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ABSTRACT 

This paper presents a new ballistic limit equation for 
the case of a triple plate structural set-up consisting of 
bumper shield (first wall), primary structure wall 
(second wall) and a rear wall representing, for 
example, the front casing of a component located 
inside the spacecraft (third wall). The idea of the 
developed equation is to split the penetration process 
into two phases: the projectile impact on the first wall 
which generates the "primary fragment cloud", and 
subsequently the encounter of the primary fragment 
cloud with the inner walls that constitute a Whipple 
shield ("inner Whipple shield"). The key aspect of the 
model is to define an "equivalent projectile" that has 
the same damage capability to the second and third 
wall as the primary fragment cloud. The ballistic limit 
of the inner Whipple shield is then calculated using an 
established Whipple Shield Ballistic Limit Equation 
(BLE). The mass of the equivalent projectile is 
assumed equal to the total primary fragment cloud 
mass multiplied with a fit function C. This function 
was defined and was fit against 9 different 
configurations for Triple Wall configurations for which 
test data exist from former hypervelocity impact test 
campaigns.  
 
1. INTRODUCTION 

Vulnerability analysis for spacecraft is presently 
performed by determining the probability of no 
penetration (PNP) of the structure wall. In the case of 
single bumper shielded shell structures, a suitable 
Whipple Shield Equation is presented (e. g. in 

Christiansen, 1993). The current approach assumes that 
the equipment placed behind the spacecraft's structure 
wall fails upon penetration of the structure wall. 
However, this approach does not consider the intrinsic 
protection capability of the equipment's housing, e. g. 
the front plate of an E-Box or the wall of a pressure 
vessel. Consider Fig. 1, where an Al 2219 vessel with a 
1.0 mm wall thickness, water-filled and pressurized 
with 29.8 bar Nitrogen was placed 100 mm behind a 
shielded spacecraft structure (bumper shield 0.8 mm 
Al-alloy, spacing 96.6 mm, structure wall 3.3 mm Al-
alloy). The impacting projectile (Al-sphere d=5.7 mm, 
v=7.0 km/s, α=30°) clearly penetrated the structure 
wall but caused only a tiny puncture in the pressure 
vessel's front wall (indicating “near BL” comnditions). 
Hence, reliable ballistic limit equations developed for 
the case of a "triple wall structural set-up" consisting of 
bumper shield (first wall), primary structure wall 
(second wall) and a rear wall representing, for 
example, the front of a component placed inside the 
spacecraft (third wall) are required to allow realistic 
risk analysis that considers explicitly the penetration 
resistance offered by the third wall of such a set-up. 
 
 

2. DESCRIPTION OF THE TRIPLE WALL 
BALLISTIC LIMIT EQUATION 

The case for which the equation was developed is 
shown in Fig. 2. The set-up represents a triple plate 
structure consisting of bumper, primary structure, and 
rear wall. They are indicated as first, second and third 
wall, respectively. The considered set-up is typical for 
single bumper shielded manned spacecraft structures 
with equipment placed behind the structure wall, or for 
double bumper shielded spacecraft structures, which 

 
Figure 1. Exp. 3959: damages to target.  EMI Exp. 
3959: double-bumper shield: 0.8 mm Al, spacing 96.6 
mm, 3.3 mm Al, spacing 100 mm, Al 2219 vessel, 1.0 
mm wall thickness, pressure 29.8 bar (water-filled), 
Al-projectile d=5.7 mm, v=7.0 km/s, α=30°. From left 
to right: bumper plate, primary structure, vessel's 
front surface 
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Figure 2. Triple plate structure consisting of outer 
bumper, inner bumper (corresponding to structure 
wall) and rear wall (casing wall). 
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have been investigated e. g. during the development of 
the Columbus Meteoroid and Debris Protection Shield 
(MDPS), see e. g. (Schneider, 1988). 
 
The idea of the model is to define a projectile 
equivalent in terms of damage capability, to the 
primary fragment cloud generated from the impact of 
the projectile on the first wall. The impact of the 
projectile with the first wall creates a primary fragment 
cloud that eventually encounters a structure equivalent 
to a Whipple Shield. This “Whipple Shield” consists of 
the second and third wall (structure wall and casing of 
subsystem, respectively). For this Whipple Shield the 
ballistic limit diameter is calculated using the Whipple 
Shield Ballistic Limit Equation from Christiansen/ 
Cour-Palais (Christiansen, 1993). 
 
For the presented approach, the critical particle 
diameter that was calculated with the above Whipple 
Shield Equation has to match the equivalent particle 
diameter that represents the primary fragment cloud 
(see Fig. 3). An iterative procedure described in the 
following computes the equivalent projectile diameter 
that represents the primary fragment cloud impacting 
on the Whipple Shield, as shown in Fig. 3. 
 
Christiansen’s Whipple Shield Equation (Christiansen, 
1993) provides the critical diameter of a particle 
leading to failure of the “Whipple Shield” structure 
wall (i.e. component casing). This critical particle 
diameter is compared to the equivalent particle 
diameter which represents the fragment cloud 
generated by the real particle impacting on the outer 
bumper. The critical projectile diameter is said to be 
reached, when the critical particle diameter and the 
equivalent particle diameter match. As such, the 
projectile which is initially fragmented into the 
‘equivalent projectile’ fragment cloud, is defined as the 
ballistic limit of the whole triple plate structure. Notice 
that this method is iterative. 

One important assumption for the calculations was that 
the velocity of the equivalent projectile was assumed to 
be equal to the primary fragment cloud leading edge 
velocity. This assumption was made because the most 
damaging fragments in a fragment cloud typically stem 
from the projectile and are mainly concentrated in the 
leading edge of the cloud (Piekutowski, 1996), which 
has approximately the same velocity as the impacting 
particle, if t/dp is small. 
 
For oblique impact, it was additionally assumed that 
the magnitude and direction of the equivalent projectile 
velocity vector is equal to the velocity vector of the 
projectile before the impact. 
 
The next step was the definition of the total mass of the 
fragment cloud created by the impact between the 
projectile and the first wall. Assuming that no mass is 
lost due to backsplash, the fragment cloud will consist 
of the projectile material and the material coming from 
the outer bumper. In order to define the mass of the 
material coming from this bumper, the hole diameter 
must be computed for both normal and oblique impact. 
Knowing the outer bumper hole diameter, it is possible 
to calculate the primary fragment cloud mass using the 
equation for normal impact  
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for oblique impact. 
 
Where 
mprim  primary fragment cloud mass 
Dh hole diameter in the outer bumper. 
Dmin minor axis of the elliptic hole in the outer 

bumper (oblique impact). 
Dmaj major axis of the elliptic hole in the outer 

bumper. 
tob  outer bumper thickness 
ρob  density of the outer bumper material. 
mp  projectile mass 
mob  mass of the outer bumper that contributes to the 

primary fragment cloud. 
 
The mass of the equivalent projectile is assumed equal 
to the total primary fragment cloud mass multiplied 
with a fit function C. This fit function has a value of 
less than 1, taking into account that only a portion of 
the total mass of the projectile and ejected bumper 
mass actually enters the space behind the second 
bumper. 

prim
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Figure 3 Idealization of the primary fragment cloud as 
an equivalent projectile 



 

where C is assumed to be a function of the ratio of 
outer bumper thickness to projectile diameter, i.e. 
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By derivation from experimental data, see Chapter 3, 
the equation was fit to 
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The equivalent projectile diameter can be computed as 
follows: 
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Further assumptions have been made: 
• the density of the equivalent projectile is set equal 

to the density of the impacting projectile 
• the spacing between the first and the second wall is 

ignored for the time being 
 
Hole geometry for normal impact: 
For normal impact, the hole diameter is calculated 

using an equation presented in (Baker and Persechino, 
1993).  
 
Fig. 4 shows the flow diagram of the iterative 
procedure. The value of the impact velocity, beginning 
with 0.1 m/s and gradually increased, is used to 
initially permit calculation of the critical diameter for 
the corresponding Whipple Shield. The velocity is also 
concurrently used in a loop that is to be computed until 
the exit condition (the difference between critical 
particle diameter for Whipple shield and equivalent 
particle diameter has to be smaller than the predefined 
value ε = 0.01 mm) is fulfilled. The outer loop 
increases the impact velocity until the previously 
defined velocity limit is reached. 
 
3. CALIBRATION OF THE TRIPLE WALL 

BALLISTIC LIMIT EQUATION 

The EMI Triple Wall Equation has been calibrated 
using impact test data on triple wall configurations 
(Fig. 5) from (Schneider et al., 1988; Schonberg et al., 
1993; Schäfer, 2000, 2001). The total number of 
impact datasets used for calibration of the equation is 
57. The characteristics of the triple wall structures from 
which the experimental data is obtained are 
summarized in Tab. 1. The material yield stress is 
provided only for the rear wall, since this is the only 
structural component for which the yield stress is 
required in the equations. The yield stresses were taken 
from MIL Handbook 5. The structures, their references 
and the number of test data that were used for 
calibration are listed in more detail in Tab. 1. 
 
 
 
Figure 5. Triple 
wall configuration

 
The range of impact velocities covered by the impact 
tests on the configurations listed in Tab. 1 was between 
2 km/s and 8.5 km/s. The corresponding projectile 
diameters ranged from 2-10 mm, and the impact angles 
were 0°, 30°, 45°, 60, and 75°. All projectiles were 
spheres made from aluminium alloys. The range of 
validity of the Triple Wall Equation is thus constrained 
by these ranges.  
 
The Triple Wall Equation or, more specifically, the "C" 
function, Equ. (5), has been fitted to the test data. To 
this purpose: a "best guess" function for "C" was 
defined; the corresponding Triple Wall Curves were 
determined, and; the predictions from the equation 
were compared with the impact test data of the 
configurations listed in Tab. 2. In an iterative effort, the 
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Figure 4. Flow diagram of ballistic limit curve 
computation for EMI Triple Wall approach 



 

optimum coefficients of the "C" function were fitted to 
yield the best Ballistic Limit Curve predictions for each 
dataset. In Fig. 6, the line with value "1" denotes the 
normalized ballistic limit curve of each configuration 
with failure criterion "detached spall". The circles 
denote test results that have been reported as "failed", 
the crosses denote test results that have been reported 
as "not failed".  If test data are predicted correctly, the 
"failed" test cases should be located above the 
normalized ballistic limit curves and the "not failed" 
test cases should be located below the normalized 
ballistic limit curve. As can be seen in Fig. 8, a 
majority of the test results have been predicted 
correctly using the "C" function shown in Equ. (5). 
Two test datasets have been predicted slightly too 
optimistic and 8 test datasets have been predicted 
slightly conservative. 
 

Table 1. Configurations used for calibration of the TWE 
(t1 & mat'l1, S1, t2 & mat'l2, S2, t3 & mat'l3)  

Config. Ref. Description (thickness, 
mat'l, spacing) 

No. of 
tests 

(Schneider, 1988) 
0.8 (Al 2024 T3), 60  
0.8 (Al 2024 T3), 60  
3.2 (Al 2219 T851) 

16 

(Schneider, 1988) 
0.8 (Al 2024 T3), 60 
1.6 (Al 2024 T3), 60 
2.4 (Al 2219 T851) 

1 

(Schneider, 1988) 
1.6 (Al 2024 T3), 60  
0.8 (Al 2024 T3), 60  
2.4 (Al 2219 T851) 

4 

(Schneider, 1988) 
0.8 (Al 6061 T6), 60  
0.8 (Al 6061 T6), 60  
3.2 (Al 2219 T851) 

23 

(Schäfer, 2000, 
2001) 

0.8 (Al 6061 T6), 96.6  
3.3 (Al 6061 T6), 100  
1.0 (Al 2219 T851) 

3 

(Schonberg, 
1993) 

0.8 (Al 6061 T6), 25.4  
0.8  (Al 6061 T6), 76.2  
3.175 (Al 2219 T87) 

4 

(Schonberg, 
1993) 

0.8 (Al 6061 T6), 50.8  
0.8 (Al 6061 T6), 50.8  
3.175  (Al 2219 T87) 

4 

(Schonberg, 
1993) 

0.8 (Al 6061 T6), 76.2  
0.8 (Al 6061 T6), 25.4  
3.175 (Al 2219 T87) 

2 

 
4. SUMMARY AND CONCLUSIONS 

For the case of a triple wall structural set-up a ballistic 
limit equation was developed. The considered 
configurations are typical for single bumper shielded 
manned spacecraft structures with equipment placed 
behind the structure wall or for double bumper shielded 
spacecraft structures. The failure criterion is defined as 
detached spall from the third wall. 57 impact datasets 
were used for calibration of the equation, including  

impact velocities of between 2 km/s and 8.5 km/s, 
projectile diameters between 2 and 10 mm, and impact 
angles of 0°, 30°, 45°, 60, and 75°.  
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Figure 6. Normalized Ballistic Limit Curve plot of the test 
configurations reported in Tab. 2 plotted versus the actual 
impact test datasets of the corresponding test data from 
Tab. 2. 
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