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ABSTRACT

At ESOC, ESA’s Space Operations Control Centre, the
CRASS software (Collision Risk Assessment) is used to
forecast close conjunctions of ESA operational satellites
with any objects of the USSPACECOM catalog popu-
lation. In most cases, the risk level can be consider-
ably reduced, if the uncertainty of the chaser orbit is nar-
rowed down by an orbit determination, which leads to an
improved knowledge of the state estimate co-variances
(within CRASS, these are estimated from TLE data of
limited accuracy). The ODIN software (Orbit Determina-
tion via Improved Normal Equations) performs orbit de-
termination with tracking data from radar and telescope
sensors independent from the US SSN (United States
Space Surveillance Network).
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1. INTRODUCTION

Long-term statistics indicate that at their operational al-
titudes near 780 km, and Sun-synchronous inclinations,
the ERS and Envisat satellites are likely to have 2 to 3
conjunction events per year with individual collision risks
exceeding 1:10,000. The Collision Risk Assessment tool
(CRASS) generates conjunction forecasts and collision
risk estimates of ERS-2 and ENVISAT with the objects
of the USSPACECOM catalog population.

For ESA satellites, near real-time orbit determination
data from the Flight Dynamics subsystem of these mis-
sions are employed. The initial covariances of ESA satel-
lites are a by-product of the orbit determination process
and they are provided together with the operational orbit
files.

On the other hand, TLE (Two-Line Element) sets of lim-
ited accuracy are used to predict the orbits of the catalog
objects. Metrics of the expected accuracy of the TLE sets
are not available for the general public. For CRASS, the
covariance of the TLE had to be independently assessed

(see Alarcón (2002)). Since the actual accuracy of the
TLE sets depends, among several other factors, on the
type of orbit, the covariance was stored in the form of
look-up tables sorted by eccentricity, perigee height and
inclination. In general, the results of this analysis showed
that the expected accuracy of TLE data is two orders of
magnitude worse than the real-time orbit data used for
operational spacecraft.

The collision risk assessments can be refined, if the ac-
curacy of the chaser orbit is improved by an orbit de-
termination, which also provides a better knowledge of
the state estimate co-variance. The ODIN software (Or-
bit Determination via Improved Normal Equations) per-
forms orbit determination which is independent from the
US Space Surveillance Network (SSN). Several Euro-
pean sensors with known performances support this pro-
gram: the FGAN radar (L-band) and the Monge radar
(C-band) for LEO orbits, and the ESA telescope for GEO
and GTO orbits. The state vector estimate, together with
a full co-variance matrix of the solve-for parameters are
used to obtain more accurate collision risk assessments
from CRASS.

2. DESCRIPTION OF THE SENSORS

2.1. Characteristics of the TIRA Radar

The research institute FGAN (Forschungsgesellschaft fur
angewandte Naturwissenschaften) is located at Wacht-
berg near Bonn/Germany. They are operating a Track-
ing and Imaging Radar (TIRA), which tracks non-
cooperative targets in L-band (at 1.333 GHz). It is able
to track objects as small as 2 cm in diameter at 1000 km
distance. The range measurement resolution is typically
at the meter level, while the angular resolution is around
0.0002 deg.

L-band tracking data of the TIRA radar are transmitted
in ASCII format. Each tracking record contains informa-
tion gained from the combination of successive L-band
radar echoes within a predefined time interval that could
be specified by ESOC. The minimum length of this time
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interval is given by the radar pulse period, which usually
is about 30 Hz. In this case each data line would result
from a single echo.

Radar measurements are azimuth (North: 0 deg, East: 90
deg), elevation (horizon: 0 deg, zenith: 90 deg), range
in km, range rate in km/s, and echo amplitude (i.e. the
signal-to-noise ratio) in decibel. By default, the data
are not corrected for tropospheric refraction. Some tro-
pospheric correction algorithms require local air tem-
perature, pressure, and relative humidity. Therefore the
header contains the necessary information.

2.2. Characteristics of the ARMOR Radar

Apart from FGAN’s TIRA radar, the French Defence
Ministry DGA operates the only other European installa-
tion of similar capabilities outside the Space Surveillance
Network of the US Strategic Command. The most pow-
erful radars of DGA are located on the vessel ”Monge”
of the French Navy. The ”Monge” is primarily engaged
in support operations for the French ballistic missile pro-
gram. With its extensive equipment, however, it is a valu-
able asset in tracking operations of cooperative and non-
cooperative targets. The ”Monge” is for most of its time
located at its naval home base in Brest, Bretany. It will
be mainly during such periods that its tracking services
could be available.

The instruments of interest for ESA applications are the
two ARMOR radars. They can perform tracking of non-
cooperative targets in C-band (at 5.5 GHz). The ranging
resolution is typically below 1m, and the pointing reso-
lution is normally within 0.0005 deg. The main clock
of ARMOR is synchronised with the 1-sec pulses from
a GPS receiver (resolution of about±2 micro-seconds).
The local horizon and the North direction are established
by means of gyro platforms (compensating for the atti-
tude variations, particularly while on sea).

In contrast to the TIRA radar, the ARMOR radars are
located on a moving platform. Hence, instantaneous po-
sition fixes are transmitted with every observation vector.

2.3. Characteristics of the ESA Telescope

ESA operates a Zeiss telescope of 1 m aperture and0.7o

field of view (FoV), which is located on Tenerife. A liq-
uid nitrogen cooled CCD array cumulates the received
energy of the photons during exposure times on the or-
der of 1 to 4 seconds, followed by 29-second gap times.
The detection threshold is +19 to +21 mag for a signal-to-
noise of S/N'5. This allows to detect and follow objects
of d'15 cm at GEO altitudes (assuming an object albedo
of 0.1). The ESA Space Debris Telescope (ESA SDT)
covers a sector of' ±120o of the GEO ring.

Pointing errors of the telescope (up to a few arc minutes)
due not play a role, since object positions are defined rel-

ative to reference stars. Declination errors are approxi-
mately equal to right ascension errors. For bright objects
(d>1m near GEO), the standard deviation is less than 0.5
arcsec.

Another error contribution is due to observation timing,
resulting from

• a mechnical shutter with a (dominant) 20 ms timing
error (1 sigma)

• an electronic timing error of less than 1 ms.

3. THE ODIN SOFTWARE

ODIN has been conceived as a suite of tools supporting
the orbit determination process for catalogue objects. The
tools that make up the ODIN suite are:

• TIRA2OTDF: Pre-processing of TIRA tracking data
files

• ARMOR2OTDF: Pre-processing of ARMOR track-
ing data files

• ESASDT2OTDF: Pre-processing of ESA Space De-
bris Telescope tracking data files

• NTDF2OTDF: Conversion of Napeos tracking data
files to the ODIN tracking data file format

• TLE2OTDF: Generates pseudo-tracking from a
TLE

• Tracksim: Tracking simulator including simulation
of moving stations

• Propag: Configurable numerical propagator includ-
ing the following perturbing forces: non-spherical
Earth gravity, aerodynamic drag, solar radiation
pressure, and third body (Sun and Moon).

• TLEorbit: Propagates TLE using the SGP4/SDP4
model.

• PreOD Fixes: Deterministic preliminary orbit deter-
mination from radar fixes

• PreOD Angles: Deterministic preliminary orbit de-
termination from optical angular measurements

• ODIN: Orbit determination program (includes Stan-
dard, Rank Reduction, and Levenberg-Marquardt
batch least-squares techniques)

• TLEfit: Fits a TLE to a numerical orbit.

• Additional tools for simple Flight Dynamics com-
putations



3.1. Preliminary Orbit Determination

Typically, the orbit determination process shall be ini-
tialised with an orbit based on an available TLE set.
However, situations in which a-priori solutions based on
TLEs lack the sufficient accuracy to start off the batch
least-squares computation may eventually occur, espe-
cially during tracking of re-entering spacecraft. In this
situation, a preliminary satellite orbit must be determined
from a small set of available measurements without any
additional information.

The type of measurements available in our application
are position fixes from radar sensors (time, azimuth, ele-
vation, and range) and angles for optical measurements,
where range is not available (only time, right ascension
and declination).

It is possible to obtain a preliminary state vector based
on two radar fixes. Let~ra and~rb denote the satellite’s
geocentric position at timesta andtb, respectively. The
areaS of the sector that is bounded by~ra and~rb and the
arc of the orbit between them, is

∆S = ηAt (1)

WhereAt is the area of the triangle defined by the vec-
tors.η is obtained by solving Eq. 2 from Montenbruck &
Gill (2000)
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Taking into account the definition of the areal velocity:
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The massless angular momentum vector may be defined
as

~h = ~r × ~v = r2 dθ

dt
~iz ≈ 2

∆S

tb − ta
~iz (7)

The unit vector perpendicular to the orbital plane,iz, is
given by

~iz =
~ra × ~rb

|~ra × ~rb|
(8)

Finally, the velocity vector may be expressed in terms
of the radius vector and the momentum and eccentricity
vectors as shown in Battin (1999):

~va =
µ

h2
~h × (~e +

~ra

|~ra|
) (9)

Where the eccentricity vector may be obtained from

~e =
(h2

µ
− |~ra|)~rb × ~iz − (h2

µ
− |~rb|)~ra × ~iz

|~ra × ~rb|
(10)

The problem of finding an orbit from angle observations
can be reduced to that of finding an orbit from two po-
sition fixes. Each set of angle measurements (for exam-
ple right ascension and declination) defines a unit vector,
which describes the direction from the station to the satel-
lite at the observation epoch. Since range is not available,
the distance has to be derived during the process of deter-
mining the orbit. In order to obtain the state vector in an
unambiguous manner, three sets of observations must be
available. From these values, and the known station loca-
tion, the satellite position at the observation epoch can be
derived in an iterative way. The method is described in
Montenbruck & Gill (2000). Knowing the position vec-
tors, the velocity vector may finally be computed from
Eq. 9.

The methods presented above determine the orbit from
a minimum number of measurements. Nevertheless, one
expects a series of measurements distributed over one or
more passes. The tracking data may be split into subsets
of the minimum number of measurements (two for radar
and three for optical measurements). For each subset of
consecutive observations the state vector is computed and
propagated up to a common orbit determination epoch,
where the mean value and the standard deviation for each
state vector component may be computed. Next, in order
to remove any outliers, the observations with residuals
larger than a pre-defined number of standard deviations
from the average are discarded and the final average is
computed with just the remaining measurements.

As an example, we will use the very low orbit specified
in the first column of Tab.1. From the nine passes over
TIRA with a minimum elevation of5◦ detected with the
tracking simulator of ODIN for the period 2003/05/04 to
2003/05/07, we selected the three passes shown in Tab.
2.

First of all, simulated measurements were generated over
the visibility periods at a rate of one per second. The sim-



Table 1. Orbit comparison on 2003/05/07-00:00:00.0.

Element Reference Prelim. Determ.
S/M Ax., km 6595.085 6603.571 6594.963
Eccentr. 0.00348 0.00357 0.00350
Inclin. 98.524◦ 98.515◦ 98.524◦

Asc.Node 60.671◦ 60.674◦ 60.673◦

Arg.Per. 148.504◦ 157.425◦ 149.225◦

Tr.Anom. 99.653◦ 84.107◦ 98.982◦

Drag 2.0 1.8 2.001

Table 2. Selected TIRA passes from 2003/05/04 to
2003/05/07.

Pass AOS LOS Culmination
1 04-01:07:45 04-01:13:47 73.2◦

2 05-01:09:43 05-01:15:34 75.2◦

3 06-12:43:55 06-12:48:25 12.3◦

ulated noise level of 0.011 km for range,0.010◦ for az-
imuthn and0.012◦ for elevation was taken from a calibra-
tion of the TIRA with SPOT4 precise DORIS ephemeris
(see Ameline (2001)).

A preliminary orbit was obtained from the tracking data
of the first pass, using just one observation every ten sec-
onds. The orbital parameters at the orbit determination
epoch (2003/05/07-00:00:00.0) are shown in the second
column of Tab. 1. The drag coefficient was not estimated,
but fixed at 1.8. The measurement residuals for this orbit
determination are shown in Fig. 1.
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Figure 1. Residuals of the preliminary orbit determina-
tion.

3.2. Singular Value Decomposition

In the basic least-squares estimation method, the solution
is the extended initial state vector that minimizes the loss
function:

J(X̂0) =
1

2
εT ε (11)

Where the quantitiesεi are the residuals that account for
the difference between actual and modeled observations
due to measurement and model errors.

The iterative solution using the Gauss-Newton method is:

Xk+1 = Xk +
(

FT F
)−1

FT εk (12)

WhereF is the matrix of observation equation coeffi-
cients, which contains the partial derivatives of the com-
puted observations with respect to the estimated parame-
ters.

The common procedure to account for the a-priori knowl-
edge is through the insertion of the a-priori covariance of
the estimated parameters,P0. In this case, one tries to
minimize the following loss function

J(X̂0) = εT ·ε+(∆X̂0−∆X0)
T ·P−1

0 · (∆X̂0−∆X0)
(13)

The iterative solution in this case is

Xk+1 = Xk + (FT F + P−1

0 )−1 · (FT εk + P−1

0 ·∆X0)
(14)

Assuming that the a-priori covariance matrix may be de-
fined as

P−1

0 = S−1T
S−1 (15)

One may use matrixS−1 to change the definition of the
estimated parameters:

X ′ = S−1X (16)

The matrix of partial derivatives corresponding to the new
non-dimensional parameters is:

F ′ = F · S (17)

Taking into account the above definitions, The non-
dimensional form of Eq. 14 yields

X ′

k+1 = X ′

k + (F ′T F ′ + I)−1 · (F ′T εk + ∆X ′

0) (18)

ODIN uses the singular value decomposition method to
solve the normal equations. This method is well suited
for ill-conditioned problems. It allows the detection of
singularities or near singularities in the normal matrix.



Furthermore, the formulation of the method is convenient
for the Levenberg-Marquardt algorithm. On the other
hand, the method is computationally more involved than
other techniques, like the QR factorization. However, due
to the limited amount of tracking data that will be handled
by the current application this is not considered a major
draw-back.

The singular value decomposition of the partial derivative
matrix is denoted by

Fm×n = Um×nDn×nV T
n×n (19)

whereU andV are orthonormal matrices, which means
that bothUT U andV T V are equal to then-dimensional
identity matrix andD is a diagonal matrix of elements
d1 ≥ d2 ≥ . . . ≥ dn ≥ 0 known as singular values.
There are exactlyr positive singular values for a matrix
of rankr ≤ n.

Introducing the following definitions:

~s = V T ∆X̂0 (20)

~t = UT εref (21)

Substituting the new variables in Eq. 18 yields:

sk+1 = sk + (D2 + I)−1 · (Dtk + ∆s0) (22)

3.3. Rank Reduction and Levenberg-Marquardt

Due to the limited observability of a given orbit from Eu-
rope, and due to possible applications for re-entry orbit
estimations, the orbit determination algorithm has to be
robust, and provide convergence also for poorly condi-
tioned systems. Apart from the standard least-squares
technique, ODIN implements the Rank Reduction and
Levenberg-Marquardt methods.

The form of Eq. 22 in a case without a priori covariance
information is:

sk+1 = sk + (D2)−1Dtk (23)

If F is not a full-rank matrix, only the firstr components
of ~s can be determined, while the remaining components
are arbitrary. Settingsi = 0 for all i > r yields the
smallest norm solution.

The same principle may also be applied in the case thatF
has full rank but is nevertheless near-singular as indicated
by a high ratiod1/dm of the largest and smallest singular
value. This ratio, which is also known as the condition
number of the normal matrix, gives a general indication
of the quality with which the solution is defined by the
given measurements. In order to avoid a deterioration of
the solution it may be preferable to neglect contributions

from small singular values. This method is known as rank
reduction. The loss function obtained in this manner is
slightly higher than the exact minimum, but it may be
preferable to a solution that is far off the correct value
due to the strong influence of measurement errors.

The Levenberg-Marquardt method applied to the least-
squares problem searches the minimum of the loss func-
tion given by Eq. 11, subject to

|dx| =

√

(Xk+1 − Xk)
T

(Xk+1 − Xk) ≤ δ (24)

It can be shown that the solution to this problem has the
form (see Dennis & Schnabel (1996)):

Xk+1 = Xk + dx = Xk +
(

FT F + µI
)−1

FT εk (25)

for the uniqueµ ≥ 0 such that|dx(µ)| = δ, unless
|dx(0)| ≤ δ, in which caseµ = 0 defines the solution.

In order to obtainµ, let us define:

η(µ) = |dx(µ)| − δ = |(FT F + µI)−1FT ε| − δ (26)

The root ofη(µ) may be obtained iteratively by Newton’s
method, with

η′(µ) =
d|dx(µ)|

dµ
= −

dxT (FT F + µI)−1dx

|dx(µ)|
(27)

The Singular Value Decomposition of the system is very
convenient for the Levenberg-Marquardt algorithm. In-
deed, the solution to the problem in the variables has the
form

sk+1 = sk + (D2 + µI)−1Dtk (28)

In this case:

η(µ) = |s(µ)| = |
(

D2 + µI
)−1

Dtk| (29)

η′(µ) = −
sT (D2 + µI)−1s

|s(µ)|
(30)

The iterative process to obtainµ is very efficient, since
the modified Hessian matrix(D2 + µI) is diagonal and
its factorization is straightforward.

The orbit determination problem from the three passes of
Tab. 2 and the preliminary solution in the second col-
umn of Tab. 1, could be solved using the Levenberg-
Marquardt method The solution is shown in the third col-
umn of Tab. 1.



Table 3. Numerical orbit fit of a TLE.

Element Value
Epoch 2003/05/01-00:00:00.000000
S/M Axis 7168.490 km
Eccentr. 0.00122
Inclin. 98.528◦

Asc.Node 315.702◦

Arg.Per. 70.058◦

Tr.Anom. 289.931◦

Drag Coeff. 2.170
Solar Rad. Coeff. 1.300

3.4. Pseudo-t racking from TLE

ODIN may generate pseudo-tracking from a given TLE
in the form of inertial positions propagated with the
SGP4/SDP4 theory. In this manner, the software may
incorporate TLE state vector information to complement
the independent tracking. This information may also be
used in the orbit determination process to fit a numerical
orbit to the TLE, thus improving the long-term stability
of the orbit in case of infrequent TLE updates.

As an example of this capability, the Levenberg-
Marquardt method was used to fit a numerical orbit to
the following TLE:

1 23560U 95021A 3121.00000000 -.00000062 00000-
0 -68250-5 0 8212 2 23560 98.5482 315.7474 0001243
94.2397 265.8923 14.32249494489401

The selected orbit determination arc goes from
2003/05/01-00:00:00.0 to 2003/05/02-00:00:00.0.
We use the Levenberg-Marquardt method with a max-
imum weighted step size of 1.0. The increment of
the parameters are non-dimensionalised with 1 km for
positions, 1m/s for velocities, and 0.01 for the drag and
solar radiation pressure coefficients. The iteration stops
when the change in RMS of the weighted residuals is
less than 0.1%. The initial state vector is taken from the
TLE prediction, the initial drag coefficient is 2.2, and
the initial solar radiation pressure coefficient is 1.3. The
fitted orbit is shown in Tab. 3 and the residuals of the
TLE fit are shown in Fig. 2.

We may see here how the Levenberg-Marquardt method
works. The effects of the drag coefficient and solar ra-
diation coefficients are almost unobservable, as indicated
by the large condition number 0.19634E+08. Therefore,
they remain almost unchanged in the process.
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Figure 2. Residuals of the TLE fit.
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