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ABSTRACT  

In this work we present an algorithm for computing 
Orbit Determination for Space Debris population. The 
method presents a high degree of parallelism. That 
means that the number of available computers divides 
the computational effort.  
The context of this work and the later scope is to have 
the capability of cataloguing and correlating the Space 
Debris population. In this sense, as better the accuracy 
provided by the orbit determination is, more accurate 
will be the estimation of the state vectors corresponding 
to the debris objects and better will be the accuracy of 
the future catalogue of Space Debris. As more objects 
we can determinate the corresponding orbit, more 
complete will be the future catalogue. Therefore 
numerical tools for orbit determination are a key point 
in the development of a future ESSAS. 
The first time that a new object is observed, six 
measurements (these measurements may come from 
RADAR, Ground Based Telescope or Space Based 
Telescope) are required for computing an Initial Orbit 
Determination (IOD). After that, the Initial Estimated 
State Vector (IESV) is improved within the next-
coming measurement.  
The idea of this method is the following. From six 
initial measurements, we compute the IOD following 
the same ideas of [1]. We compute also the initial 
knowledge covariance matrix (IKCM) corresponding to 
the IESV. In general, the numerical error of the IOD is 
too big for processing the following measurements with 
a conventional numerical filter (like the Square Root 
Information Filter (SRIF)). The problem is that the 
improvement of the accuracy in the IOD is not an easy 
task in those cases with large initial error. However the 
computed IKCM give a realistic approximation of the 
committed error in the IOD. The proposed algorithm 
uses the IKCM for generating a cloud of IESVs. All the 
IESV inside the cloud are processed with a new and 
much smaller IKCM by using SRIF. In such a way that 

the ones that are close enough to the real state vector 
(and thus its real IKCM is in agreement with that 
imposed) survive. Those ones that are far away of the 
real solution make SRIF to diverge and are skipped 
from the initial cloud.  
 
We will show numerical results and we will compare 
the accuracy with the numerical results obtained by 
applying directly the results of the IOD to the SRIF. 
Implementation of the algorithm in a cluster of PCs will 
also be addressed. 
 
The reported algorithm has been implemented in the 
Advanced Space Surveillance System simulator (AS4) 
and developed by DEIMOS Space. The project has been 
partially funded by the CDTI (Ministerio de Ciencia e 
Innovación (Spanish Government)).  
 
1. INTRODUCTION 

In this work we have developed and implemented an 
algorithm for computing orbit determination for space 
debris population. The algorithm presents high degree 
of parallelism. The work has been structured as follows. 
In this section we will describe the debris population as 
well as the dynamical models of motion used in our 
numerical simulations. We will also describe the 
technical characteristics of the simulated radar and 
optical sensors.  After that, section 2 speaks about the 
IOD computation and the IKCM computation. Some 
numerical results are provided in terms of achieved IOD 
accuracy. In section 3 we explain how the orbit 
determination is classically computed and which are its 
numerical limitations. Section 4 explains which is the 
idea of the new algorithm for orbit determination 
computation and how it can be implemented in a cluster 
of PCs. It also includes a subsection with the numerical 
results. This work finishes with a section of conclusions. 
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1.1. Space Debris Population 

The population that will be considered for the numerical 
simulations has been provided by ESA (European Space 
Agency). W consider the following classification of the 
Space Debris population type of orbits: 
- Low-Earth Orbits (LEO):  They are the orbits that 

are located closest to the earth. All these orbits 
which apogee is lower than 2000 km are considered 
LEO type orbits. There are 194,612 LEO type orbits 
in our considered population (11,110 of them are 
greater than 10 cm). 

- Medium-Earth Orbits (MEO):  We consider MEO 
type orbits; the ones with inclination lower than 67º 
and mean motion greater than 1.5 but smaller than 
2.5 revolutions per day. In our database there are 
33,447 MEO type of orbits (972 of them are greater 
than 10 cm).  

- Geosynchronous Orbits (GEO): All these orbits 
with perigee greater than 34,000km and apogee 
smaller than 38,000km are considered GEO type 
orbits.  There are 81,711 GEO type of orbits in our 
database (3,322 of them greater than 10cm). 

- GEO transfer Orbits (GTO):  All these orbits with 
perigee smaller than 20,00km and apogee between 
30,000 and 45,000km are considered GTO type of 
orbits. There are 13,426 GTO types of orbits in our 
database, 92 of them are greater than 10cm. 

- Finally, all orbits that are not any of the previous 
type of orbits are considered Other (OTH) type of 
orbits. 

Fig.1 shows the distribution of diameter vs Semi-major 
axis and eccentricity vs. semi-major axis. 
 

  
Fig.1: Distribution of Debris. The pictures correspond to 
the graphics of semi-major axis vs diameter (on the left) 
and semi-major axis vs Eccentricity 
 
1.2. The dynamical Model of Motion 

In order to simulate the generation of measurements we 
need a model of the real motion of these space objects. 
On the other hand, the observer, who receives the 
measurements, needs an estimated model of motion. 
This model has not the complete dynamical information 
but it must be close to the real model. Therefore, two 
different models of motion are considered in order to 
simulate the procedure of orbital determination.  

On one hand, the real model of motion: it will be used 
for simulating the real dynamics; in concrete using this 
model of motion generates the measurements. In this 
case, the gravitational field is the sum of the following 
forces. 
- Kepler:  the main contribution, to consider the force 

of the Earth over the debris object. 
- Earth gravitation potential:  the software allows a 

development of the series up to 50th order 
(GEMT3). However in our simulations we will use 
only a 4 tesseral x 4 zonals series. 

- Third bodies: Sun and Moon contributions are the 
ones considered in our computation. The position of 
both bodies is simulated by means of analytical 
ephemeris. 

- Atmospheric contributions. We use the Jacchia-
Linaberry model in our simulations. 

- Simple Solar Radiation Pressure model 
The three first forces are conservative and they do not 
depend on the area to mass ratio, while the two last 
contributions are dissipative and they depend on the 
area to mass ratio. Moreover as the real effect of the 
atmosphere and solar radiation pressure are not well 
known over the debris objects, the last two contributions 
include a Gauss Markov noise. Gauss-Markov noise 
refers to a correlated stochastic noise with a given 
autocorrelation time W and a given covariance Vg. 
The following dynamic noise is assumed in our 
simulations: 
- Atmospheric Drag error modelled as a Gauss-

Markov noise with a 1-sigma value of 15% and 
autocorrelation time of 100 minutes (see Fig.2). 

- Solar radiation Pressure error modelled as a Gauss-
Markov noise with a 1-sigma value of 15% and 
autocorrelation time of 100 minutes  (see Fig.2). 

 

  
Fig.2: Atmospheric drag error behavior (on the left) and 
solar radiation pressure error behavior (on the right). 
 
In the estimated model of motion, the noise 
corresponding to DRAG error and the noise 
corresponding to SRP error are not known. The other 
contributions are the same as in the real world, but these 
noises must be estimated. Moreover, in order to apply 
DRAG and SRP forces, the mass and the diameter of 
the object must be also known or estimated. 
Of course, not all forces affect with the same intensity 
to each object in the Debris population. The intensity of 



 

the forces will depend (mainly) on the location of the 
object. Fig.3 shows the different contributions for each 
type of orbits. The plots have been done in the 
following manner. We consider the initial position of 
every object of the initial catalogue. At this time, we 
compute the acceleration corresponding to each one of 
the acting forces.  We plot the acceleration 
corresponding to Kepler (in red), to the Geopotential 
(blue), to Sun (green), Moon (dark blue), SRP (pink) 
and DRAG (yellow). 
 

  

  

  
Fig.3: Force Contributions in the Debris population. 
 
As expected, the larger force in all cases is the Kepler 
contribution. Among the perturbations over Kepler 
acceleration, importance of the other contribution 
mainly depends on the type (or concretely, on the 
position) of the orbit. For those orbits located closer 
than 45,000km to the Earth, the biggest contribution 
after Kepler is the corresponding to the Earth 
gravitational potential, while the orbits that are located 
farther than 45,0000km from the Earth centre the 
second most important contribution is the gravitational 
effect of the Moon. In any case, the second most 
influent force corresponds to a conservative force. On 
the other hand the DRAG effect is very high for LEO 
orbits, or in general for those orbits located closest to 
the Earth (closest than 7000km to the Earth the effect of 
DRAG is almost of the order of 10-6). 

1.3. Measurement generation 

Two different types of measurements are considered in 
this work 
- Radar measurements, using a bistatic radar 

(GRAVES type), which would provide the 
following observable: Azimuth, Elevation & 
Doppler.  

- Optical measurements using 0.5m-diameter 
telescopes, which would provide the following 
observable: Azimuth, Elevation. Four different 
locations have been considered: Marquises Islands, 
Tenerife, Cyprus and Perth. The pointing of the 
telescope has been considered as in [1] (see also [2] 
and [3]). The idea of this strategy is that the 
telescope is moving in a declination strip (of –17º, 
17º) at the rate of one field each 15 seconds 
(making survey). When it finds a new object, the 
system predicts when new images are needed in 
order to get an accurate orbit determination enough 
for correlation purposes (generally one and two 
hours after the detection of a new object). At these 
predicted times, the telescope gives up its survey 
tasks, goes to catch the required images (follow up 
images –FUP-) and returns to continue its survey 
tasks. As a consequence of that, the observation 
time is shared between survey and tracking, and 
thus, the capability of finding new objects is 
reduced. 

The simulator used for generating the measurements is 
the AS4 simulator (see [4] for the first version of the 
simulator and [2] for later versions). The computation of 
the observables is performed from the real position and 
velocity of the debris object. Once the observable has 
been computed, a Gaussian random noise is added to it. 
 
2. INITIAL ORBIT DETERMINATION 

COMPUTATION 

The problem of Initial Orbit Determination (IOD) 
consists in computing the position and velocity of an 
object from its first observation. The mathematical 
problem has six unknown (three position coordinates 
and three velocity coordinates). Therefore, at least six 
measurements are required to compute a first estimation 
of the state vector of the object. In this sense, it does not 
matter the sensor where the measurements come from: 
We can consider three pairs of azimuth and elevation 
coming from Ground Based Telescope observations; or 
we can consider the Doppler, azimuth and elevation at 
two different times of one track observed by one 
Ground Based Radar; even we could consider six 
measurements coming from different type of sensors. 
In practical purpose, the type of sensor where the 
measurements come from does (strongly) affect the IOD 
problem. For instance, it is not the same one ground 
based telescope that moves the pointing each 15 seconds 
than one radar that receives signal in a “continuous” 



 

way (it produces tracks of measurements along the 
visibility period of the object).  
 
2.1. IOD accuracy  

In this section, for optical measurements, we will 
assume that two FUPs are available one and two hours 
after the detection of the object. We have used the 
algorithms explained in [1]. The availability of the 
assumed FUPs is also justified in [1]. Table 1 shows the 
IOD numerical results obtained for optical 
measurements. 

Table 1: IOD numerical results for optical 
measurements. 

TYPE OF 
ORBIT 

Number of 
observed 
objects 

Mean 
Position 

Error (km) 

Mean 
Velocity 

Error  (m/s) 
MEO 154 5.26 0.649 
GEO 1061 37.71 2.99 
GTO 13 4.19 0.696 
OTH 341 43.66  3.238  

 
We compute the IESV in case of radar, from the first 
and the last measurements (Doppler, azimuth and 
elevation) of the first observed track. Table 2 shows the 
IOD numerical results obtained for radar measurements. 

Table 2: IOD numerical results for radar 
measurements. 

TYPE OF 
ORBIT 

Number of 
observed 
objects 

Mean 
Position 

Error (km) 

Mean 
Velocity 

Error  (m/s) 
LEO 1719 12.02 37.28  
MEO 31 10.33 40.51  
OTH 158 9.10   36.58 

 
2.2. Initial knowledge covariance matrix (IKCM) 

A key point in to efficiently performing the orbit 
determination process is the calculation of the initial 
estimated state vector covariance matrix. The object 
batch orbit determination and correlation by means of a 
Square Root Information Filter (SRIF) requires a 
realistic covariance matrix to work optimally (see 
section 3). The computation of the covariance matrix 
has been implemented for radar and for telescope IOD 
computations. The idea is the same in all cases. The 
IOD is computed from 6 initial measurements. The 
numerical Jacobian J corresponding to the numerical 
derivatives of the IESV with respect the six initial 
angles are computed. The IKCM is computed as: 

JEJIKCM T ��  
with E a diagonal  6x 6 matrix containing the sigma 
error of the measurements in its diagonal (see [2] for all 
details). 
 

MEO ORBITS WITH TELESCOPES 

  
GEO ORBITS WITH TELESCOPES 

  
GTO ORBITS WITH TELESCOPES 

  
OTH ORBITS WITH TELESCOPES 

  
LEO ORBITS WITH RADAR 

  
MEO ORBITS WITH RADAR 

  
OTH ORBITS WITH RADAR 

  
Fig. 4: Initial Orbit Determination error and error 
predicted by the Covariance Matrix is also shown in the 
pictures. 
 



 

In Fig. 4 the numerical IOD error and the predicted IOD 
error by the IKCM are shown. The green points 
correspond to three times the sum of the root square 
each one of the three corresponding components of the 
Covariance Matrix diagonal (the three position 
coordinates for comparing the IOD position error and 
the three velocity coordinates for comparing with the 
IOD velocity error). That is similar to compare with the 
3-sigma of the predicted error. The red points 
correspond to the real position error (in modulus) or the 
real velocity error (in modulus). That is the difference 
between the real state vector and the estimated state 
vector. In order to have a good behavior of SRIF the 
IKCM must provide a predicted error greater or equal to 
the real error. We can observe that the green points are 
over the red points. Therefore, in our computations the 
IKCM is quite realistic (some time pessimistic, which is 
always safer than an optimistic behavior). 
 
3. ROUTINE ORBIT DETERMINATION 

The mathematical approach of the routine orbit 
determination (ROD) problem is the following. At the 
beginning, IESV and the corresponding IKCM are 
required. Moreover initial estimation for DRAG and 
SRP errors are required (see section 1.2).  In our 
computations we always start with an initial estimation 
of null noise. On the other hand, the effects of the 
atmosphere and the solar radiation pressure depend on 
the mass, the diameter, the orientation and the shape of 
the object. We will consider that we know the relation 
area to mass. We want to remark that the sensors do not 
provide the area to mass ratio, and that a priori this 
parameter is not known.  
With all these initial data, the next-coming 
measurements are processed with a numerical filter. We 
use a Square Root Information Filter (SRIF) (see [5] for 
a detailed explanation of the method). In each step, the 
new measurements are processed with the previous 
estimation of the state vector, covariance matrix and 
dissipative noise coefficients (DRAG and SRP). With 
these data, SRIF computes a new estimation of the state 
vector with the corresponding covariance matrix and 
new approximations to the corresponding coefficients of 
DRAG and SRP noise. And so on with the following 
measurements.  
 
3.1. ROD accuracy 

Table 3 shows the number of objects that the SRIF has 
not converged for optical measurements when it 
processed some of its measurements (third column). The 
last column shows the percentage of objects within bad 
convergence of SRIF. The percentage of bad 
convergence of SRIF arrives up to more than the 50 % 
(for optical measurements and GEO objects) and almost 
the 90 % (for radar measurements and LEO objects). 
Radar results are much worse than the corresponding to 

Telescopes. That may be for two different reasons. On 
one hand in these cases the initial set of measurements 
are closer than in Telescope case. They come from the 
first processed track: the first and the last measurements 
of the first track. These tracks have duration of few 
minutes. As closer in time the measurements are, worse 
is the IOD accuracy, and more difficult is the 
convergence of SRIF. The second reason is that for 
those objects, the DRAG effect is very high (see Fig.3). 
This effect must be estimated and this estimation not 
always is close enough to the real DRAG value. 
 
Table 3: SRIF divergences for optical measurements 

 
TYPE 

OF 
ORBIT 

Total 
Number 

of 
Objects 

Objects 
Bad 

Conver-
gence  

Percentage 
Bad 

Conver-
gence  

MEO 154 37 24 
GEO 1061 556 52 
GTO 13 2 15 

T
E

LE
S

-
C

O
P

E
 

OTH 341 131 38 
LEO 1719 1538 89.47  
MEO 31 21 67.74  R

A
-

D
A

R
 

OTH 158 130 82.27  
 

Table 4: Simulation with all type of orbits. The total 
number of simulated objects is 1568 for telescopes and 
1909 for radar. 

 Sigma 
of IOD 
position 

error 
(km) 

Sigma 
of IOD 
velocity 
error 
(m/s) 

Number of 
divergences 

Percen-
tage of 

divergen-
ces 

0.1  0.005 0 0  
1  0.05  19   1.21   
10  0.5  442 28.19  T

el
es

-
co

pe
s 

50  5  737 47.00 
50  5  1578 82.66  
10  0.5 1537 80.51  
1  0.05  984 51.55  

0.25  0.15  335 17.55 
0.1  0.005  94 4.92  

0.025  0.015 22 1.15  

R
A

D
A

R
 

0.001 0.005  15 0.78  
 
A sufficient condition (but not necessary) for obtaining 
good behavior of the filter is to have the IESV very 
close to the real state vector (closer than the estimations 
reported in Table 1) and the IKCM according with this 
initial error. We mean that if we have an IESV that is 
almost the real one, with the corresponding IKCM, the 
filter does not diverge. The problem is that the 
numerical error required for this, is much smaller that 
the numerical error acquired with the IOD algorithms. 
We have considered the full population greater than 
10cm and we have generated 5 simulated days of 
measurements. Then we have performed orbit 



 

determination starting with a pre-configured IOD error. 
That is we have started with the real state vector with a 
noise generated by means of a Gauss probability 
function with a configurable sigma. The IKCM has been 
considered diagonal with the value of the configured 
sigma in the diagonal. Table 4 shows the number of 
divergences of SRIF of those simulations. When the 
initial estimated state vector is very close to the real 
state vector (see the results of the first row) there are not 
any divergences in the filter. The problem is how can 
we obtain this accuracy in the IOD? 
 
4. PARALLEL ALGORITHM FOR 

COMPUTING ORBIT DETERMINATION 

In section 3 we have concluded that when the IOD 
numerical error is very small the filter works without 
divergences. The problem is that reducing the IOD error 
is not an easy task. In this section we want to explain a 
methodology for determining orbits that uses the same 
IOD algorithm and the same filter (the SRIF) as the 
ones used in previous sections, but it avoids the 
divergences of the filter. The proposed algorithm uses 
the IKCM for generating a cloud of IESV. All the IESV 
inside the cloud are processed with a new and much 
smaller KCM by using SRIF. In such a way that the 
ones that are close enough to the real state vector (and 
thus its real KCM is in agreement with that imposed) 
survive to the process. Those ones that are far away of 
the real solution make SRIF to diverge and are skipped 
from the initial cloud. 
 
4.1. Algorithm description 

The idea of the algorithm is very simple. The SRIF 
works without problems when the IOD error is small. 
The accuracy of the IOD algorithms is not small enough 
but the predicted error by the IKCM is realistic or in the 
worst cases pessimistic. That means that in a 
neighborhood (defined by the IKCM) of the initial 
estimated state vector, we would find the real state 
vector. Therefore, if we consider a cloud of points 
randomly distributed in this neighborhood, some of 
these points would have much small numerical error 
than the initial considered estimation. The number of 
points needed to be close enough to the real state vector 
depends on the realistic or pessimistic that the IKCM is 
and on the numerical error of the IOD computation. 
Fig. 5 illustrates the main idea of this algorithm. The 
IOD algorithms provide an IESV (the green point) in 
addition of a IKCM (the green circle) that predicts the 
error of the estimated vector. We want to have lower 
error in the initial estimation, so we consider a cloud of 
points (represented in the picture with yellow and gray 
points) within a lower imposed Covariance Matrix 
(Cov) (represented in the picture with a yellow circle). 
The cloud of points is taken following the IKCM (inside 
the green circle). But not all these points are close 

enough to the real state vector. Only the yellow points 
in the picture are actually according with the predicted 
error of the imposed Cov (inside the yellow circle). 
When a new measurement is processed, we increase the 
knowledge of the estimation. That means that the 
estimation of the state vector improves and therefore the 
predicted error by the Cov decrease (in the picture, the 
circles become smaller when measurements are 
processed). If we have considered the first imposed Cov 
small enough (the yellow circle small enough), all the 
initial estimations according with the corresponding 
predicted error would not have any problem with SRIF. 
All yellow points will remain inside the next orange 
circles. The problem is that we do not know (a priori) 
which is the best Cov for processing all the 
measurements. Consequently, some of the points that 
are initially according with the Cov may diverge when 
processing the incoming measurements. However, after 
processing few measurements, the method stabilizes (in 
the picture after the third measurement the points 
always remain inside the next-coming circles). 
. 

 M1-RW 

M2-RW 
M3-RW Mn-RW 

Real Measurements at times t1, t2, t3, 
… , tn coming from the real trajectory 

of the Debris Object 
     ... 

Predicted Error by the first Cov0 

Predicted Error by Covi ‘s at t1 

Predicted Error by Covi ‘s at t2 

Predicted Error by Covi ‘s at t3 

Predicted Error by Covi ‘s at tn 

Initial estimation z0 

zi‘s close enough to real solution at t1

zi‘s close enough to real solution at t2

zi‘s close enough to real solution at t3

zi‘s close enough to real solution at tn

zi‘s that become too far from the real 
solution 

 
Fig. 5: Illustration of the idea of the OD by means cloud 
of points. 
Let us explain the algorithm with more detail. Let us 
consider the IKCM, let us say Cov0, computed as 
explained in section 2.2 and z0 the IESV computed like 
in sections 2.1. Since the IKCM is a positive definite 
matrix, we can compute the corresponding Cholesky 
decomposition: 

UUCov T � 0  
with U the upper triangular square root Cholesky factor. 
We generate a new IESV zi (with i=1,…, N, and N the 
total number of initial points inside the cloud), 
following the next equation: 

ii Uzz ]� 0
 

with ]i a random vector following a normal function of 
0 mean and 1 standard deviation.  

In order to apply the SRIF to each one of these initial 
estimations zi, we need a Knowledge Covariance Matrix 
associated to them, let us say Covi. We construct Covi as 
a diagonal matrix with: the sigma of the configured 
ECRVs (corresponding to DRAG, SRP and also the 
ECRVs corresponding to the added noise in the position 



 

of the Space Based Telescopes) in the first diagonal 
coordinates; a configurable sigma Vp in the three 
position diagonal coordinates; and a configurable sigma 
Vv in the three velocity diagonal coordinates. These Vp 

and Vv will indicate to SRIF how is the numerical error 

associated to zi. In other words, these Vp and Vv will be 
small for successful orbit determination. 

Once, we have generated a cloud of initial estimated 
state vectors, within their corresponding Covariance 
matrix, we process the incoming measurements with 
SRIF (see section 3) for all the points inside the cloud. 
All these points that, after processing the measurements, 
whose residuals between estimated measurements and 
real measurement are greater than 3Vm (the sigma of 
the expected noise in measurements), are skipped from 
the initial cloud. The points that survive are processed 
within the following measurements and so on. 
 
4.2. Parallel implementation 

The main problem of the algorithm explained in section 
4.1 is that the computational time increases. At the 
beginning, when the first measurements are processed, 
the number of orbits for computing their OD is 
multiplied by the number of points considered inside the 
cloud. This problem disappears when several 
measurements are processed. After processing several 
measurements all the points inside the covariance 
matrix remain there for the rest of in-coming 
measurements. But at the beginning the method is much 
more slow than the ones explained in section 3. The 
good news is that the extra effort required by this 
algorithm is easily parallelisable. In other words, we can 
use several available computers to reduce the 
computational time. Fig. 6 illustrates how the algorithm 
can be parallelised. 
 

 
M1-RW 

M2-RW 
M3-RW Mn-RW 

     ... 
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PC2 
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PC2 

PC3 

PC1

PC2

 

Fig. 6: Illustration of the parallelisation of the OD 
algorithm within clouds of points 

 

The key point in the implementation is that the task of 
processing a measurement for one point in the cloud is 
completely independent on the task of processing the 
same measurements for another point in the cloud. That 
means that we can distribute all the points in the cloud 
into the available computers. Each computer will 
process its corresponding sub-cloud and will return all 
these points that have survived. In the next 
measurement we will have a new cloud. We distribute 
the points inside the new cloud into the available 
computers and they carry on computing the orbit 
determination of each one of the points and they will 
return the new points that have survived. And so on. At 
some time, it may happen that we have more computers 
than points. In this case we will use only the necessary 
computers. The other computer may be used for 
computing the orbit determination of a different Debris 
Object. 
 
4.3. Numerical results 

We need to know the size of the covariance matrix for 
the points inside the cloud and how many points we 
must take into the cloud. As smaller the covariance 
matrix is, better is the behavior of the SRIF. On the 
other hand, as smaller the covariance matrix is, more 
difficult is being right with some points close enough to 
the real solution (the margin of error is smaller, you 
must be closer to the real solution), and therefore, more 
points you must consider in the cloud, and more time 
you will require in your computations.   

Table 5: Numerical simulations performed for 
determining the number of points inside the cloud and 
the initial numerical error in position and velocity. 

 Points 
inside 
cloud 

Position 
Error 
(km) 

Position 
Error 
(km) 

Percentage 
of SRIF 

divergences 
50 0.1  0.005 8.82  
100 0.1  0.005 5.88  
500 0.1  0.005 2.94  
50 1 0.05 7.35  
100 1 0.05 1.47  T

el
es

co
pe

s 

500 1 0.05 0 
50 0.001  0.005 95.24  
100 0.001  0.005 92.86  
500 0.001  0.005 73.81  
1000 0.001  0.005 73.81  
5000 0.001  0.005 57.14 
50 0.25 0.15 52.38  
100 0.25 0.15 42.86  
500 0.25 0.15 19.05  
1000 0.25 0.15 9.52  
5000 0.25 0.15 7.14  
50 2.5 1.5 19.05  
100 2.5 1.5 16.67  
500 2.5 1.5 11.90  
1000 2.5 1.5 2.38 

R
A

D
A

R
 

5000 2.5 1.5 0 



 

 
In order to calibrate the good parameters of the 
algorithm, we have performed a set of short simulations: 
We have simulated different objects (GEO, MEO, GTO 
and OTH) (68 in case of optical measurements and 42 in 
case of radar). Table 5 shows the corresponding 
numerical results. In the first column the number of 
points considered in the initial cloud is shown.  The 
second and the third columns of Table 5 show the value 
of the position and velocity sigma of the IOD error and 
the corresponding Covariance matrix (using the same 
notation as in section 4.1). The fifth column shows the 
percentage of objects with some SRIF divergence 
associated to it with respect to the simulated objects (we 
want this value be null). 

We have considered the corresponding number of points 
inside the clouds and errors that for the reduced 
population has not diverged for analyzing the accuracy 
with the full population. That is Vp =2.5km and Vv =1. 
5m/s with 500 points initially located inside the cloud 
(for optical measurements); and Vp =1km and Vv =0. 
05m/s with 5000 points initially located inside the cloud 
(for optical measurements). 

Table 6 show the numerical results for the full 
population. We have reduced the percentage of bad 
convergences from more than the 50 % up to the 2.62% 
in case of optical measurements and from almost 90% 
up to 8.6%. Moreover, we want to remark that this 
percentage may be decrease even more. If we consider 
covariance matrixes with lower sigma and more initial 
points (it has to be further studied the appropriate 
number of points), the accuracy in the orbit 
determination will improve. 

Table 6: Accuracy of new algorithm with the full 
population (1448 objects for optical measurements and 
1557 objects for radar measurements) during 5 
simulated days.  

Maximum 
Number of 

points 
inside 
cloud 

Sigma in 
Position 

Error (km) 

Sigma in 
Position 

Error (km) 

Percentage 
of SRIF 

divergences 

OPTICAL MEAUREMENTS 
500 1 0.05 2.62  

RADAR MEASUREMENTS 
5000 2.5 1.5 8.6 

 

5. CONCLUSIONS 

We have developed and implemented a parallel method 
for orbit determination for space debris: 

- It improves the results provided by classical 
methods (like SRIF). 

o For GB telescopes:  2.62% of 
divergences in front of the 48.6% 
obtained by applying directly SRIF. 

o For radar: 8.6% of divergences in 
front of the 78% obtained applying 
directly SRIF 

 
The reported algorithm has been implemented in the 
Advanced Space Surveillance System simulator (AS4) 
and developed by DEIMOS Space. Moreover, the 
results presented in this paper are obtained during a 
project partially funded by the CDTI (Ministerio de 
Ciencia e Innovación -Spanish Government-). 
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