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ABSTRACT 
 
The distributions of stream meteoroids in the near-

Earth space is investigated analytically using the 

method of general functions (MGF). The analytical 

formulas for the focusing and shadowing effects by the 

Earth are obtained. These results reflect clearly the 

main features of meteoroid distributions, and can be 

used for interpretations of on-board measurements and 

ground observations by meteor radars and optical 

telescopes. The results can also be used for estimations 

of spacecraft safety. Then there are presented new 

results on transitory dust dynamics obtained by MGF. 

The temporary distributions and a gravitational drag for 

a moving gravitating center are evaluated in linear 

approach  (without self-gravitation).    
 

1. INTRODUCTION 
 

The analytical formulas by E.J. Opik,  D. Kessler, and 

other authors are the techniques to calculate the risk of 

collisions with objects disposed in elliptical orbits. In 

this way the problem of calculations of  space debris 

risk obtained a simple and exact mathematical 

foundation. 

The problem of statistical description of hyperbolic 

motion of interplanetary or interstellar dust clouds 

which move from infinity through the vicinity of a 

gravitation center have been attracting attention of 

many explorers  starting from the beginning of the 

previous century at least. The analytical works [15, 12, 

6] can be regarded as examples. The first work had a 

little bug, the second one had a bug too, but the last 

work proposed accurate results. 

The method of general functions (MGF) as alternative 

approach for orbital statistical mechanics was firstly 

developed for elliptical orbits in the following works: 

in [7] and afterwards [8,9] this method was used for 

determination of densities of distributions of space 

debris; in [2-5] the MGF was proposed for use in 

similar problems of statistics of orbital motions. The 

most detailed  description of MGF foundations was 

given in  [5]. The averaging over an orbital period was 

an essential part of this technique, so implementations 

of this method were initially limited to statistical 

analysis of space objects in elliptical orbits.   

Then in [10,11] the extension of the MGF on 

hyperbolic problems was proposed. Hence it was 

shown that the MGF is a powerful tool for a more 

extensive class of statistical orbital mechanics 

problems including infinite motion. 

The new results facilitates the risk analysis of 

spacecraft because of interplanetary dust poses enough 

serious hazards to spacecraft along with orbital debris, 

and now the serious attention is paid to their protection 

against meteoroids.  

 
2. DIMENSIONLESS PARAMETERS 
 

Like to the usual hydrodynamics, the problem of 

motion in vicinity of a gravitational center with 

gravitational constant P  can be formulated in terms of 

the following dimensionless parameters: velocity v~ , 

radious-vector r~ , impact parameter F~ , elapsed time 

t
~

, space density U~ , and force  F
~
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Besides, the following relations for a flux and density 

increment can be written:  

000 vf � U ,  1~ � UG . 

Furthermore, the sign of nondimensionalization is 

omitted. 

 

3. THE MOTION OF A MONODIRECTIONAL 
METEOROID STREAM IN THE NEAR-EARTH 
REGION  
 

The motion of a meteoroid stream in the near-Earth 

space can be represented generally as follows. 

 There is a parallel flow of dust with velocity v0 at 

infinity (the nondimensional speed equals 1). The flow 

incidents on a gravitation center. It is a 2D-problem 

with cylindrical symmetry. 
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Figure 1. The problem on a meteoroid flow in the 

the near-Earth space.  

 

The density of space distribution in a time t induced by 

a particle distributed uniformly (i.e. with equal 

probabilities) over azimuthal angle M,  is given by 

expression 
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where )(tR  and )(t4 are the functions which 

describe radial and angular motion of the particle in 

time.  

The norm integral (the total number of particles in the 

whole space) is as follows: 

1sin2),,(),,(

0

2

0

2  ���� ³ ³
f S

TTSTUTU ddrrtrtr  

A mean space density induced by one particle during 

time T can be written as  
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This equation can be integrated using one of the 

available /-functions and an elementary relation for 

angular motion 
r

v

dt

d T 
4

. Equation 0)(  �4 Tt  

has two solutions for a given radious-vector r  

corresponding  to two different impact parameters. 

¸
¹

·
¨
©

§ ��r )cos1(4sinsin
2

1 22
2,1 TTTF rrr . 

   (2) 

 

In other words, commonly there are  two  streamlines 

going through an every point of space ),,( MTr .  The 

streamline with positive impact parameter corresponds 

to “direct” particles, the streamline with negative 

impact parameter corresponds to “dispersed” particles. 

The “dispersed” particles move “around” the 

gravitational center. And have  “longer” pathes   
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In the formula (2) the function )(TRc  is a dependency 

of radious-vector via angle T. Velocity Tv  is a function 

of the angle T also.  

From the conservation law for the orbital angular 

momentum it follows that 
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 . 

Then we can integrate over impact parameter to get a 

total density of distribution. The number of particles in 

an elementary interval of the impact parameter for a 

unit of time is as follows.  

02 fTdN ��� FSF , 

where f0 is a particle flux in infinity.  

The total density is described by the sum of two 

integrals.  
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Using properties of the /-function we have: 
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Thus, Eqs. (2), (4), and (5) determine an average 

density of distribution of interplanetary dust in the 

near-Earth space during a meteoroid storm.  

It is easy to check that this solution coincides 

numerically with the earlier results [6, 10, 11],  

although they have different forms.  

 

4. FOCUSING AND SHADOWING OF A 
METEOROID STREAM BY THE EARTH  
 

The average density of distribution of interplanetary 

dust in the near-Earth region can be evaluated using the 

dependency of density via radious-vector that lies in 

the transverse plane, that goes through the center of the 

Earth (similar to the main plane in optics).  
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Figure 2. A profile of density of meteoroid distribution 

in the transverse direction 

 

This profile agrees with the commonly accepted 

estimates of the all-directional flow ( for example, in   

[13, 14]) . 

Radius-vector of the point where a streamline crosses 

the main plane is  

F
F
�

 
1

2

cr . Its value tends to the mpact parameter 

when impact parameter tends to infinity.  

 

The focusing of the monodirectional flow at the axis 

beginning at some distance of the Earth is an important 

feature of the flow (Fig. 3). 

 

 

 

 

 

Figure 3. The focusing of the monodirectional flow of 

meteoroids in vicinity of the Earth. It is an 

appropriate scale for  initial velocity of meteoroids of 

10 km/s. 

Such focusing leads to essential reduction of the 

shadow region. Vice versa, there is a sharp increasing 

of the meteoroid fluxes starting from  the boundary of 

the “dead” zone (the region of shadow free from the 

dust)  at some critical distance because there is a 

singularity in the density distribution at the axis of the 

parallel flow. The singularity is described by the 

following characteristic dependency.  
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Such process has place for any initial speed of 

meteoroids but for the greater speed the frontier is 

enough far from the Earth. The point where a stream 

crosses the flow axis corresponds to  T = S, hence, the 

radious-vector of this point is 
2

2F
 fr , and sharply 

increases with the impact parameter.  

Foe example, geostationary orbit corresponds to 

52.6|
m

GSO

r

r
, where rm is a minimal radious (the 

Earth’s radious plus the height of atmosphere that is 

about 100 km).  If it is a boundary of the Earth’s 

shadowing of the meteoroid stream then 

2

2
m

fGSO
r

rr   , and. rm|13. It corresponds to 

velocity of 28.3 km/s, so that impact parameter is 

F=13. It is obvious that if the stream velocity is greater 

than 28.3 df/c, the frontier of the singularity is out of  

the geostationary orbit. Note, nevertheless, the 

singularity  exists for the greater meteoroid velocities 

but somewhere far from the Earth.  

Note once more, that the right calculation of risks 

needs a special approaches indicating the singularities. 

The focusing  is a real danger that is ignored now.   

Even a weak meteoroid streams which are not 

cataloged now can be hazardous due to the singularity. 

This question needs the further study; firstly, meteoroid 

stream structures and their evolution should be 

explored. 

 

5. THE ABSORPTION  CROSS-SECTION OF 
THE EARTH IN A METEOROID STREAM  
 
Evolution of the meteoroid streams crossing Earth’s 

orbit is determined by two processes: dispersion and 

absorption. The perigee of the orbit of the meteoroid 

streamline at the boundary of absorption zone is 

determined by the following equation    

 

FT � mtg     (8) 

 

If the radius-vector of the perigee is smaller than some 

value rm, the particle will burn in the atmosphere. 



Considering the signs the critical impact parameter can 

be written as follows   
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If Fm>>1 then mmr F#  

 

The simple expression for the minimal impact 

parameter is  
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Thus, the effective cross section of absorption  

2
mS FS �  is described as  
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where 
2

0 mrS � S  is a usual cross section of the 

Earth. The effective cross-section is proportional to 

inverse square of the initial speed of the stream. The 

gravitational effect is essential even for meteoroid 

streams of moderate speeds.  

 

6. ABOUT THE INFLUENCE OF THE 
GRAVITATIONAL FIELD OF THE EARTH ON 
THE FLOW OF ALL-DIRECTIONAL 
METEOROIDS  
 
The stream component of meteoroid environment 

brings an essential local hazard, but the sporadic 

component is more dangerous in average. The initial 

velocity distribution of sporadic meteoroids is closed to 

isotropic distribution. A simpler but  useful evaluation 

for the isotropic case was developed in [1]. Using the 

principle of symmetry and the conservation law 

allowed deriving  simple and reliable expressions for 

the dependency of dust density via radious-vector. But 

this approach doesn’t allow obtaining velocity 

characteristics of meteoroid distributions.  In this case 

the above estimates made for the main plane can be 

useful.  

But note, the Earth’s motion leads to violation of the 

initial symmetry. Besides, the modern models of 

meteoroid environment consider nonisotropic features 

in sporadic components too. In this case there is only 

the way of integration of the Eqs. (2), (4), and (5) for 

the monodirectional flows.  

 

As it was shown before (Fig. 3), the gravitational 

focusing leads to reduction of the “dead” zone in space 

but it also leads to enlargement of the “dead” angular 

zone. You see in Fig.4  that  there is J  � J c ).  
 

 
Figure 4. A “dead” angular zone considering the effect 

of gravitational focusing. 

 
7. THE GRAVITATIONAL DRAG IN AN 
UNBOUNDED DUST MEDIA  
 
A problem of transitory dust particles flow in an 

unbounded (infinite) dust region comprising a 

gravitation center can be reformulated in the following 

way. 

At the initial time t=0 the dust particles are distributed 

uniformly over an infinite region. Instantly a  

gravitation center appears and acquires a unit velocity 

(Fig.5).   The problem has a cylindrical symmetry. 

 

 
 

Figure 5. The problem on instant motion of a 

gravitation center in a dust media. 

 

In the problem the motion of dust particles can be 

determined by following two equations: 

),,( 00 rft TT     (12) 

),,( 00 rgr TT ,  

where T0, r0 are the polar coordinates of a dust particle 

at the initial time t=0, and  T,  r  are the coordinates at 

an arbitrary time t. 

The line of solution of this problem is more 

complicated than previous. But the main ideas are the 

same.  

As a result, at any time the density of distribution of 

the dust is a sum of several components  

¦ 
i

i trtr ),,(),,( TUTU ,   (13) 



where each of the components is described by the 

formula of common view:  
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and 
)(

00
i

rr  b 
)(

00
iTT   are solutions of the system 

(12) (index i is omitted in (14) ). There are several 

solutions of the equation (12) in the region of finite 

trajectories but only two solutions in the region of 

infinite trajectories where the density is composed of 

the following  components: ),,( trp TU  is the density 

of direct flow and ),,( trd TU  is the density of 

dispersed flow. The density of the direct flow prevails 

everywhere, except the wake region.  

The expression  (14) is rather complicated really, and it 

needs an additional verification. Such verification can 

be performed in different ways. Firstly the limiting 

expression at fot  is obtained..  

Nnumerical calculations show identity  of  limiting 

results from (14), and the results by [6, 10, 11] , and 

the results by [6, 10, 11,.   

Also the temporary behavior of the direct  component 

is investigated . Fig. 6 shows the temporary increments 

of the dust density when T= 90q and  r = 10 and r = 30.  

 
Figure 6. Graphics of the temporary  increments of 

primary component of dust density in direction �=90q. 
 

Integration  of the gravitational drag force over the full 

space gives the following graphic (Fig. 7) 

 

 

Figure 7. Drag force via time (the disperse component 

is not considered).  

 
Note, the drag force acting on  the gravitating center that moves in an 

infinite media grows with time unlimitedly, and the density 

increment at great distances contribute the main input into the drag 

force.    . 

 

CONCLUSIONS 
 

Using the method of general functions the analytical 

solution of the problem of a steady meteoroid flow in 

the near-Earth space is obtained.  There are 

investigated the main features of this flow including 

effects of focusing and shadowing by the Earth.   

The analytical formulas for the effects are .obtained. 

These results reflect the main features of meteoroid 

distributions more clearly than numerical calculations, 

and can be used for interpretation of on-board 

measurements and ground observations by meteor 

radars and optical telescopes. The results can also be 

also used for estimations of spacecraft safety.  
The unsteady problem of dust motion in the vicinity of 

a gravitating center (or instant motion of the gravitating 

center) is resolved analytically in the linear approach 

(without self gravitation). At the limit of tof the 

unsteady solution converges to the formulas for the 

steady flow.  

The formulas for the transitory dust distribution and 

gravitational drag are developed   in linear approach 

without consideration the self-gravitation processes. 

The method of general functions can be used for 

investigation of a wide class of steady and unsteady 

dust flows.   
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