsNIJ are unequal
to zero. In the classical SPH theory,NIJ is calculated

_____________________________________________________ 

Proc. ‘5th European Conference on Space Debris’, Darmstadt, Germany  

30 March – 2 April 2009, (ESA SP-672, July 2009) 



from the SPH kernel functionW (rIJ , h):

NIJ = VJ W (rIJ , hIJ) (2)

whererIJ represents the distance between particlesI and
J , VJ is the volume associated with particleJ andhIJ is
the averaged smoothing length between particlesI andJ ,
that determines the size of the support domain. The ker-
nel function and hence also the shape functions do com-
monly have compact support, meaning they are unequal
to zero in a certain neighborhood and equalize zero be-
hind this neighborhood. A common kernel function is
the B-spline:

W (rIJ , h) = W (s) =

{

1 − 6s2 + 8s3 − 3s4 s ≤ 1
0 s > 1

, s =
XJ − XI

2h
(3)

that has circular support size determined by the smooth-
ing lengthh. Gradients of functions in SPH formulation
is approximated by

∇uI =

N
∑

J=1

∇NIJ ⊗ (uJ − uI) (4)

The second term in the brackets is added to ensure that
SPH fulfills at least zero-order completeness. That zero-
order completeness is violated can easily be observed by
considering the derivatives of the constant function, e.g.
1, that cannot be reproduced, i.e.∇1 =

∑N
J=1

∇NIJ 6=
0. First-order completeness is not achieved in classical
SPH. This means that gradient of a constant field can-
not be enforced at the boundaries of the volume and that
linear strain fields cannot be reproduced exactly. The
corrected SPH formulation we adopted is based on nor-
malization of derivatives of the shape functions [RL00],
therefore called NSPH subsequently. NSPH modifies eq.
(4) with correction matrixB:

∇uI =

N
∑

J=1

∇NIJ ⊗ (uJ − uI) · B (5)

B = H
−1 (6)

H =

N
∑

J=1

(XJ − XI) ⊗∇NIJ (7)

that is constructed in a way eq. (5) fulfills first-order com-
pleteness. Defining

∇N̂IJ = ∇NIJ · B (8)

we can rewrite eq. (5)

∇uI =

N
∑

J=1

∇N̂IJ ⊗ (uJ − uI) (9)

The conservation of linear momentum in the absence of
body forces is given by

̺ü = ∇P (10)

particle

stress point

Figure 1. Stress points are added in order to avoid insta-
bilities

and in NSPH formalism by

̺üI =

N
∑

J=1

(PJ − PI)∇N̂IJ (11)

We use Total Lagrangian formulation instead of updated
Lagrangian formulation used in early SPH-formulation
since recent studies have shown that certain numerical
instabilities can be related to the use of Eulerian kernels
expressed in spatial coordinates instead of material coor-
dinates. It was also demonstrated that these instabilities
can be avoided by using Lagrangian kernels expressed in
material coordinates [RBX04]. This is especially impor-
tant for fracture. One would like to avoid spurious mate-
rial fracture that often occurs when Eulerian kernels are
employed.

Numerical instabilities due to under-integration are elimi-
nated by introducing stress-points. Stresses are evaluated
at stress points instead of the collocation points leading
to the following equation:

̺üI =

NS
∑

K=1

(PK − PI)∇N̂IJ (12)

whereNS is the set of stress points. Stress points are
added into the structured discretization as illustrated in
figure 1.

3. NSPH SHELL FORMULATION

In this section, we extend the continuum NSPH-
formulation to MindlinReissner shell NSPH formulation.
Therefore, the behavior of the shell is determined using
a model discretized only on mean surface alone that con-
sists of a single layer of particles. Each point on the mean



Figure 2. SPH shell particle

plane is assigned a thickness that varies in space and time.
Each particle has five degrees of freedom (DOF): three
translational DOFs and two rotational DOFs lying in the
plane tangent to the shell, figure 2. Particles have no
degree of freedom perpendicular to the plane, i.e. no
drilling rotation. The position vector in the initial con-
figurationX of any pointM located at a distanceξ from
the mean plane can be expressed as

X = XM + ξn (13)

with ξ ∈ [−0.5t, 0.5t], t being the thickness of the shell,
n is the pseudo-normal vector that represents the orien-
tation of the material with respect to the mean plane and
XM being points on the mean surface. Similarly, we ob-
tain the displacement vector

u = uM + ξ (n− n0) (14)

with n0 being the pseudo-normal vector in the initial
configuration. The technique for updatingn will be de-
scribed later.

Firstly, we define the local coordinate system associated
with the shell in the initial configuration that is denoted
by L0 subsequently. The initial local coordinatesxL0

of
each point are defined from the general initial coordinates
x0 through a rotation matrix

x0 = G
−1
0 · xL0

(15)

With these definitions, the displacement vector in eq. (14)
can be rewritten as

u(xL0
, yL0

) = uM (xL0
, yL0

)+zL0
(n(xL0

, yL0
) − n0(xL0

, yL0
))

(16)

Since fibers are initially perpendicular to the mean plane
of the shell,n0 is parallel to thezL0

axis, which implies
that zL0

= ξ. Then, inL0 , one calculates the total La-
grangian NSPH shape functionsNL0

leading to the ex-
pression of the gradient of a field in the global coordinate
systemLG:

∇u = G0 · ∇L0
u (17)

Now, one can define the gradient matrixF for a point on
the mean plane (zL0

= ξ = 0):

F = G0 ·F3 (18)

with

F3 =





x,xL0
x,yL0

nx

y,xL0
y,yL0

ny

z,xL0
z,yL0

nz



 (19)

We now express the Green-Lagrange strain tensor:

Eij = 0.5 (ui,j + uj,i) = EMij + EBij(ξ) (20)

with

EMij = 0.5 (uMi,j + uMj,i) (21)

and

EBij(ξ) =
ξ

2
(∆ni,j + ∆nj,i) (22)

with ∆n = n − n0. As indicated by above equations,
E is divided into a partEM which is constant throughout
the thickness, associated with membrane and transverse
shear effects, and a partEB(ξ) which is linear throughout
the thickness, associated with bending effects. For geo-
metrical non-linear applications (especially for large ro-
tations), the usual non-linear membrane strains are added
to the linear membrane ones. The non-linear bending and
shear strains are neglected as usual for non-linear shell
formulations. Then, strains must be written in the lo-
cal coordinate system of the current position of the mean
plane of the plate, denoted byLC , in order to calculate
the stresses in agreement with the plane stress assump-
tion. In order to define this coordinate system, one de-
termines two vectorsn′

2 andn2 of the mean plane. The
normal to the plane is defined by

n
′
2 =

∂X(xL, yL)

∂xL
(23)

n2 =
∂X(xL, yL)

∂yL
(24)

n3 = n
′
2 ∧ n2 (25)

The basis is completed with a third vector:

n1 = n3 ∧ n2 (26)

Using these three basis vectors, the rotation matrixGL

is defined that connects the current local systemLC to
the global systemLG. One should note that in the case



of an updated Lagrangian formulation in which the ref-
erence configuration is regularly updated the equality
G0 = GL holds. The expression of the local membrane
shear strainsǫLM

and bending strainsǫLB
follows

ǫLM
= GL · F−t · EM ·F−1 ·GT

L (27)

ǫLB
= GL · F−t · EB · F−1 · GT

L (28)

which can be rewritten, still in theLC coordinate system,
in the form of generalized strain vectorsǫg andǫs defined
by:

ǫg =

















ǫLmxx

ǫLmyy

ǫLmxy

ǫLfxx

ǫLfyy

ǫLfxy

















, ǫs =





ǫLsxz

ǫLsyz

0



 (29)

The generalized stress vectorsσg andσs are obtained ac-
cordingly. The membrane and shear stress resultantsNij

andSi along with the bending momentsmij are obtained
by integration through the thickness:

Nij =

∫ h/2

−h/2

σLmij
(ξ) dξ = hσLmij

Si =

∫ h/2

−h/2

σLsiz
(ξ) dξ = hσLsiz

mij =

∫ h/2

−h/2

σLbij
(ξ) · ξ dξ =

h3

12
σLfbij

(30)

Hookes law in plane stress is used to link stresses to
strains, and the transverse shear stresses are connected
to the corresponding strains through the usual relations:

σg = C · ǫg , σs = G · ǫs (31)

whereG is the shear modulus and with

C =

[

Ĉ 0

0 Ĉ

]

(32)

whereĈ is the first-order elasticity tensor for plane stress
conditions. Then, the generalized stresses integrated
through the thickness are rewritten in the form of two ma-
trices:

S =

[

Nxx Nxy Tx

Nxy Nyy Ty

Tx Ty 0

]

, m =

[

mxx mxy 0
mxy myy 0
0 0 0

]

(33)

The nominal stress tensorP can then be obtained from

P = G
T
L · S · GL ·FT = s · FT (34)

Similar to the 3D case, the membrane and transverse
shear equilibrium equation follows

P
T · ∇ = ̺ · ü (35)

Next, the angular accelerations̈θxL
and θ̈yL

are calcu-
lated using the two moment equilibrium equations de-
fined in the local coordinate system by

I · θ̈xL
= myy,y + mxy,x + t · σyz

I · θ̈yL
= mxx,x + mxy,y − t · σxz (36)

or in matrix form

I · θ̈L = L · div(m) + TL = L ·mT · ∇L + TL (37)

with the rotation moment of inertiaI and

L =

[

0 1 0
1 0 0
0 0 0

]

, TL =

[

h · σyz

−h · σxz

0

]

(38)

Eq. (37) can be also obtained in theLG coordinate sys-
tem by

I0 · θ̈ = M
T · ∇0 + T0 (39)

with

M = J · F−1 · GT
L ·m · LT ·GL , T0 = J ·GL ·TL (40)

Thus,M is the equivalent for the bending stresses of the
nominal stress tensorP for the stresses that are constant
throughout the thickness. Following the total Lagrangian
formalism, one obtains the following pair of equations:

I0 · θ̈ =

N
∑

J=1

(MJ − MI)∇N0IJ + T0

̺ · ü = (PJ − PI)∇N0IJ (41)

The vector of angular accelerationsθ̈ thus obtained is
used to updaten. One defines a new matrixGt

n that ex-
presses the rotation ofn with respect to its initial position
n0, and whose increment∆Gn expresses the rotation of
n during a time step. Usingθ, one determines the incre-
mental rotation vector∆θ that defines the rotation ofn
during a time step, thanks to time integration. The cor-
responding rotation matrix∆Gn is then calculated using
the Rodrigues formula:

G
t+∆t
n = ∆Gn · Gt

n

n
t+∆t = G

t+∆t
n · n0 (42)

4. ELASTO-PLASTIC CONSTITUTIVE MODEL
AND FRACTURE CRITERION

For elasto-plastic material, MindlinReissner assumption
that the stresses vary linearly throughout the thickness
is no longer valid. Therefore, stresses have to be inte-
grated through the thickness. One of the most usual tech-
niques in shell applications of the finite element method
consists in performing the integration using a number of
additional Gauss points distributed throughout the thick-
ness. A simpler and less expensive method enables the



direct calculation of the plastic stresses from the mem-
brane and bending generalized stresses. This approach is
based on the assumption that the whole section becomes
plastic at once: this assumption is true when the shell is
subject to membrane loads alone. Thus, in the case of a
perfectly plastic material, one can express the plasticity
criterion as follows:

f = σ2
V M − σ2

Y 0 (43)

with the equivalent stress

σ2
V M = σ2

Lm,eq +
1

Ψ2
σ2

Lb,eq +
1√

3Ψ
σLm,eq σLb,eq + κσ2

Ls,eq (44)

Similarly, the equivalent generalized stresses are given by

σ2
Lm,eq = σ2

Lmxx
+ σ2

Lmyy
+ 3σ2

Lmxy
− σLmxx

σLmyy

σ2
Lb,eq = σ2

Lbxx
+ σ2

Lbyy
+ 3σ2

Lbxy
− σLbxx

σLbyy

σLm,eqσLb,eq = σLmxx
σLbxx

+ σLmyy
σLbyy

+ 3σLmxy
σLbxy

− 0.5
(

σLmxx
σLbyy

+ σLmyy
σLbxx

)

σ2
Ls,eq = 3σ2

Lsxz
+ 3σ2

Lsyz
(45)

Let us assume that transverse shear stresses are not in-
volved in plasticity, which is equivalent to setting the pa-
rameterκ equal to zero. The parameterΨ can be used
to adjust the occurrence of the plastic hinge through the
thickness. In the case of pure bending loading,Ψ = 1
means that a plastic hinge occurs as soon as the skin
becomes plastic, andΨ = 1.5 means that the plastic
hinge occurs only once the whole thickness of the shell
has become plastic. For a shell in pure bending, the mo-
ment/curvature law reveals an apparent strain hardening
effect due to the progressive development of plasticity
through the thickness. To take this effect into account,
Crisfield modified eq. (44) by allowing the parameterΨ
to vary between 1 and 1.5 depending on the equivalent
plastic strain in bending. Eq. (43) can then be easily ex-
tended to the case of materials with isotropic strain hard-
ening by taking into account the strain hardening of the
materials traction curve as a function of the equivalent
plastic strainǫp:

f = σ2
V M − σY (ǫp)

2 = σt
g · H · σg − σY (ǫp)

2 (46)

with

H =

[

A
1

2
√

3Ψ
A

1

2
√

3Ψ
A

1

Ψ2 A

]

, A =

[

1 −0.5 0
−0.5 1 0

0 0 3

]

(47 )

The plastic projection is obtained by radial recovery.
Fracture is modeled by visibility method. Therefore, the
link between adjacent particles are removed. We employ
stress-based criterion and fracture is introduced once a
certain maximum principal stress-value is exceeded at the
stress-points. Commonly, this threshold is equal to the
tensile strength of the material.

5. NUMERICAL EXAMPLE: FRACTURE OF
CYLINDRICAL SHELL

Experimental studies of fracture of cylindrical thin shells
due to gas explosion were done by [Cha04]. In their ex-
periments, they attached a thin-walled cylindrical shell
made of aluminium to a rigid detonation tube. The rigid
detonation tube had a length of 1.52m and the cylindrical
aluminium tube had length of 89.6cm. The inner radius of
the aluminium tube isri = 1.975cm and shell thickness
is 0.089cm. The aluminium tube contained notches of
different length. We consider two notch length: 2.54cm
and 7.6cm that is subsequently called short notch and
long notch. In the experiment, [Cha04] sealed up the up-
per end while the lower end of the device was closed.
Then, combustible gas was introduced in the tubes and
thermally ignited. The combustion quickly turned into
detonation. Since this is very difficult to model in numer-
ical simulation, we modelled the detonation by pressure-
time history on the inner walls of the cylinder that was
also provided by [Cha04].

We now discuss results for short notch: At the beginning
of the simulation, the crack extends from the two existing
crack tips in a straight line in axial direction of the tube.
The crack moving away the rigid tube slows down and
the crack moving towards the rigid tube turns direction.
It begins propagating in combined axial/circumferential
direction with turning angle of approximately 45 degrees.
Then this turning crack turns again and continues propa-
gating only in circumferential direction. Simultaneously,
crack growth at the opposite end is arrested. Final dis-
placed configuration is illustrated in figure 3a and 3c. The
displaced tube and failure pattern is similar to the experi-
mental failure pattern.

We now discuss the results for long notch: First, crack
starts propagating from two crack tips in straight line
in axial direction. Then, both propagating cracks begin
branching and change propagation direction mainly in
circumferential direction. Several other small cracks at
other location are nucleated that later join with the orig-
inal main cracks. At the end of the simulation, the tube
is split into three large pieces. The middle piece contains
many smaller internal cracks. Also the tube in the exper-
iment showed this behavior and was divided into 3 larger
pieces where the middle piece contained internal cracks.
The displaced tube at the end of the simulation is shown
in figures 3b and 3d. It is shown next to the tube with
short notch to emphasize the difference.

6 . CONCLUSION

The fracture of thin-walled structures was studies with
SPH shell formulation based on Mindlin Reissner theory.
Therefore, the continuum SPH formulation was modified
such that the behavior of the shell is determined using a
model discretized only on mean surface alone. The mean
surface consists of a single layer of particles in which



(a) short notch

(b) long notch

(c) short notch

(d) long notch

Figure 3. Displaced configuration of cylindrical shell for
short notch and long notch

each point on the mean plane is assigned a thickness that
varies in space and time. Correction and stabilization of
the classical SPH formulation is adopted from methods
available in the literature. Moreover, elasto-plastic con-
stitutive model is developed for the SPH shell and frac-
ture criterion based on visibility method is used. The
formulation is applicable to large deformations and fi-
nite rotation. The main contribution of this manuscript is
a novel method for elasto-plastic fracture of thin walled
structures. The major advantage over most existing for-
mulations is computational efficiency.

We applied our method to two problems and compared
results obtained from our numerical solution to experi-
mental data. First example is tearing of plates with dif-
ferent notch-length. We did mesh refinement study and
showed that results are independent of mesh. Agreement
of our solution with experimental data are promising. The
second more complex example is fracture of cylindrical
shells due to a gas explosion. The gas explosion was
modeled by pressure impulse on the inner walls of the
cylinder according to experimental data. The cylindrical
shells contained also pre-cracks of different length and
failure mechanism depend on pre-crack length. When
the notch is long, the tube broke into three large pieces
while for short notch, the crack first propagates straight
and then slightly curves. This behavior is also verified in
our numerical model.
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