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ABSTRACT 
 
The cost of every kilogram of a load placed in orbit is 
high and it makes us to treat carefully the problem of 
spacecraft protection against space debris and 
meteoroid impacts.   This problem is multifold one 
and it gets  under way from a rough estimation of the 
damage probability for the spacecraft and finding out 
a way for enhancing spacecraft reliability by 
improved assembling.  On the other hand you need to 
develop a protection system for the spacecraft: to 
create protection shella, to find out the ballistic limit 
equations, and, if it is necessary, to verify them in 
experiments.  Constructions using metal-mesh 
screens are currently underway. In the last stage the 
assembling process that optimizes mass distribution 
between protection structure elements is worked out 
again.   
The optimization process can’t be algorithmizable 
sometimes, but convenient software can be useful to 
solve the problems, especially when complex objects 
are addressed. Three finding algorithms are 

developed in the program COLLO2000: the graphical 
visualization of the optimization process, the Monte-
Carlo method and the finite elements method. The 
results on the model simulations are provided. 
 
1. INTRODUCTION 
 
Designing  of the optimal protection for a spacecraft 
includes several stages as following:  
-obtaining initial data on the configuration of the 
spacecraft, its orbital parameters and life time,  
-preliminary evaluation of reliability of the spacecraft 
as a  whole and each of its elements, 
-preliminary evaluation of the ballistic limit 
parameters of the outer surface elements apart, 
-choice of spacedebris and meteoroid environment 
models,  
-calculating the collisional risk in the mission, 
-development of suggestions on the protection system 
and enhancing spacecraft’s elements,  
-optimization of protective constructions. 

 

 
Fig.1.  A scheme of optimization problem for a spacecraft protection. 

 
This problem is a complex one and can be solved .in the 
iterative way. The software to provide probability 
calculations considering data on space pollution and ballistic 
data of differential protective structures is developed and 
some results are presented here. 
By now the optimization problem is examined  in 
(Reimerdes Hans-G., 2001, 2003.), (Stokes H, 1999, 

2000).There is supposed a new method of 
hyperbolic elements instead of usually used the 
Monte Carlo simulations. 
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2. TARGET SETTING 
 
A basic function  to evaluate probability of a damage of the 
spacecraft as a consequence of an  impact of orbital debris or 
meteoroids  is the damaging stream:  
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where L is the orbit of a spacecraft, 

Sk – k-th element of the outer surface area of the 
spacecraft,  
Ni –  space density of distribution (concentration) of the 
i-th component of space debris or meteoroid 
environment, 
T1  and  T2 – time of beginning and ending of the 
spacecraft orbital mission,  
Ω -  a solid angle opened to impact for the considered 
part of the spacecraft outer surface,  
v – a speed of the particle, 
vn – the  normal component of a particle velocity,  
F(dki) – cumulative flux of space  particles with size 
greater than  dki, 
dki– critical size of a damaging particle of the i-th 
component of environment for k-th element of the 
surface.  

It is supposed that that the collisional damage is an 
occasional event governable by the Poisson’s statistics. So 
the probability of a damage is determined by the following 
expression: . Accoding to  the dasic 
equation (1) the protective system consists of separate 
elements protecting different parts of the spacecraft, and 
when the value of integral damaging stream by expression 
(1) is given it is needed to calculate an optimal distribution 
of the additional mass between the elements: 
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 Here m is a surface density of the k-th element.  
The solution in a great part is determined by the chosen  
models of spacedebris and meteoroid environment. 
Calculations have shown that the distribution of trajectories 
of spacedebris and meteoroids plays a large role in the 
choice of the protective constructions. In this work the 
model ORDEM2000 (Liou Jer-Chyi, 2000) is used.  
 
3. ON THE OPTIMAL VIEW OF THE 
INFORMATION ON THE ORBITAL 
ENVIRONMENT RELEVANT TO THE 
PROTECTION  
 
It is impossible to overestimate the role of models of space 
debris and meteoroid environment in estimation of damage 
risks and designing an optimal protection construction. The 
laboriousness of development of reliable models is several 

orders comparatively to development of codes to 
calculate and optimize a spacecraft protection 
(But without building and calibration of ballistic 
limit equations) – the protection problem brings  
only the calculations multidimensional collisional 
integrals. But nevertheless it is desirable to 
separate the protection problem which begins 
with recalculations of the orbital distributions of 
spacedebris and meteoroids into its velocity speed 
and trajectoties distributions in the concomitant 
coordinate  system.  So there should be a note of 
this trasformation. How it was noticed by 
(Reimerdes H-G., 2001), the model ORDEM-96 
(Kessler D.J.,.1996) was ideal in this regard. But 
used multidimensional approximations are rather 
laborious and rough. In the model (Liou Jer-Chyi, 
2000) the table form of information presenting in 
the concomitant and geocentric coordinates  is 
used. The shortage of such approach is  a forced 
roughness of the net in sizes of particles that leads 
to a large dependence of results on an used 
interpolation  methods.   In this case it is 
impossible to meet requests of industry on the 
accuracy of calculations of the protection 
constructions ( to be exact, in concordance of the 
results). Maybe the contradiction would be a table 
form of distributions in the Keplerian coordinates 
which differ by smoothness.   
 
4. AN OPTIMIZATION PROBLEM FOR A 
SPACECRAFT PROTECTION MASS  
 
Reliable spacecraft protection against meteoroid 
and space debris needs substantial additional mass 
outlay which can be compared with the payload 
mass. But some directions are more dangerous 
than others, so the mass redistribution essentially 
affects the effectiveness of the protection system. 
It is possible to distribute the additional mass 
between protective elements by hand, but if there 
are too many protective elements such approach 
would be rather difficult.  This problem was 
analyzed  
In some works  (Reimerdes Hans-G., 2001, 
2003.), (Stokes H, 1999, 2000) the genetic 
approach to the optimization was suggested. It is a 
variant of the Monte Carlo method (MCM) and it 
allows substantially  reduce time of the designing 
work. Such choice was determined by the 
characteristics of target functions which have 
local extremums, so standard “fast” algorithms of 
the kind of the steepest descent method doesn’t 
work  without additional analysis.  But the results 
can be displaced in certain respects.  Like with 
some other problems the method of finite 
elements (MFE) is an alternative  to the MCM, 
and provide a fast and accurate solution of the 



problem. . Its disadvantage however lies in comparative 
complexity. This method is rather perceptible to the 
alteration of the problem's details. Nevertherless  MFE 
allows to develop fast and exact codes.  
 
 
 
5. A MATHEMATICAL PROBLEM. A 
METHOD OF HYPERBOLIC 
ELEMENTS IN A PROBLEM OF 
CONVEX ANALYSIS   
 
Let a  nonlinear operator M(x):  be 
differetiable in the sense by Frechet.  X and Y – 
Banach spaces (Trenogin V.A., 1980.). Let 
determine the norm of the operator M(x) as 

YX →
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= , where D –  some convex  

subset in X.  Fixed points of this operator are 
determined by the equality of  its Frechet 
differential to zero: dM(x0, h) = 0, where h  is a 
differential of the variable  x.  
 
The basic conditions of the target functional that 
provide existence and uniqueness of the solution 
for the mentioned above optimization problem are 
the following:  
1) a fixed point exists if the operator M(x) is 
continuous and is mapping some convex set Ω  
from n-dimentional Banach space into itself  (by 
Brauer’s theorem); 
2) the fixed point exists if M(x) is maooing a 
convex subset D (not necessarily  finite one) of the 
Banach set  X  into a compact subset DR ⊂ (by 
Shauder’s theorem).  
Let introduce the target function as a sum of piece-
wise 1-D hyperbolic  functions of the instrumental 

variables subject to 

 and , …, . The 
above  conditions of existance and uniqueness of 
the solution are implemented. The algorithm is 
stable. Approximation is obvious. So obtained 
converge to an exact solution. The real rate of 
convergence is determined by properies of the 
target function rather than the approximation 
order. In the practice the convergence is high.  . 
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6. OF THE PROTECTION AGAINST SPACE 
DEBRIS FOR A CUBE MODEL 
 
Let’s examine a cube model (Fig. 2) in a standard orbit (orbit 
altitude of 400 km and inclination of 51.6 degrees).  

 

Fig. 2. A cube model. 1 – front, 2 –  right, 3 – left, 
4 – back faces. 

 
According to the model ORDEM2000, streams at 
upper and lower faces are zero, and these faces do 
not take part in the optimization process. Due to 
the symmetry of the distribution functions for 
orbital objects in the concomitant coordinates the 
left and right faces are in equal conditions. But 
following the traditions these faces are analyzed 
separately. The symmetry of the solution is an 
additional criterion of its accuracy.  
 
1-st case. Every surface of the cube is considered 
a single wall strcture with a given thickness. Let 
the total limit for damaging stream to be 10-3 
particles per year. Calculated values for the shell 
plate thicknesses are given in Tab. 1, the sections 
of the target function in coordinares  x1 and x2  
with the minimum point are given in Fig. 3 and 4. 

 
Table 1. Optimization of thickness of the single 
wall structure the cube model when the total 
damaging stream is 10-3 particles per year. 

 
Faces of 
the cube 

Damaging 
streams 
(1/year) 

Thickness 
(mm) 

MDPANTO  
Thickness 
(mm) 

Front 0,345ּ10-3 7,11 15.0 
Starboard 0,299ּ10-3 7,48 7.8 
Port 0,289ּ10-3 7,23 7.4 
Back  0,068ּ10-3 2,11 1.0 

Average  6,00 7,8 
 



 
Figure 3.  The section x1 –x2 of the target function for 

the cube model with the single wall structure.  
 

The Fig. 3  depicts the dependence of the summary thickness 
ts for two surfaces of the cube – front and right depending on  
the density part of the stream that penetrates the front 
surface is given. It is the section х1 –х2 of the target function. 
In the global minimum the sum of the damaging streams on 
the front and right faces is   0,000568 particles/year. In the 
fig. 4 the section х1 –х4 of the target function is given. The 
corresponding sum of the damaging streams for these 
surfaces is   0,000419 particles per year. 

 
Figure  4.  A section x1 –x4 of the goal functions for a cube 

model with single walls. 
 

In Fig. 4  shown the expected tendency of the curve when 
the thickness of the back surface goes to zero.  
In Fig. 5 the level lines of the target function on the plane 
X1X2 (a section х1 – х2 – х3 )are given.  The total damaging 
stream on the 1-st, 2-nd and 3-rd surfaces is 0.000858 
particles per year. The line level of (1 + 1/80),…, (1 + 1/20)  
related to the minimum are shown.  

 

 

Figure 5.  Section x1 – x2 – x3 of the target function 
for the cube model with single wall structures.  

 
If the cube is protected by single wall structures 
of equal thickness for the four sides mentioned 
above then their total thickness must be no less 
than 7.09 mm to endue the stream of PNP=10-3 
particles per year.  The theoretical economy from 
the optimized construction is about 11.8 kg. 
 
2-nd case. Each surface in the cube model has a 
Whipple shield (0.1mm+10cm+1mm): the  back 
wall thickness of 1 mm; the gap between the 
bumper and the back wall of 10 cm. The thickness 
of the back wall can be varied. Let the total 
damaging stream to be 10-4 particles per year. The 
ballistic limit equation by Christiansen 
(Christiansen E. L., 2001.) is used. The calculated 
back wall thickness is given in the Tab. 2.   

  
Table 2. Optimization of the back wall thickness in 
the Whipple protection for a cube model (total 
damaging stream is of 10-4 particles per year). 
 

Face Damaging 
stream 
through the 
face, 
(1/year) 

Back wall 
thickness 
(mm) 

Front 0,277ּ10-4 0,224 
Left 0,291ּ10-4 0,284 
Right 0,290ּ10-4 0,282 

Back 0,142ּ10-4 0,146 
Average 

 
0,234  



If the Whipple shield will be the same for all the considered  
sides  of the cube then the thickness of the back wall must be 
about 2.62 mm to endure the level of PNP=10-4 particles per 
year.  The theoretical mass economy from the optimized 
construction is about 3.0 kg.     
 In Fig. 6 the section x1 - x2 for the target function is shown. 
This section includes the point of the minimum of the target 
function. (the total damaging stream on these walls is 
0,568·10-4 particles per year). And in Fig. 7 the section x1 - x4 
is given. In Fig. 8 the level lines for the target function over 
the plane   X1X2 are given: these lines correspond to the levels  
of  (1 + 1/50), …(1 + 1/10)   related to the minimum of the 
target function. The total damaging stream in the last case is 
0,858·10-4 particles per year.   
 

 
Fig. 6.  The section  x1 –x2  of the target function for the cube 

model with the Whipple shield.  

It should be noted that in both case with the single 
wall and the Whipple shoeld the target function is 
sufficiently smooth. In the first case the minimum 
is faded, the second case the minimum is 
expressed fairly. The reason is that the thickness of 
the back wall has a little influence on the optimal 
distribution.    

 
Fig. 7.  The section x1 –x4  of the target function for the 

model cube with the Whipple shield. 

 
Fig. 8.  The section x1 – x2 – x3 of the target 
function for the cube model with the Whipple 
shield. 

 
7. CONCLUSIONS 

 
Thus the analysis of the protection optimization 
problem reduces to the investigation of the 
additive properties of a goal operator. If the 
operator is a sum of smooth piece-wise 
monotonically descending functions belonging to 
the same class, then there exists the unique 
solution of the optimization problem. And the 
particular unique  solution exists if the target 
function can be approximated by hyperbolic finite 
elements. The minimization with the 
ORDEM2000 and BLCs for a single wall 
structures and the Whipple shield gives a smooth 
solution. In the case of the single wall the 
minimum is faded, in the case of the Whipple 
shield the minimum is fair, but at the nearest 
adjacency of the optimum the solution is very flat.  
The comparison between calculations using the 
direct Monte Carlo and the hyperbolic elements 
methods was made. The DMCM allows to 
calculate the optimum when there are about 5-6 
protective elements, otherwise the convergence is 
unsufficient. At the same time the MHE allows to 
optimize any number of elements  
It is shown that an optimal mass distribution 
between the elements gives a considerable 
economy in the weight of the spacecraft. It 
should be noted that the distribution of 
trajectories of space debris and meteoroids plays 
a decisive role and is more important than the 
distribution of velocities.   



Optimization problem is included in the COLLO2000 
program and  in general can be extended for the case when 
there are mutual shading and the varying spacecraft 
orientaton.   
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