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ABSTRACT

In this work we present an algorithm for computing
Orbit Determiration for Space Debris population. The
method presents a high degree of parallelism. That
means that the number of available computers divide
the computational effort.

The context of this work and the later scope ifdve

the caphility of cataloguing andarrelating the Space
Debris population. In this sense, as better theracy
provided by the orbit determination is, more actara
will be the estimation of the state vectors coroesjing

to the debris objects and better will be the acouie

the future catalogue of Space Debris. As more ¢hjec
we can determinate the corresponding orbit, more
complete will be the future catalogue. Therefore
numerical tools for orbit determination are a kemnp

in the development of a future ESSAS.

The first time that a new object is observed, six
measurements (these me@smnents may come from
RADAR, Ground Based Telescope or Space Based
Telescope) are required for computing an InitiabiOr
Determination (IOD). After that, the Initial Estiteal
State Vector (IESV) is improved within the next-
coming measurement.

The idea of this method is the following. From six
initial measwements, we compute the 10D following
the same ideas of [1]. We compute also the initial
knowledge covariance matrix (IKCM) corresponding to
the IESV. In general, the numerical error of thé®I3

too big for processing the following measuremernitl w

a conventional numerical filter (like the SquareoRo
Information Filter (SRIF)). The problem is that the
improvement of the accuracy in the IOD is not an easy
task in those cases with large initial error. Hoarethe
computed IKCM give a realistic approximation of the
committed error in the IOD. The proposed algorithm
uses the IKCM for generating a cloud of IESVs. thi
IESV inside the cloud are processed with a new and
much smaller IKCM by using SRIF. In such a way that
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the ones that are close enough to the real state vector
(and thus its real IKCM is in agreement with that
imposed) survive. Those ones that are far awayhef t
real solution make SRIF to diverge and are skipped
from the initial cloud.

We will show numerical results and we will compare
the accuracywith the numerical redis obtained by
applying directly the results of the 10D to the BRI
Implementation of the algorithm in a cluster of R@H
also be addressed.

The reported algorithm has been implemented in the
AdvancedSpace Surveillance System simulator (AS4)
and developed by DEIMOS Space. The project has been
partially funded by the CDTI (Ministerio de Ciencia
Innovacion (Spanish Government)).

1. INTRODUCTION

In this work we have developed and implemented an
algorithm for computing orbit determination for space
debris population. The algorithm presents high eegr
of parallelism. The work has been structured asvia.

In this section we will describe the debris pogolatas
well as the dynamical models of motion used in our
numerical simulations. We will also describe the
technical characteristics of the simulated radad an
optical sensors. After that, secti@nspeaks about the
IOD computation and the IKCM computation. Some
numerical results are provided in terms of achie@d
accuracy. In sectior3 we explain how the orbit
determiration is classically computed and which are its
numerical limitations. Sectiod explains which is the
idea of he new algorithm for orbit determination
computation and how it can be implemented in atetus
of PCs. It also includes a subsection with the numerical
results. This work finishes with a section of casibns.



1.1. Space Debris Population

The population that will be considered for the ntioad
simulations has been provided by ESA (European Space
Agency). W consider the following classification tbie
Space Debris population type of orbits:

- Low-Earth Orbits (LEO): They are the orbits that
are located closest to the earth. All these orbits
which apogee is lower than 2000 km are considered
LEO type orbits. There are 194,612 LEO type orbits
in our considered population (11,110 of them are
greater than 10 cm).

- Medium-Earth Orbits (MEO): We consider MEO
type orbits; the ones with inclination lower tharP 6
and mean motion greater than 1.5 but smaller than
2.5 revolutions per day. In our database there are
33,447 MEO type of orbits (972 of them are greater
than 10 cm).

- Geognchronous Orbits (GEO): All these orbits
with perigee greater than 34,000km and apogee
smaller than 38,000km are considered GEO type
orbits. There are 81,711 GEO type of orbits in our
database (3,322 of them greater than 10cm).

- GEO transfer Orbits (GTO): All these orbits with
perigee smaller than 20,00km and apogee between
30,000 and 45,000km are considered GTO type of
orbits. There are 13,426 GTO types of orbits in our
database, 92 of them are greater than 10cm.

- Finally, all orbits that are not any of the pras
type of orbits are considered Other (OTH) type of
orbits.

Fig.1 shows the distribution of diameter vs Semjema

axis and eccentricity vs. semi-major axis.

On one hand, the real model of motion: it will bsed

for simulating the real dynamics; in concrete using this

model of motion generates the measurements. In this

case, the gravitational field is the sum of thdofwing
forces.

- Kepler: the main contribution, to consider the force
of the Earth over the debris object.

- Earth gravitation potential: the software allows a
development of the series up to 50th order
(GEMTS3). However in our simulations we will use
only a 4 tesseral x 4 zonals series.

- Third bodies: Sun and Moon contributions are the
ones considered in our computation. The position of
both bodies is simulated by means of analytical
ephemeris.

- Atmospheric contributions. We use the Jacchia-
Linaberry model in our simulations.

Simple SolarRadiation Pressure model

The three first forces are conservative and theyato

depend on the area to mass ratio, while the two last

contributions are dissipative and they depend an th
area to mass ratio. Moreover as the real effedhef
atmosphere and solar radiation pressure are ndt wel
known over the debris objects, the last two contidns
include a Gauss Markov noise. Gauss-Markov noise
refers to a correlated stochastic noise with a mgive
autocorrelation time and a given covanan(c%

The following dynamic noise is assumed in our

simulations:

- Atmospheric Drag error modelled as a Gauss-
Markov noise with a 1l-sigma value of 15% and
autocorrelation time of 100 minutes (3€g.2).

- Solar radiation Pressure error modelled as a $aus
Markov noise with a 1l-sigma value of 15% and
autocorrelation time of 100 minutes ($€g.2).

d.__r._
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Fig.1: Distribution of Debris. The pict'u'r'es éofreep to
the graphics of semi-major axis vs diameter (orlefte
and semi-major axis vs Eccentricity

Fig.2: Atmdépﬁeric drag error behavior (dh the)laftd
solar radiation pressure error behavior (on thietyig

1.2. The dynamical Model of Motion

In order to simulate the generation of measuremeats
need a radel of the real motion of these space objects.
On the other hand, the observer, who receives the
measurements, needs an estimated model of motion.
This model has not the complete dynamical inforamati
but it must be close to the real model. Therefons,
different models of motion are considered in ortter
simulate the procedure of orbital determination.

In the estimated model of motion, the noise
coresponding to DRAG error and the noise
corresponding to SRP error are not known. The other
contributions are the same as in the real worltthese
noises must be estimated. Moreover, in order tdyapp
DRAG and SRP forces, the mass and the diameter of
the object must be also known or estimated.

Of course, not all forces affect withe same intensity

to each object in the Debris population. The intgrof



the forces will depend (mainly) on the locationtbé
object. Fig.3 shows the different contributions éarch

1.3. Measurement generation

type of orbits. The plots have been done in the Two different types of measurements are considered

following manner. We consider the initial positiof
every object of the initial catalogue. At this timee
compute the acceleration corresponding to eachobne
the acting forces. We plot the acceleration
corresponding to Kepler (in red), to the Geopo#nti
(blue), to Sun (green), Moon (dark blue), SRP (pink
and DRAG (yellow).

—

Fig.3: Fofce Contributions in the Debris population

As expected, the larger force in all cases is tepl&t
contibution. Among the perturbations over Kepler
acceleration, importance of the other contribution

mainly depends on the type (or concretely, on the

position) of the orbit. For those orbits locatedser
than 45,000km to the Earth, the biggest contriloutio
after Kepler is the corresponding to the Earth
gravitational potential, while the orbits that doeated

farther than 45,0000km from the Earth centre the

second most important contribution is the grawtai

effect of the Moon. In any case, the second most

influent force corresponds to a conservative for@a.
the other hand the DRAG effect is very high for LEO
orbits, or in general for those orbits located ekisto
the Earth (closest than 7000km to the Earth thecetif
DRAG is almost of the order of T

this work

- Radar measurements, using a bistatic radar
(GRAVES type), which would provide the
following observable: Azimuth, Elevation &
Doppler.

- Optical measurements using 0.5m-diameter

telescopes, which would provide the following
observable: Azimuth, Elevation. Four different
locations have been considered: Marquises Islands,
Tenerife, Cyprus and Perth. The pointing of the
telescope has been considered d4jiflsee also [2]
and [3]). The idea of this strategy is that the
telescope is moving in a declination strip (of —17°,
17°) at the rate of one field each 15 seconds
(making survey). When it finds a new object, the
system predicts when new images are needed in
order to get an accurate orbit determination enough
for correlation purposes (generally one and two
hours after the detection of a new object). At ¢hes
predicted times, the telescope gives up its survey
tasks, goes to catch the required images (follow up
images —FUP-) and returns to continue its survey
tasks. As a consequence of that, the observation
time is shared between survey and tracking, and
thus, the capability of finding new objects is
reduced.

The simulator used for generating the measurenients

the AS4 simulator (see [4] for the first version of the

simulator and [2] for later versions). The computatd

the observables is performed from the real positiwth a

velocity of the debris object. Once the observdids

been computed, a Gaussian random noise is added to

2. INITIAL ORBIT DETERMINATION
COMPUTATION

The problem of Initial Orbit Determination (IOD)
consists in computing the position and velocity of an
object from its first observation. The mathematical
problem has six unknown (three position coordinates
and three velocity coordinates). Therefore, attlsas
measurements are required to compute a first estimation
of the state vector of the object. In this sernisgoés not

matter the sensor where the measurements come from:

We can consider three pairs of azimuth and elewatio
coming from Ground Based Telescope observations; or
we can consider the Doppler, azimuth and elevation at
two different times of one track observed by one
Ground Based Radar; even we could consider six
measurements coming from different type of sensors.
In practical purpose, theyge of sensor where the
measurements come from does (strongly) affect@ie |
problem. For instance, it is not the same one gitoun
based telescope that moves the pointing each bhdec
than one radar that receives signal in a “contistiou



way (it produces tracks of measurements along the
visibility period of the object).

2.1. IOD accuracy

In this section, for optical measurements, we will
assure that two FUPs are available one and two hours

MEO ORBITS WITH TELESCOPES

after the detection of the object. We have used th
algorithms explained i{1]. The availability of the
assuned FUPs is also justified in [1]. Table 1 showes th

GEO ORBITS WITH TELESCOPES

IOD numerical results obtained for optical
measurements. i :
Table 1: 10D numerical results for optical ¥ i - s
measirements. P e
Number of Mean Mean GTO ORBITS WITH TELESCOPES
TYPE OF < . _ _ :
ORBIT obs_erved Position Velocity ' ‘ : :
objects Error (km) Error (m/s)
MEO 154 5.26 0.649
GEO 1061 37.71 2.99
GTO 13 4.19 0.696
OTH 341 43.66 3.238

We compute the IESV in case of radar, from the firs
and the lastmeasurements (Doppler, azimuth and
elevation) of the first observed trackable 2 shows the

IOD numerical results obtained for radar measurements

OTH ORBITS WITH TELESCOPES

&

Table 2: 10D numerical results for radar
measirements.
Number of Mean Mean
Tg';gl(.?': obsgrved Position Velocity
objects Error (km) Error (m/s)
LEO 1719 12.02 37.28
MEO 31 10.33 40.51
OTH 158 9.10 36.58

=T

. LEO ORBITS WITH RADAR

et

2.2. Initial knowledge covariance matrix (IKCM)

A key point in to efficiently performing the orbit
determination process is the calculation of theidhit
estimated state vector covariance matrix. The objec
batch orbit determination and correlation by meaina
Square Root Information Filter (SRIF) requires a
realistic covariance matrix to work optimally (see

“MEO ORBITS WITH RADAR

section3). The computation of the covariance matrix
hasbeen implemented for radar and for telescope 10D
computations. The idea is the same in all cases. Th
IOD is computed from 6 initial measurements. The
numerical Jacobiad corresponding to the numerical
derivatives of the IESV with respect the six iditia
angles are computed. The IKCM is computed as:

~OTH ORBITS WITH RADAR

IKCM =J7-E-J
with E a diagonal 6x 6 matrix containing the sigma

error of the measurements in its diagonal (seéoj2all

Fig. 4: Initial Orbit Determination error and er,
predicted by the Covariance Matrix is also showihia

pictures.

details).



In Fig. 4 the numerical IOD error and the predid@®
error by the IKCM are shown. The green points
correspond to three times the sum of the root squar
each one of the three corresponding componentseof t
Covariance Matrix diagonal (the three position
coordinates for comparing the 10D position errod an
the three velocity coordinates for comparing witte t
IOD velocity error). That is similar to compare Wwihe
3-sigma of the predicted error. The red points
correspond to the real position error (in modulusjhe
real velocity error (in modulus). That is the difface
between the real state vector and the estimated sta
vector. In order to have a good behavior of SRIE th

Telescopes. That may be for two different reas@rs.
one hand in these cases the initial set of measmsm
are closer than in Telescope case. They come fnem t
first processed track: the first and the last mesgaents

of the first track. These tracks have duration @i f
minutes. As closer in time the measurements aresevo
is the 10D accuracy, and more difficult is the
convergence of SRIF. The second reason is that for
those objects, the DRAG effect is very high (Beg3).
This effect must be estimated and this estimation not
always is close enough to the real DRAG value.

Table 3: SRIF divergences for optical measurements

IKCM must provide a predicted error greater or égoia
the real error. We can observe that the green paird
over the red points. Therefore, in our computatithres
IKCM is quite realistic (some time pessimistic, wihniis

always safer than an optimistic behavior).

3. ROUTINE ORBIT DETERMINATION

The mathematical approach of the routine orbit
determination (ROD) problem is the following. At the
beginning, IESV and the corresponding IKCM are
required. Moreover initial estimation for DRAG and

Total | Objects | Percentage
Télle Number Bad Bad
of Conver- | Conver-
ORBIT )
Objects | gence gence
\ MEO 154 37 24
28 | GEO 1061 556 52
E 8 [ 10 13 2 15
OTH 341 131 38
o LEO 1719 1538 89.47
= < MEO 31 21 67.74
OTH 158 130 82.27

SRP errors are required (see sectbf). In our
computations we always start with an initial estiroati

of null noise. On the other hand, the effects & th
atmosphere and the solar radiation pressure depend
the mass, the diameter, the orientation and thpesh&
the object. We will consider that we know the rielat
area to mass. We want to remark that the sensomnstdo
provide the area to mass ratio, and that a prigs t
parameter is not known.

With all these initial data, the next-coming
measuements are processed with a numerical filter. We
use a Square Root Information Filter (SRIF) (&ddor

a cetailed explanation of the method). In each steg, t
new measurements are processed with the previous
estimation of the state vector, covariance matnx a
dissipative noise coefficients (DRAG and SRP). With
these data, SRIF computes a new estimation oftéte s
vector with the corresponding covariance matrix and
new approximations to the corresponding coefficieit
DRAG and SRP noise. And so on with the following
measurements.

3.1. ROD accuracy

Table 3 shows the number of objects that the SRHE- h
not convergd for optical measurements when it
processed some of its measurements (third colufime).
last column shows the percentage of objects witkith
convergence of SRIF. The percentage of bad
convergence of SRIF arrives up to more than th&650
(for optical measurements and GEO objects) and stllmo
the 90 % (for radar measurements and LEO objects).
Radar results are much worse than the corresponding

Table 4: Simulation with all type of orbits. Thetab
number of simulated objects is 1568 for telescopes and
1909 for radar.

Sigma | Sigma Percen-
p?c]:sli%oDn \(/);I:)?::?y Number of | tage of
divergence: | divergen-
error error
(km) | (mls) ces
" o 0.1 0.005 0 0
89 1 0.05 19 1.21
23 10 0.5 442 28.19
50 5 737 47.00
50 5 1578 82.66
10 0.5 1537 80.51
o 1 0.05 984 51.55
a 0.25 0.15 335 17.55
= 0.1 0.005 94 4.92
0.025 0.015 22 1.15
0.001 0.005 15 0.78

A sufficient condition (but not necessarfgy obtaining
good behavior of the filter is to have the IESV wer
close to the real state vector (closer than thenatibns
reported inTable 1) and the IKCM according with this
initial error. We mean that if we have an IESV ttat i
almost the real one, with the corresponding IKCM t
filter does not diverge. The problem is that the
numerical error required for this, is much smatheat

the numerical error acquired with the 10D algorithms.
We have considered the full population greater than
10cm and we have generated 5 simulated days of
measurements. Then we have performed orbit



determination starting with a pre-configured IODoer
That is we have started with the real state vesttir a
noise generated by means of a Gauss probability
function with a configurable sigma. The IKCM habe
considered diagonal with the value of the configure
sigma in the diagonallTable 4 shows the number of
divergences of SRIF of those simulations. When the
initial estimated state vector is very close to thal
state vector (see the results of the first row)ettage not
any divergences in the filter. The problem is hcam c
we obtain this accuracy in the IOD?

4. PARALLEL ALGORITHM FOR
COMPUTING ORBIT DETERMINATION

In section 3 we have concluded that when the IOD
numerical error is very small the filter works withto
divergences. The problem is that reducing the |@Dre

is not an easy task. In this section we want tdaéx@
methodology for determining orbits that uses theesa
IOD algorithm and the same filter (the SRIF) as the

ones used in previous sections, but it avoids the

enough to the real state vector. Only the yellowniso

in the picture are actually according with the ot
error of the imposed Cov (inside the yellow circle)
When a new measurement is processed, we increase th
knowledge of the estimation. That means that the
estimation of the state vector improves and theeetioe
predicted error by the Cov decrease (in the pictime
circles become smaller when measurements are
processed). If we have considered the first imp@ed
small enough (the yellow circle small enough), ta
initial estimations according with the correspomgin
predicted error would not have any problem with BRI

All yellow points will remain inside the next oramg
circles. The problem is that we do not know (a fyio
which is the best Cov for processing all the
measurements. Consequently, some of the points that
are initially according with the Cov may diverge evh
processing the incoming measurements. However, afte
processing few measurements, the method stabilizes (in
the picture after the third measurement the points
always remain inside the next-coming circles).

divergences of the filter. The proposed algorithsesu
the IKCM for generating a cloud of IESV. All the $3&
inside the cloud are processed with a new and much
smaller KCM by using SRIF. In such a way that the
ones that are close enough to the real state véatar
thus its real KCM is in agreement with that impgsed

survive to the process. Those ones that are far away of

the real solution make SRIF to diverge and arepsdp
from the initial cloud.

4.1. Algorithm description

The idea of the algorithm is versimple. The SRIF
works without problems when the IOD error is small.

Real Measurements at timestt, ta,

Mirw
M, My 5
e Masw SR W ., tacoming from the real trajectory
of the Debris Object
‘ O Predicted Error by the fir€low,
1
— O Predicted Eror bgov ‘s at
O Predicted Error bgov ‘s att,
? 1 Initial estimatiorzy
1 gh to real solutionat|t
1 igh to real solutionat|t
17 ecome too far from the regl
solutior

Fig. 5: lllustration of the idea of the OD by meatsud
of points.

The accuracy of the 10D algorithms is not smalliegio
but the predicted error by the IKCM is realisticimithe
worst cases pessimistic. That means that in a
neighborhood (defined by the IKCM) of the initial
estimated state vector, we would find the realestat
vector. Therefore, if we consider a cloud of points
randomly distributed in this neighborhood, some of
these points would have much small numerical error
than the initial considered estimation. The numbkr
points needed to be close enough to the real wtater
depends on the realistic or pessimistic that theNKis
and on the numerical error of the IOD computation.

Fig. 5 illustrates the main idea of this algorithiithe
IOD algorithms provide an IESV (the green point) in
addition of a IKCM (the green circle) that preditie
error of the estimated vector. We want to have fowe
error in the initial estimation, so we considerdaud of
points (represented in the picture with yellow amdy
points) within a lower imposed Covariance Matrix
(Cov) (represented in the picture with a yellowcld).
The cloud of points is taken following the IKCM gide
the green circle). But not all these points areselo

Let us explain the algorithm with more detail. Liet
consider the IKCM, let us sagoV’, computed as
explained in section 2.2 arfl the IESV computed like
in sections 2.1. Since the IKCM is a positive diédin
matrix, we can compute the corresponding Cholesky
decomposition:

Co=U".U
with U the upper triangular square root Cholesky factor.
We generate a new IESX (with i=1,..., N, andN the
total number of initial points inside the cloud),
following the next equation:

7 =2 +U¢"

with Qi a random vector following a normal function of
0 mean and 1 standard deviation.

In order to apply the SRIF to each one of thestalni
estmationsz, we need a Knowledge Covariance Matrix
associated to them, let us Lagv. We construcCoV as

a diagonal matrix with: the sigma of the configured
ECRVs (corresponding to DRAG, SRP and also the
ECRVs corresponding to the added noise in theipasit



of the Space Based Telescopes) in the first didgona The key point in the implementation is that thektas
coordinates; a configurable sigma, in the three processig a measurement for one point in the cloud is
position diagonal coordinates; and a configuralgena completely independent on the task of processirg th
o, in the three velocity diagonal coordinates. Thege same measurements for another point in the clobdt T

S . . means that we can distribute all the points indloed
and oy will indicate to SRIF how is the numerical error into the available computers. Each computer will

associated td. In other words, these, and oy will be process its corresponding sub-cloud and will retaitn
small for successful orbit determination. these points that have survived. In the next

Once, we have generated a cloud of initial estithate measurement we will have a new cloud. We distribute

state vectors, within theicorresponding Covariance the points inside the new cloud into .the avaﬂablg
matrix, we process the incoming measurements with computers and they carry on computing the orpn
SRIF (see sectioB) for all the points inside the cloud. determination of ?aCh one of the points and thely wi
All these points that, after processing the measurements,remrn 'ghe new points that have survived. And soAin
whose residuals between estimated measurements and>°™M€ time, it may happen that we have more computer

. than points. In this case we will use only the Seeey
real measureme_nt are greater t8o, (the sigma of computers. The other computer may be used for
the expected noise in measurements), are skipped fr 55 iting the orbit determination of a differentbiie
the initial cloud. The points that survive are mesed Object.
within the following measurements and so on.

. . 4.3. Numerical results
4.2. Parallel implementation

We need to know the size ofetftovariance matrix for
the points inside the cloud and how many points we
must take into the cloud. As smaller the covariance
matrix is, better is the behavior of the SRIF. Ge t
other hand, as smaller the covariance matrix iscemo
difficult is being right with some points close egh to

the real solution (the margin of error is smallgou
must be closer to the real solution), and thereforere
points you must consider in the cloud, and morestim
you will require in your computations.

The main problem of the algorithexplained in section

4.1 is that the computational @mincreases. At the
beginning, when the first measurements are prodesse
the number of orbits for computing their OD is
multiplied by the number of points considered iestide
cloud. This problem disappears when several
measurements are processed. After processing severa
measurements all the points inside the covariance
matrix remain there for the rest of in-coming
measurements. But at the beginning the method chmu

more slow than the ones explained in secBorThe Table 5: Numerical simulations performed for
good news is that the extra effort required by this deermining the number of points inside the cloud and
algorithm is easily parallelisable. In other wora®, can the initial numerical error in position and velgcit
use several available computers to reduce the - > ">
computational_timeFig. 6 illustrates how the algorithm ﬁ}os'indtz P%Sr'rtc')?n P%Sr'rt(;?n Pg;cselgtﬁge
canbe parallelised. cloud (km) (km) divergence:
o 50 0.1 0.005 8.82
9 100 0.1 0.005 5.88
§ 500 0.1 0.005 2.94
Q 50 1 0.05 7.35
2 100 1 0.05 1.47
500 1 0.05 0
50 0.001 0.005 95.24
100 0.001 0.005 92.86
500 0.001 0.005 73.81
1000 0.001 0.005 73.81
5000 0.001 0.005 57.14
50 0.25 0.15 52.38
E(: 100 0.25 0.15 42.86
[a) 500 0.25 0.15 19.05
é 1000 0.25 0.15 9.52
5000 0.25 0.15 7.14
50 2.5 1.5 19.05
Fig. 6: lllustration of the parallelisation of th@D égg ;g 12 ﬁ'gg
algorithm within clouds of points 1000 >t 15 238
5000 2.5 1.5 0




In order to calibrate the good parameters of the
algorithm, we have performed a set of short simutetio
We have simulated different objects (GEO, MEO, GTO
andOTH) (68 in case of optical measurements and 42 in
case of radar).Table 5 shows the corresponding
numerical results. In the first column the number of
points considered in the initial cloud is shown.heT
second and the third columnsTdble 5show the value

of the position and velocity sigma of the 10D ereord

the corresponding Covariance matrix (using the same
notation as in sectiod.1). The fifth column shows the
percentage of objects with some SRIF divergence
associated to it with respect to the simulatedaibjéve
want this value be null).

We have considered the corresponding number of$oin
inside the clouds and errors that for the reduced
population has not diverged for analyzing the aacyr

with the full population. That isp =2.5km andoy =1.
5m/s with 500 points initially located inside thiwd

(for optical measurements); ama}, =1km andcy =O0.
05m/s with 5000 points initially located inside ttleud
(for optical measurements).

Table 6 show the numerical results for the full
population. We have reduced the percentage of bad
convergences from more than the 50 % up to the?2.62
in case of optical measurements and from almost 90%
up to 8.6%. Moreover, we want to remark that this
percentage may be decrease even more. If we conside
covariance matrixes with lower sigma and more ahiti
points (it has to be further studied the appropriat
number of points), the accuracy in the orbit
determination will improve.

Table 6: Accuracy of new algorithm with the full
population (1448 objects for optical measurements an
1557 objects for radar measurements) during 5
simulated days.

Maximum
Number of Sigma in Sigmain Percentage
points Position Position of SRIF
inside Error (km) | Error (km) | divergence:
cloud
OPTICAL MEAUREMENTS
500 | 1 | 0.05 | 2.62
RADAR MEASUREMENTS
5000 | 25 | 15 | 8.6

5. CONCLUSIONS
We have developed and implemented a parallel method
for orbit determination for space debris:

- It improves the results provided by classical
methods (like SRIF).

o For GB telescopes: 2.62% of
divergences in front of the 48.6%
obtained by applying directly SRIF.

o For radar: 8.6% of divergences in
front of the 78% obtained applying
directly SRIF

The reported algorithm has been implemented in the
Advanced Space Surveillance System simulator (AS4)
and developed by DEIMOS Space. Moreover, the
results presented in this paper are obtained duaing
project partially funded by the CDTI (Ministerio de
Ciencia e Innovacion -Spanish Government-).
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