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ABSTRACT 

Artificial neural network method was adopted to 
simulate the leading debris characteristics caused by 
space debris hypervelocity impact on Whipple shield. 
The shield spacing was included and the concept 
became an equivalent one for the whole secondary 
debris cloud, which is more realistic. A three-layer 
feed-forward back-propagation neural network was 
employed and sample data were taken from NASA 
hypervelocity impact test database on Whipple shield. 
The net was trained and agreed well with samples. The 
method of obtaining leading debris expression was 
discussed. And a kind of ballistic limit equation in term 
of critical rear wall thickness was obtained through 
neural network, which exhibit powerful prediction 
ability for shield failure or pass. 

1. INTRODUCTION 

Ballistic Limit Equations (BLEs), which describe the 
particle sizes that are on the failure threshold of a 
particular spacecraft component, are widely used to 
evaluate a particular shield’s ability to withstand 
hypervelocity impact (HVI). A wide range of BLEs 
have been developed for the many kinds of shield 
structures based on HVI test results, numerical 
simulations, and analytical assessments, which is a 
cost-consuming task. Because of the complexity of HVI, 
the internal functional relationship between shield 
performance and shield configuration parameters is not 
clear to researches. As a result, the current BLEs are 
empirical regression equations setup to explain HVI 
experimental data. Though such functions can not be 
obtained directly, they could be approached by some 
kind of approximation method. Artificial Neural 
Network (ANN) is a good candidate as it is a powerful 
tool for function approximation. In fact, it has been 
shown that two-layer networks, with sigmoid transfer 
functions in the hidden layer and linear transfer 
functions in the output layer, can approximate virtually 
any function of interest to any degree of accuracy, 
provided sufficiently many hidden units are available 
(Hornik, 1989). 

For multi-wall shields, a cost-saving leading debris 
approach can be employed, which obtains the 
characteristics approximation of leading debris (namely 

the most dangerous debris), caused by hypervelocity 
impact on first bumper and evaluate its damage 
potential for the next bumpers and rear wall in sequence. 
The characteristics of leading debris include its size, 
density, velocity and direction. Thus it can be 
determined whether the last wall will fail or not on the 
basis of single wall penetration equation. But what was 
ignored is the effect of shield spacing, which is an 
important parameter for any shield structure. As ANN is 
able to handle as many inputs as desirable, this problem 
can also be overcome. Furthermore, ANN has fine 
capability of generalization. It could give reasonable 
results for non-sample data as long as their inputs fall 
between the input ranges of network training. 

A three-layer feed-forward Back-Propagation (BP) 
neural network was setup to determine the leading 
debris characteristics caused by space debris 
hypervelocity impact on Whipple Shield (WS). Sample 
data were taken from NASA JSC Whipple shield test 
database (Christiansen, 2003). The net was trained and 
agreed well with samples after training. The method of 
obtaining the expression of leading debris as well as a 
BLE in term of critical real wall thickness was also 
discussed. 

2. BP NEURAL NETWORK 

In BP network, the inputs are firstly propagated forward 
through the net, then the sensitivities according to the 
targets are propagated backward through the net, and 
finally the weights and biases are updated using the 
approximate steepest descent rule (Hagan, 1996). 
Therefore, the inputs and targets must be defined first of 
all. 

The WS configuration as well as failure criteria were 
shown in Fig.1 (IADC, 2003). The independent 
variables are the projectile’s diameter, density, velocity 
and incidence angel, the bumper’s thickness and density, 
the spacing, the rear-wall’s thickness, density and yield 
strength. There are 10 independent variables in total, but 
they needn’t all be the inputs. To obtain the leading 
debris characteristics, the influence of target variables 
must be eliminated. So the rear-wall parameters can not 
be inputs and should be reflected from single wall 
penetration equation. The single wall penetration 
equation used is the modified Cour-Palais equation for 
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the Apollo project by Burton Cour-Palais at JSC (Christiansen, 1991): 

 
Figure 1. Whipple shield configuration and failure criteria (IADC, 2003) 
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For ballistic limit: 

1.8bt p=                   (2) 

For spallation limit: 

2.2st p=                   (3) 

where: 

p is crater depth on target (cm), BH is Brinnell hardness 
of target, C is speed of sound for target (km/s). The 
other symbols are identical with those in Fig.1. 

In order to eliminate the influence of target variables, 
the inputs from the NASA WS test database must be 
selected as the same target material. The database varies 
over a large range of impact velocities and target 
parameters. The projectiles in these tests varied from 
0.02 cm diameter to 1.9 cm diameter, impact velocities 
from 2 km/s to over 8 km/s, and impact angles from 
normal (0o) to the surface to 75o. Most of the tests used 
aluminum spherical impacts although glass, copper, and 
nylon projectiles are also represented in the database. 
The Whipple shields varied in this database from 
bumper thickness to projectile diameter (tb/d) ratios of 
less than 0.05 to over 1.0, and S/d (shield spacing to 
projectile diameter ratio) from 3 to over 140. The targets 
in these tests did not contain MLI thermal blankets 
(Christiansen, 2003). The selected rear wall material 
was Al2024 since it takes the largest test amount. For 
Al2024 target, BH=120, ρt=2.79658, C=5.1368. Then 
the JSC equation in logarithmic form is 

ln 1.0556ln 0.5ln 0.6667ln 0.3571s p nt d Vρ= + + −  (4) 

Eq. 4 can be regarded as a linear transfer function. The 
inputs are lnd, lnρp, lnVn of leading debris with output 
being lnts. And the weights and bias values are [1.0556 
0.5 0.6667] and [-0.3571] respectively. Accordingly, 
other input variables should also be in logarithmic form. 
As most normal incidence angel in logarithmic form 
will yield negative infinite quantity, the incidence angel 
was combined with projectile velocity to represent the 
normal component of velocity. As a result, the total 
independent input variable is 6 in number, including the 
projectile’s diameter, density and normal velocity, the 
bumper’s thickness and density, and the shield spacing. 
Accordingly, the target or output should be the 
spallation limit of rear wall in logarithmic form lnts. 
Unfortunately, there is no data of crater depth on rear 
wall in the test database. Therefore, the rear wall 
thickness was multiplied by a factor to estimate the 
spallation limit. If the rear wall failed, the factor should 
be greater than 1, 1.2 used here; else the factor less than 
1, and 0.8 was used. 

For the inputs and output discussed above, a three-layer 
BP neural network was setup as shown in Fig.2. The 
whole network represented the WS, where the first and 
second layer representing the characteristics of leading 
debris and the third layer protection ability of single 
wall shield. Sigmoid transfer function was used in the 
first layer and linear type in both the second and third 
layer. The outputs from the second layer were to be lnd, 
lnρp, lnVn of leading debris, so 3 neurons were used in 
this layer. As there was only one output, the spallation 
limit of single wall lnts, 1 neuron was in the third layer, 
also the last layer of the entire network. The neuron 
number in the first layer can be changed to achieve 
different degree of accuracy, and 10 was used here. 
Linear transfer function was used in the third layer 
according to Eq.4. And the combination of sigmoid 
transfer function in the first layer and linear type in the 
second layer represented the approximation of unknown 
characteristic function of leading debris. 



 
Figure 2. Thre- layer BP neural network configuration for Whipple shield 

For the rear-wall selected test data, the network was 
trained and the result was shown in Fig.3 in term of the 
ratio of predicted critical rear wall thickness to that in 
test, as a function of normal component velocity of the 
tests. Shield failure is predicted when the thickness ratio 
is larger than 1.0, and no failure below the ratio=1.0 line. 

The targets were simulated well except some individual 
points, mainly due to the imaginary factor introduced. 
Most data points aligned with the ratio=1.2 and 0.8 line, 
which reflects the influence of the factor of 1.2 and 0.8 
respectively. If the real crater depth in test were used, it 
is believed that the results would also be satisfactory. 

 
Figure 3. Result of BP neural network on Al2024 rear wall sample data

3. LEADING DEBRIS EXPRESSION 

According to Fig.2 and Eq.4, the outputs of the second 
layer is the expression of leading debris in terms of its 
diameter, density and normal velocity, as a function of 
the 6 inputs. It should be noticed that the concept of 
leading debris here is not of the usual meaning, because 
it also contains the factor of shield spacing and the 
whole effect of the second debris cloud impacting rear 
wall. As a result, it can be considered as the equivalent 
leading debris for the debris cloud, which is more 
realistic and effective. 

Generally, the trained results of the third layer would 
not be the same as those in Eq.4. Thus some 
transformation is needed in order to obtain the leading 
debris expression. Let a{1} denote the output matrix of 
the first layer, w{2}, b{2} and w{3}, b{3} denote the weight 
and bias matrix of the second and third layer 
respectively. Then the output of the entire network can 
be written in matrix form: 

( ) stbbaww ln}3{}2{}1{}2{}3{ =++××       (5) 

For the specification of Fig.2, Eq.5 can be extended as: 
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For one kind of rear wall material, Al2024 for example, 
the weights and bias values are fixed according to Eq.4 
as below: 

0.6667] 0.5 [1.0556~ }3{ =w           (7) 

[-0.3571]~ }3{ =b              (8) 

Keeping the total simulation results of network 
unchanged would yield 
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For simplicity, it can be made as 
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Then it could be derived from Eq.10 that 
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For different rear wall materials we would have 
different {3}b  values but {3}w is the same as long as the 
JSC equation is employed as criterion of single wall 
shield ability. Meanwhile the weights and biases values 
in the second layer should be modified according to 
Eqs.9-12 with those in the first layer unchanged. As a 
result, the total simulation results of neural network 
were kept constant, which was guaranteed by the linear 
transfer function in the second and third layer. From 
these formulations the influence of the rear wall 
material was eliminated. And the expression of leading 
debris can be written in matrix form as: 

{2} {1} {2}ld w a b= × +             (13) 

or extended according to Fig.2 as: 
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When the expression of leading debris characteristics is 
established, it can be applied to multi-wall shield 
structure in the same manner. Each bumper can be 
represented by a two-layer neural network, which 
simulate the results of leading debris impact on bumper 
with the outputs being the inputs of the next network in 
sequence. Finally it can be determined whether the rear 
wall will fail or not according to single wall penetration 
equation. 

4. BLE SIMULATION NETWORK 

In a similar way a kind of BLE in term of critical rear 
wall thickness, instead of critical projectile diameter, 
can be obtained through ANN. It can also be regarded 
as a kind of sizing equation. 

To this aim, the rear-wall’s density and yield strength 
were also treated as inputs and the input number added 
up to 8. The whole database was trained and the results 
were shown in Fig.4. The data points of shield failure or 
pass were separated fairly well, except some individual 
points. Over 98% of the database was predicted 
accurately from a safety standpoint (failures predicted 
accurately), whereas the same figure of merit was 90% 
using the recently updated BLEs, which was shown in 
Fig.5 in reference to Christiansen, 2003. 

 5. CONCLUSION 

Artificial neural network can be used to obtain the 
characteristics of leading debris caused by space debris 
hypervelocity impact on bumper. The Whipple shield 
can be simulated by a three-layer feed-forward 
back-propagation neural network, with the first two 
hidden layers representing the leading debris and the 
third layer describing single wall penetration equation. 
The expression of leading debris characteristics can be 
obtained through linear transformation to eliminate the 
influence of rear wall material, and be applied in 
multi-wall shield structure to predict the impact results. 
A kind of ballistic limit equation in term of critical 
rear-wall thickness, or size equation, can be simulated 
with neural network with all parameters included as 
inputs. The results indicated the powerful prediction 
ability of the method if the sample data were carefully 
selected to cover the whole range of shield structure 
parameters. 



 
Figure 4. Predictions from ANN for about 200 different Whipple shield HVI tests 

 
Figure 5. Predictions from updated BLEs for Whipple shield HVI tests (Christiansen, 2003) 
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