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ABSTRACT 

The objective of the work presented in this paper is the 
simulation of hypervelocity impact on aluminium-
carbon/epoxy-aluminium shields; such multi-layered 
arrangement is being used by the European Columbus 
module of the International Space Station. In addition, 
thermodynamically consistent material models are 
introduced for each component of the multilayered array 
which yields a more accurate physical representation of 
the material response to high velocity impact loading. 

Thermodynamically consistent models for 
aluminium and carbon/epoxy are proposed. In order to 
describe material behavior under high-intensity loadings 
a 2-D anisotropic elasto-plastic constitutive model 
coupled with a damage tensor ijω , an equation of state, 
and a failure criterion (based on the critical value of a 
specific entropy function expressed in terms of the 
dissipation function) have been developed. The model 
includes the following key aspects of material response 
to hypervelocity impact: non-linear anisotropic strength, 
shock effects and associated energy dependence, 
compaction, compressive and tensile failure and strain 
rate effects. 

The severe deformations occurring in any 
hypervelocity impact event are best described by 
meshless methods since they offer clear advantages for 
modelling large deformations and failure of solids when  
compared to mesh based methods. 

The simulations presented here are the result of the 
application of the Smoothed Particle Hydrodynamics 
(SPH) method to the impact and penetration problem 
and the incorporation of  thermodynamically consistent 
material models into the Cranfield University SPH 
solver.  
 
1. INTRODUCTION 

Novel approaches to designing advanced aerospace 
systems require evaluation of extreme operating 
conditions and an assessment of different failure 
scenarios and their prevention. The hypervelocity 
impact of space debris and micrometeoroids is a 
potential threat to spacecraft which requires careful 

consideration if structural and sub-system integrity is to 
be maintained throughout the intended spacecraft 
mission. Current space debris shields can be effective 
against small particles of up to 1 cm in size. Weight 
effective debris shields against particles larger than 1cm 
are not technically feasible. Fragments larger than 10cm 
are ground-tracked so that the collision probability with 
the spacecraft is known and avoidance maneuvers can 
be performed when required.  

Passive shielding on space structures has become a 
key component in structural design as mission duration, 
and hence the exposure to space debris and 
micrometeoroids, has been extended over the years. 
Designing effective protection requires a good 
understanding of impact phenomena and the 
development of new techniques for analysing structures 
and materials. Nowadays multilayered composite 
structures are commonly used in spacecraft shielding 
configurations in order to minimise the risk of 
subsystem failure and potential total loss of the 
spacecraft. 

The use of accurate material models and robust 
numerical solvers results in a more effective, fast and 
accurate design process. In the present study 
thermodynamically consistent material models are 
introduced for each component of the multi-layered 
shield array. Additionally, the application of the 
Smoothed Particle Hydrodynamics (SPH) method to the 
impact and penetration problem and the incorporation 
of consistent material models into the Cranfield 
University SPH solver allows for a more accurate 
representation of the material response under severe 
deformations.  

This study concentrates on the numerical simulation 
of debris impact onto a multi-layered shield 
arrangement.  The geometry, materials and dimensions 
are similar to those typically found in modern spacecraft 
Hayhurst et al. (1999), Thoma et al. (2004). The overall 
thickness of the multi-layered arrangement considered is 
120.00mm and the materials considered are 7075-T6 
aluminium alloy for the front bumper shield and the 
back wall and carbon/epoxy composite for the 
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intermediate shield. The characteristics of debris impact 
differ in low earth orbits and geostationary orbits. In 
GEO, impact velocities range from a few hundred 
meters per second to just over one kilometre per second 
Hayhurst et al. (1999), Thoma et al. (2004) whereas in 
LEO the impact velocity has been estimated to be as 
high as ten kilometres per second Katayama et al. 
(1997). An impact velocity of 1.5Km/s is chosen to 
carry out the numerical experiment. 

 
2. CONSTITUTIVE EQUATION 

2.1. Damageable thermo-elasto-visco-
plastic medium. 

The system of constitutive equations for modelling the 
damageable thermo-elasto-visco-plastic medium is as 
follows: 
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Here ijσ , ,  are the components of the stress 
tensor, elastic and non-elastic (viscoplastic) deformation 
tensors, respectively ( ; ); 
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the absolute temperature; qr  is the heat flux; ρ  is the 

density; B , , C 1Λ , 2Λ , *σ  ,  are the material 
constants connected to the damage parameters 
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α ; , 0K 0µ , 0η , are the bulk modulus, shear 
modulus, dynamic viscosity and static yield limit of 
plasticity for an undamaged material respectively;  

is the heat conductivity at constant stress; 
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vα  is the 
coefficient of volume expansion; κ  is the coefficient of 
heat conduction;  is the Haviside function; the 
dot over the symbols indicates the material derivative 
with respect to time. 
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The kinetic equation for the volume damage  
consists of three terms. The first one has the form of the 
Tuler – Bucher (1968) equation and describes the 
formation and initial growth of the volume damage . 
Then, as  gets accumulated, the second term 
describing the viscous growth in domains of tension of 
the material comes into play Kiselev and Lukyanov 
(2002). The third term describes the viscoplastic flow in 
pores when the material is compressed. Note that the 
equation for  was taken from the dynamic problem 
on a single spherical pore of inner radius  and outer 
radius  in a viscoplastic incompressible material. This 
model is an extension of the Socolovsky– Malvern type 
elastoviscoplastic medium and takes into account the 
formation and accumulation of damage in domains of 
intensive tension, their disappearance under 
compression as well as the heating effects and the 
accumulation of damage under shear deformation. The 
mechanical, structural, and heat processes are mutually 
dependent. 

a

The evolution of the intensive plastic flow and 
accumulation of micro-structural damage may be 
considered as a process of pre-fracture of the material. 
The entropy criterion of limiting specific dissipation 
Kiselev and Lukyanov (2002): 
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is proposed as the criterion for the beginning of 
macrofracture (i.e., the beginning of formation of cracks 
or new free surfaces in the material). Here t  is the time 
at the beginning of fracture;  is a material constant 
(the limiting specific dissipation); ,  and  are 
the mechanical dissipation, the dissipation of continuum 
fracture and the thermal dissipation respectively. 
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2.2. Modelling composites 

For metals there is exhaustive information in the 
literature on dynamic material properties under large 
strains and high strain rates and appropriate constitutive 
equations have been used for structural impact 
simulations. For composite materials, dynamic failure 
behavior is very complex due to the different fibres and 
matrices available, the different fibre reinforcement 
types, the possibility of fibre dominated or matrix 
dominated failure modes, and the rate dependence of the 
polymer resin properties. Thus at present there are no 
universally accepted material laws for crash and impact 
simulations with composites. It was considered that a 
homogeneous orthotropic elastic damaging material was 
an appropriate model for fabric laminates as this is 
applicable to brittle materials whose properties are 
degraded by micro-cracking. The model presented in 
this paper is macro-mechanically based and suitable for 
implementation into a numerical code. Each 
layer/weave of the material was not modelled explicitly 
but represented by an equivalent volume with properties 
at a macro scale which are representative of the 
combined micro-mechanical material response under 
the loading conditions considered. Constitutive laws for 
orthotropic elastic materials without internal damage 
parameters are expressed as:  
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where xyν  is the principal Poisson’s ratio. Eq. (9) can 
be rewritten in the following form for materials which 
incorporate  an internal damage tensor:  
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This general plane stress form for an orthotropic 
elastic material with damage has 3 scalar damage 
parameters xω , yω , xyω  and 4 “undamaged ” elastic 
constants: Young’s moduli in the principal orthotropy 
directions , , the in-plane shear modulus G , 

and the principal Poisson’s ratio 

xE yE xy

xyν . The damage 

parameters have values xyyxi ,,0 ≤≤ i,1 =ω  and 
represent modulus reductions under different loading 
conditions due to progressive damage within the 
material. 
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For dissipation of continuous (distributed) fracture 
the following equation of state is assumed: 
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),,where ~( ijTFF ωε=  is the free energy of the 

composite material,  is the matrix of Onsager’s 
parameters. 

ijklA

Eq. (12) establishes a linear functional dependence 
between the thermodynamic force and the 
thermodynamic flux in accordance with Onsager’s 
theory. Therefore, dissipation of continual fracture is 
non negative . 0≥Fd

The basic thermodynamic equation which can be 
used for defining the constitutive equation has the 
following from: 

                                          (13) 
∂
∂

=~ ρσ

Using Eq. (13) and following the derivation 
described in Lukyanov (2004), the following 
constitutive relation for the composite material can be 
derived: 

ijklklijklij CC εωσ += )~( ,      (14) 

The last step in the generation of the constitutive 
equations for composite materials involves the 
introduction of expressions which describe the evolution 
of the rate of damage tensor: 
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where ,  are scale factors for the tensile and 

compression cases respectively and ,  are 
absolute critical values of stress for the tensile and 
compression cases respectively. 
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The entropy criterion of limiting specific dissipation 
Kiselev and Lukyanov (2002): 
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is proposed as the criterion for the onset of macro-
fracture (i.e., the beginning of formation of cracks (new 
free surfaces) in the material). Here  is the time at the 

start of fracture;  is a composite material constant 
(the limiting specific dissipation);  is the dissipation 
of continuum fracture for composite material. 
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3. SPH METHOD 

Smoothed Particle Hydrodynamics (SPH), Lucy (1977), 
provides an excellent tool for simulating the physics of 
dynamic events in solid mechanics that involve large 
deformations of the domain Belytschko and Xiao 
(2000), Libersky and Petschek (1990). It is particularly 
well suited to problems that result in complex fracture 
paths. Conventional SPH is a robust method that has 
been successfully implemented to simulate dynamic 
fracture and fragmentation of solids Libersky and 
Petschek (1990).  

SPH is a Lagrangian particle method that uses no 
underlying mesh. The absence of a mesh and the 
calculations of interactions among particles based on 
their separation alone means that large deformations can 
be computed with relative ease. SPH relies on 
interpolation theory where the value of a field can be 
approximated by smoothing functions (or kernels) 
which are non-zero in the particles’ sub-domains. 
Additionally, through SPH the kernel approximation 
allows spatial gradients to be determined from the 
values of the function and the first spatial derivative of 
the kernel rather than the derivatives of the function 
itself. Several forms of kernels can be employed to 
construct SPH approximations Belytschko and Xiao 
(2000). 

The conventional approach used to form SPH 
equations is as follows: 
1st step.- Estimate the kernel. For a vector function f at a 
point, whose position vector is x, in an interval Ω , the 
conventional kernel estimate is given by the integral 
interpolant: 
 
             ( ) ( ) ( )∫
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′′−′≈ xdhxxWxfxf ,            (17) 

 
where W is a kernel function and depends upon two 
variables, xx ′− and h a width control parameter (also 
known as smoothing length).  

The kernel function must satisfy the following 
requirements: 

1.-  0),( =′− hxxW when khxx ≥′−  (i.e. the 
Kernel should exhibit compact support). k is a scale 
factor  that determines the supporting area of the 
smoothing function. 
2.- 0),( ≥′− hxxW  in the compact support area 

where khxx ≤′−  
3.- Integration of W over the entire domain is unity 
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To these requirements we can add that the kernel has 

to be differentiable at least once, the reason being that 
the kernel approximation allows spatial gradients to be 
determined from the values of the function and the first 
spatial derivative of the kernel rather than the 
derivatives of the function itself. Additionally, the 
derivative should be continuous to prevent large 
fluctuations in the values of the variables of particle i. 
4.- The limit of W equals the Dirac delta function as h 
approaches zero. 
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2nd step.- The second step is to convert the kernel 
integrals into a volume weighted sum. This is known as 
particle approximation. Thus: 
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In the equation above the subscript i and j denote 

particle number, m  and j jρ  the mass and the 
density of particle j , N the total number of particles in 
the field  and ( )hx j ,xW iWij −=  is the smoothing 
function. It is important to realise that although the 
summations are carried out over the entire number of 
particles N, only a small number contribute since one of 
the properties of the kernel is that it has compact 
support (i.e. its value falls off rapidly as 

hxx ji ≥− ).  

Neglecting thermomechanical and frictional forces, 
the conservation equations in differential form can be 
converted to their respective discretised form. 

To illustrate how this method works we apply the 
steps above to obtain an expression for the velocity 
gradient and the momentum equation in an SPH 
framework: 
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Where the subscripts i and j correspond to the home 
and neighbor particles respectively,  is the differential 
operator expressed in material coordinates, is the 

smoothing function, 

∇
ijW

jσ  is the Cauchy stress tensor at 

particle j, jρ , , are the current particle density, 

mass and volume respectively is velocity at particle j 

and  is the particle acceleration,  is the particle 
support. Equation (21) is key for computing the rate of 
deformation tensor which in turn is used for updating 
stresses in the continuum. 
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4. NUMERICAL SIMULATION 

The 2-D numerical model considered in our study 
consists of a projectile, a bumper shield, a secondary 
shield and a back wall. The initial set up is depicted on 
Figure 1. 

 
Figure 1. 2-D numerical model set up. 

 
The overall thickness of the multi-shield 

arrangement is 120.00 mm measured from the rear face 
of the bumper shield to the front face of the back wall, 
the bumper shield thickness is 2.50 mm, the secondary 
shield thickness is 10.00mm and the back wall thickness 
is 5.00mm. The separation between the bumper shield 
and the secondary shield is 70.00mm. The material used 
to simulate the bumper shield and back wall is Al 7075-
T6 since this is an alloy commonly employed in 
aerospace applications. The secondary shield consists of 
a multilayered arrangement of carbon/epoxy layers and 
the projectile is a 15 mm diameter Al 1100-O sphere. 

Simulations were run with the impactor moving at 
1.5Km/s. The velocity field plot corresponding to the 
1.5Km/s case is shown in Figure 2. 

Whereas the momentum transfer between the 
projectile and the portion of the shield which 
disintegrates is evident (Figure 2), the rest of the shield 

remains largely intact due to the high speed at which the 
impact and penetration process occurs. 

 

Time=5.21 Time=65.03

Time=80.80 Time=112

Time in Microseconds

 
Figure 2. Sequence of a 1.5Km/s impact at normal incidence to the 

bumper plate. 
 

At this speed the back wall suffers great damage 
with the consequent potential loss of the spacecraft. The 
implementation of the SPH method allows the debris 
cloud and its effect on a subsequent plate to be modelled 
as one continuous problem. Figure 3 shows a plot of the 
fracture propagation (blue particles indicate fractured 
particles) within the multi-layer arrangement 
components corresponding to a 1.5km/s impact. 

Time=5.21 Time=45.40 Time=65.03

Time=80.80 Time=98.80 Time=112

Time in Microseconds

 
Figure 3. Damage distribution within the material. 

 
From figure 3 we can see that most of the particles 

which participate in the debris cloud are either damaged 
or failed. The percentage of the particles which are 



 

damaged but not failed is relatively small which lead us 
to think that the contribution of tensile instability in the 
fracture process is negligible; it can thus be concluded 
that the main fracture mechanism is induced by the 
introduction of a thermodynamically consistent damage 
model and not by numerical instability.  
 
5. CONCLUSION 

The simulation of hypervelocity impact on 
aluminium-kevlar/epoxy-aluminium shields at 1.5Km/s 
has been introduced in this paper. In addition, 
thermodynamically consistent material models have 
been introduced for each component of the multilayered 
array with incorporated specific entropy as the criteria 
of fracture origination which allows more accurate 
physical representation of the material response to high 
velocity impact loading. In this paper it has been 
demonstrated that material failure originates and 
propagates mainly as a result of the introduction of a 
consistent constitutive model of damageable media. 
However, some numerical fracture due to the tensile 
instability inherent to the basic SPH method is also 
present. A thermodynamically consistent development 
of the composite constitutive model has also been 
introduced. This model includes some non-standard 
parameters which were obtained through comparison of 
dynamic tensile tests with numerical simulations of the 
same test. Most composite materials show strain rate 
dependent properties. The composite material model 
presented in this paper does not take into account strain 
rate dependency. This problem is in the scope of further 
research and will be published in forthcoming papers. 

The nonstandard material constants for metals 
introduced by Kiselev and Lukyanov (2002) showed 
good agreement with experiments and the present work 
is a direct extension of their results into a 2-D case. The 
physics of the damage model were implemented into the 
SPH solver which allowed the simulation of complex 
fracture paths and debris clouds. It is important to note 
that the value of damage alone does not constitute a 
reliable means of predicting fracture as it varies 
significantly amongst particles where fracture has 
occurred. The results presented here do not take into 
account the contribution of the second damage 
parameter α  into the fracture process for metals. This 
parameter plays a major role in the origination and 
propagation of shear bands. A forthcoming paper will 
deal with the complete set of damage parameters. The 2-
D results shown provide an insight into the physics of 
the fracture process and will provide the foundation for 
a real 3-D simulation in future research.  
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