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ABSTRACT 

The paper considers the situation when newly detected 
satellite is to be either identified with one of the 
previously cataloged satellites or correlated with a 
group of satellites characterized by certain set of 
parameters. Such identification problems must be 
solved for satellite break-ups, separations or when the 
satellites are lost for significant period of time.  
The work describes the technique for determination of 
the probability of the fact that the newly detected 
satellite correlates with some of the satellites already 
present in the catalog. The technique is based on 
comparing the orbital parameters of the new satellite 
with the orbital parameters of the candidates for the 
parent. We must take into account the accuracy of the 
orbits of the analyzed satellite and parent-candidates 
and also the probability of presence of other satellites 
with close orbital parameters («background satellite 
density»). Using the suggested technique we can 
determine the probability of the fact that the analyzed 
satellite was generated by certain event.  
 
1. USED ORBITAL PARAMETERS 

Comparing of the parameters of motion of two 
satellites performed to determine the probability of 
generation of the object by certain event and for 
construction of the parametrical model of background 
satellite density (bsd) is based on criteria of 
“proximity” in the space of selected set of orbital 
parameters. For this set we use the vector of orbital 
momentum { }, ,x

y zc c c c  and the semimajor axis a , 

which together constitute the vector { }
1 2 3 4, , ,q q q q q . 

 
2. MODEL OF THE BACKGROUND 

The model of the background is the probability density 
function for detecting a satellite in the given point q  
of the space of selected orbital parameters. This model 
is constructed by clustering the cataloged satellites 
using closeness in the space of parameters q . The 

number m  of these clusters is chosen by the analyst 
depending on the required details of the model and the 
capacity of available computers. This number is 
assumed to vary within 100 - 800. Section 2.3 
describes in general the technique for clustering the set 
of orbital elements. 
 
2.1. Forming of the average values of the 

parameters of groups of satellites and 
the respective covariance matrices 

We assume that the set of orbital elements 
{ }

1 2, ,..., nq q qQ  is already divided into m  groups 
(clusters): 

1 2... m= U UQ Q Q Q , 

where { }1,..., km
k k kq qQ  – is the set of orbital elements in 

k -th group. For each group we determine the vector of 

average orbital parameters ˆ
kq  

1

1ˆ
km

i
k k

ik

q q
m =

= ∑ , 

where i
kq  – orbital elements of the i -th satellite of the  

group 
kQ  

If the clustering was efficient then the density of each 
group 

kQ  is the highest near the vector of average 

orbital parameters ˆ
kq . The number of the satellites of 

the group kQ  becomes smaller with the distance from 

the center, for which we take the point ˆ
kq . We assume 

that the background density for each group 
, ( 1,..., )k k m

=
Q  in the space of the selected orbital 
parameters q  has normal distribution. The a posteriori 

estimate of the covariance matrix kC  of the scattering 

of the orbital parameters q  in the group kQ  is 
determined by the formula 

( ) ( )
1

1 ˆ ˆ,
km TT i i

k k k k k k k
ik

C q q q q q q
m =

⎡ ⎤⎡ ⎤= ∆ ∆ = − −⎣ ⎦ ⎢ ⎥⎣ ⎦∑M , 
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where [ ]M  denotes the mean of the stochastic value 
in brackets. These calculations will determine m  
vectors of the centers 1 2

ˆ ˆ ˆ, ,..., mq q q  and m  respective 
covariance matrices 1 2, ,..., mC C C . In the total the 
number of the groups m , the set of vectors 1 2, ,..., mC C C  
and the set of covariance matrices 1 2, ,..., mC C C  
constitute the set of the parameters of the background. 
Using these parameters of the clusters we can 
determine the probability density for detecting a 
satellite in the certain point q  of the space of selected 
orbital parameters. 
 
2.2. Calculation of the background 

density for the given state vector 

According to the made assumptions the probability 
density of detecting a background satellite from the 
group 

kQ  in the point q  of the space of orbital 
parameters is determined by the formula of multi-
dimensional normal distribution 

( )
( )

( ) 1

4

1 1exp
22

T
k k k k

k

p q q C q
Cπ

−⎡ ⎤= − ∆ ∆⎢ ⎥⎣ ⎦
 

where ˆ
k kq q q∆ = − . 

In the vicinity of this point, within the volume of the 
space of the parameters 1 2 3 4dQ dq dq dq dq= ⋅ ⋅ ⋅  

the mean of the number k
backn  of satellites from the 

group kQ  is given by the formula 

( )k
back kn p q dQ⎡ ⎤⎣ ⎦M =  

This number does not depend on the number of the 
objects of other groups within the vicinity dQ  of the 
point q , thus the probability density for detecting in 
this point a satellite from one of the groups of the set  
Q  is determined by the formula 

( ) ( )
1

M

back k k
k

p q p q
=

= ∆∑  

2.3. Clustering procedure 
 

 The input data for the procedure is the set of 

orbital parameters 1 2, ,..., nq q q , which should be 
clustered into groups using some criteria of closeness. 
The procedure clusters the satellites into disjoint 
groups using closeness to the centers. As a result the 
procedure generates the set of m  centers 

1 2
ˆ ˆ ˆ, ,..., mq q q  and the respective set of covariance 

matrices  1 2, ,..., mC C C  . In general the procedure can 
be described as follows: 
1. We perform the initial screening of all the orbital 

elements that result in initial clustering of satellites 

into M m>>  groups which constitute the 
extended set. 

2. From the extended set we select the subset of m  
groups containing the majority of the satellites and 
determine for them the means and covariance 
matrices 

3. Then we perform cycle of iterations. Each iteration  
re-correlate the satellites to the groups using the 
criteria of maximum closeness to the average 
orbital elements, generate new mean elements and 
covariance matrices.  

 
2.4. Using the model of the background 

for evaluation of the probability of 
identification 

The constructed model of the background provides the 
possibility to determine the probability of detecting a 
background satellite in the given area of the space of 
orbital parameters. Parameters of the model are the 
orbital elements of the centers of the clusters and the 
respective covariance matrices. The centers generate 
probability density independently from each other. 
Thus the total probability density is the sum of the 
densities generated by individual centers. This provides 
a helpful possibility to manipulate with parameters of 
the background when we are solving different tasks. In 
particular, the clustering procedure can be applied not 
to the whole catalog, but to certain its part. For 
example, we can exclude from the set of satellites used 
for generating the background density the fragments of 
break-ups. These fragments should be clustered into 
groups (one parent satellite – one group of fragments). 
Each group will have its center and covariance matrix.  
Doing so we can use the group composed of the 
fragments of certain break-up in two aspects. On one 
hand it can be considered a part of the background 
when we solve the task of identification of two sets of 
orbital parameters, for example the new satellite and 
the lost one (in this case the presence of fragments will 
make identification more difficult). On the other hand 
the center and the covariance matrix of the group can 
be used for identification of new object with this break-
up, as we describe in section 3. We can operate 
similarly with other groups of satellites, for example 
with satellites generated by launches or separations.  

 
3. CALCULATION OF THE STATE VECTOR 

AND COVARIANCE MATRIX OF A 
SATELLITE FOR THE TIME OF 
CONSIDERED EVENT 

Correlation of newly detected object with certain event 
basically depends on how close are the orbital elements 
of this object and the orbital elements of the objects 
potentially generated by this event. If the epoch of the 
orbital parameters of the analyzed satellite differs from 
the time of the considered event, its orbital elements 
will differ from those referred to this time. Thus the 
state vector and the covariance matrix of the satellite 



 

should be propagated to the time of the event. This is 
valid equally for break-ups, launches and separations.  
The calculation of the state vector of the analyzed 
satellite and the derivatives of the current state vector 
with respect to initial one for the given time is 
performed by numerical integration of the equations of 
motion and the variation equations.  
Model of motion includes the influence of the 
following perturbing factors 
- Earth gravitational field represented by expansion 

in series of spherical functions including 
harmonics up to 16x16. 

- Gravitational influence of the Moon and the Sun 
- Solar radiation pressure 
- Atmosphere 
The covariance matrix 

sXC  of the errors of the state 

vector for the time st  with the known covariance 

matrix of 
kq , referred to the time 0t  is determined 

using the formula 

0
0 0

s

T

s s
X X

X X
C C

X X

⎛ ⎞∂ ∂
= ⎜ ⎟∂ ∂⎝ ⎠

 

where 
0

sX

X

∂
∂

 is the matrix of derivatives obtained by 

solving the variation equations, 
0

T

sX

X

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

 – the matrix 

transposed with respect to matrix
0

sX

X

∂
∂

 

 
4. CORRELATION WITH BREAK-UPS 

When we get new orbital parameters q  based on the 
certain set of measurements we should determine 
whether the orbital elements correspond to the 
fragment of known break-up. The probability of this 
fact depends on the average number of the fragments of 
the break-up 

( ) ( )**n p q dQ=M  

and the average number of background satellites 
( ) ( )back bn p q dQ=M , 

located in the vicinity dQ  of these orbital parameters 
and is determined by the formula 

( )
( ) ( )

**

* *q
back back

p qn
P

n n p q p q
= =

+ +
 

If we have to identify the new orbital elements with the 
fragments of one of several break-ups 1,..., nB B , then 

the probability of correlation to the k -th break-up is 
determined by the formula 

( )

( ) ( )

*

*

1

kk
q n

k back
k

p q
P

p q p q
=

=
+∑

, 

where ( ) ( )* *
1 ,..., np q p q  - probability densities for the 

fragments of break-ups 1,..., nB B  respectively 

The procedure for calculation of the probability density 
for the background ( )backp q  is presented in section 
2. Performing this calculations we should exclude (see 
section 2.4) from the total set of satellites the satellites 
affiliated to the considered break-ups.   
The model of the probability density for the fragments 
of break-up is constructed with assumption of normal 
distribution of their orbital elements around the mean 
value of orbital elements of this break-up. We use the 
same set of orbital elements (four parameters) as we 
have used constructing the model density for the 
background. The mean of the distribution is calculated 
as the average of the orbital elements of all known 
fragments of this break-up: 

1

1ˆ
m

k
k

q q
m =

= ∑  

where kq  – orbital elements of the k -th fragment, 

m  – the number of known fragments. 
Covariance matrix of scattering is calculated using 
formula 

( )( )
1

1 ˆ ˆ
m Tq

k k
k

C q q q q
m =

= − −∑  

The probability density for detecting the fragment in 
the vicinity of the given orbital parameters q  is 
determined by the formula 
 

( )
( )

( ) 1

4

1 1exp
22

T
q

q

p q q C q
Cπ

−⎡ ⎤= − ∆ ∆⎢ ⎥⎣ ⎦
 

where ˆq q q∆ = −  
 
5. CORRELATION WITH LOST SATELLITES 

Let us assume that processing of certain set of 
measurements resulted in the state vector { },X r v  of a 
satellite and its covariance matrix ( )XC t  for the time t . 
We are going to determine the probability of the fact 
that this satellite correspond to the previously lost 
satellite S-1, which has the state vector referred to the 
time st , denoted { },s s sX r v′ ′ ′ , and the respective 
covariance matrix 

sXC′ . 

Knowing the vector X  for the time t  and using the 
adequate model of motion we can calculate its state 
vector sX  and covariance matrix ( )X sC t  for the time 

st . We assume that the errors of orbital parameters sq  

and sq′  have normal distribution and are characterized 

by covariance matrices 
sqC  and 

sqC′  respectively. 

Thus the difference s s sq q q′∆ = −  has normal 

distribution with covariance matrix 
s s sq q qC C C∆ ′= + . 



 

The probability of presence of a background object in 
the area dQ  is characterized by the probability density 

of the background ( )back sp q′ . The mean of the 

number of satellites within the volume dQ  is  

( ) 1 2 ...back back s nn p q dq dq dq′= ⋅ ⋅ ⋅ . 
The mean of the number of detections of the 
considered object in the area  dQ  is 

( ) 1 2 ...object object s nn p q dq dq dq= ∆ ⋅ ⋅ ⋅  

where ( )object sp q∆  is the probability density for 
detection of the considered satellite. 
The probability of correlation of the satellite to the 
given event is calculated using the formula 

object object

object back object back

n p
p

n n p p
= =

+ +
 

The probability of detecting the considered satellite in 
the area k  of the four-dimensional space of orbital 
parameters has normal distribution. The probability 
density is determined by the formula 

( )
( )

( ) 1

4

1 1exp
22

s

s

T
object s s q s

q

p q q C q
Cπ

−∆

∆

⎡ ⎤∆ = − ∆ ∆⎢ ⎥⎣ ⎦

 

where sC∆  is determinant of matrix sC∆ , ( ) 1
sC

−∆  is 

its inverse, T
sq∆  – the vector transposed with respect 

to vector sq∆ . 

Calculation of the covariance matrix 
sqC  of the errors 

of the orbital parameters use the formula 

s s

T

s s
q X

s s

q q
C C

X X

⎛ ⎞∂ ∂
= ⎜ ⎟∂ ∂⎝ ⎠

 

the general technique of calculation of covariance 
matrix 

sXC  is presented in section 3. 
 
6. EXAMPLE 

For the example of efficiency of the procedure we 
selected two geostationary satellites with close orbital 
elements (Table 1) 
 
Table 1 
 Sat-1 Sat-2 
Sat. Number 1990-112D 1990-016D 
Epoch, UTC 20/12/1990 11:35 15/02/1990 07:52 
Period, min 1439.40 1439.80 
Inclination, ◦ 7.8 8.4 
Eccentricity 0.002688 0.004451 
 
Fig. 2 demonstrates the evolution of the semi-major 
axes of the satellites. One can see that visual analysis is 
rather difficult. 
We performed the updating of the orbits for each 
satellite for the beginning and the end of the interval of 
the measurements and then – the cross-correlation of 

the obtained orbital parameters. The scheme of 
identification is presented in Fig. 1.  
 

Figure 1. Scheme of identification.  
 
Two parallel lines depict the complete interval of the 
measurements for Sat-1 and Sat-2. The thicker (grey) 
sections of the lines present the intervals of the 
measurements in the beginning and the end of the 
intervals that were selected for orbit determination. The 
arrows point to the area with which the identification 
was performed. The end of the trajectory of Sat-1 (1) 
was identified with the beginning of the trajectory of 
Sat-2 (2). The end of the trajectory of Sat-1 was 
identified with the beginning of the trajectory of Sat-
2(3), the end of the trajectory of Sat-2 was identified 
with the beginning of the trajectory of Sat-1 (4).  
Results of determination of the probability of 
identification for different variants are presented in 
Table 2. The header of the table contains the satellite 
number and the year of processing. The cells of the 
table present the probabilities of correct identification. 
We can see that for this case we have almost certain 
identification. 
 
Table 2 
 1990-112D 1990-016D. 
1990-112D, 1991 0.99999 0.00000 
1990-016D, 1990 0.00000 0.99999 
 

 
Figure 2. Evolution of the semi-major axis of two 
satellites – ID 1990-112D (red) and ID 1990-016D 
(blue) 
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