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ABSTRACT

In many problems related to the description of the
debris environment it is mandatory to be able to
deal with orbital dynamics from a statistical point
of view. This allows one to compute debris spatial
densities, to evaluate collision probabilities and to
improve the processing of the data received from ob-
servational campaigns. In this paper we use a novel
technique based on the mathematical manipulation
of Dirac’s delta functions and we show how this is a
powerful new tool in dealing with orbital mechanics
from a statistical point of view. The methodology is
applied to derive some analytical expressions for the
density functions associated with the velocity distri-
bution of orbiting objects.
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1. INTRODUCTION

In this paper a novel methodology will be used to
derive some expressions describing the probability
density functions associated with the velocity distri-
bution of orbiting objects. The objects are described
by the statistical properties of their orbital parame-
ters through probability distribution functions. Hy-
potheses of uncorrelated variables will be used but
is not necessary. The work complements the already
published results [Izzo (2005)] on the effect of orbital
parameter uncertainties with new expressions on the
velocities and some theoretical clarifications.

2. THE DISTRIBUTION OF KEPLERIAN
VELOCITIES

The methodology used throughout this paper has
already been applied to different problems related
to orbital mechanics in general, and to the descrip-
tion of the space debris environment in particular,
by Izzo (2002); Izzo & Valente (2004); Izzo (2005).
The spatial density of a large family of orbiting ob-
jects has been derived analytically for Geostationary,
LEO and Molnyia satellites, extending known results

coming from past approaches [Izzo (2005)]. More re-
sults are derived here to show the use of Dirac’s delta
when dis-integrating random variables from a given
stochastical process, and in particular in dealing with
uncertainties related to the orbital parameters and
their effects on velocity distributions.

2.1. The hodograph plane

In this section we briefly recall standard results on
the velocity vector along a Keplerian orbit. In par-
ticular we start from the definitions of two important
motion invariants:
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that is the angular momentum vector and the
Laplace vector. By taking the vector product be-
tween these two quantities we easily get:
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where v is the true anomaly along the orbit. The
above expression describes the relation between the
velocity and the true anomaly along a Keplerian or-
bit that will be used in the following.

For an orbit immersed in three dimensional space it
is common to introduce the angle § = v+ w that will
later be used in our calculations.

2.2. Velocity magnitude distribution

Let us consider a satellite on a Keplerian orbit and
the probability density function associated with the
variable k = v2. Following the methodology outlined
above, first a deterministic process is considered:

p<k|0_23 t) - 5k[k - k(&a t)]

where @ is a vector containing the initial condi-
tions defining the Keplerian orbit (any set of or-

bital parameters might be considered) and k(&, t) =
w {%[1 + ecos[f(t) — w]] — %} Then the time ¢ is
considered as random and uniformly distributed
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over one orbital period so that the variable is dis-
integrated from the process:

p(k|@) = /5k &, t)dt

To evaluate the above integral we must change the
variable in the Dirac delta function and we do this by
applying the fundamental property of Dirac’s delta
functions stated in Eq.(?7?):

where we must sum all the solutions in ¢ to the equa-

tion 12:(62, t) = k. Simple astrodynamics tell us that
these solutions are given by

where v, and v, are the apogee and perigee velocities
related to the semi-major axis and eccentricity by the
relations:
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Two of the above solutions will be contained within
the integration interval of one period, giving non-
zero terms in equation 2. Corresponding to these
two solutions we also have:
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so that we may evaluate the derivatives:
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Plugging this expression into eq.(2) we get the final
expression:
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This is plotted in Figure 1 for an Earth orbit.
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Figure 1. Probability density function associated with
the variable k = v? on an Earth orbit having e = 0.4
and a = 20000km.

2.3. Radial velocity distribution

We show here the calculation that leads to deter-
mining the analytical expression for the probability
density function associated with the variable v,, i.e.
the radial velocity along an orbit, if the time is con-
sidered as random and uniformly distributed within
an orbital period. We start from a deterministic pro-
cess by writing:

p(Upl&, t) =0y [Up - ﬁp(&v t)]

where 0,(d,t) = 4° sin[(t) — w]. We then consider
time as random with a uniform probability distribu-
tion function, and we dis-integrate it from the pro-
cess by writing:

p(v,|d) = / 5o a,t))dt

We then make use of the theorem on Dirac’s delta
functions stated by Eq.(?7):
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where t; are the solutions in ¢ to the equation
0,(&,t) = v, given by the expression:
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where we introduced the maximum value of the
radial velocity v,,, = 4. We also have:

do .
d_tp - =0,,, cos[f(t;) — w]f
w1
=v,,, cos[f(t;) — w]b P
:_ﬂ' \/ U%]W _U2 2 02 2
T / 1 — 62 3 UpM PM P



Note that the values of the derivative are different
for the two different time instants t; contained in
one orbital period. After some more manipulations
we get:
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This is plotted in Figure 2 for an Earth orbit.
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Figure 2. Probability density function associated with
the radial velocity on an Farth orbit having e = 0.4
and a = 20000km.

2.4. Radial-Tangential velocity distribution

Having acquired confidence with the new methodol-
ogy and with its application to space flight mechan-
ics problems, we are now ready to build more compli-
cated probability distribution functions. In problems
related to collisions between objects belonging to dif-
ferent families of orbits, it is important to be able to
describe somehow the relative velocity between ob-
jects at the time of possible impact. Many other
problems require to be able to write the probability
density function associated with an object velocity.
We here derive a first result on this issue. In a de-
terministic process the probability density function
associated with the variables v, and vy may be writ-
ten as:

Pl 0918, 1) = [0, — (@, D]T0p — (@, 1)

where
By = vpy, sin[0(t) — w]

By = Vo, { £ + cos[B(t) — w]}

We now consider the time as a random variable uni-
formly distributed in one orbital period, and the ec-
centricity as a random variable with which we as-
sociate a probability distribution function f(e). By
dis-integrating these two variables we get:
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We could now use the multivariate form of the Dirac
delta property on variable change stated by eq.(?7).
This way, though, we would be forced to evaluate
the determinant of the Jacobian matrix. By apply-
ing eq.(??) two times in cascade we actually save
some calculations. We start therefore by eliminating
the Dirac delta in v,. Taking advantage of the cal-
culations already done in the previous paragraph we
get:
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where g, ,(vpy,,€) = 2 £ /o2 —v2. We now

apply eq.(??) again to eliminate the two Dirac deltas
in vy. By taking into account that:

5+

de

de, .,

Ypm
= 5
o (5)

e2

and that the two solutions in e to the two equations
vg = bg, , are:
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we get a final expression of the form:
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The expression above still contains v,,, as a cond-
itioning variable. This variable might also be dis-
integrated leading to a formula solvable by quadra-
ture.

2.5. One last example

As a last example we here derive a quite remark-
able formula for the probability distribution function
associated with the variables r,v,, vg.

p(r, vy, vg|d, t) =
8lr — 7(a, t)]0v, — D,(a, t)]0[ve — Dg(d, 1))

Following the usual methodology, we first consider
the time as random and uniformly distributed in one



period, and then the eccentricity as random and de-
scribed by a probability density function f. We get
the expression:
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where 7 (v, vp,,) = iﬁ% We now take one last

step by considering v,,, as random and with a prob-
ability distribution function g and we eliminate the
last Dirac delta by dis-integrating the random vari-
able from the orbital process. By taking into account
that:
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and that the only solution in v,,, of the equation
r=7; is:
*
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we get, applying again the Dirac delta property
stated in eq.(??) and after some basic algebraic ma-
nipulations, a final expression in the form:
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This probability density function is no longer con-
ditioned by the knowledge of any initial condition.
We have managed to describe the velocity distribu-
tion at a certain distance of a satellite, or a group
of objects, whose uncertain orbits are described via
the density functions associated with two orbital pa-
rameters, the eccentricity e and the maximum radial
velocity pas. The above equation is valid under the
hypothesis that these two random variables are un-
correlated, but a similar expression may also be ob-
tained if a joint probability distribution function is
available.

3. CONCLUSIONS

The technique based on the dis-integration of the
orbital parameters from an initial density function
written in terms of Dirac’s delta proves to be very

useful for deriving the velocity distributions of a fam-
ily of objects. Some new formulas have been derived
here that the author hopes will prove to be useful
tools improving our understanding of the debris en-
vironment and of all those situations in which orbit-
ing objects have to be described by a probabilistic
distribution rather than by a certain position and
velocity.

REFERENCES

Izzo D., 2002, Statistical Modelling of Sets of Orbits,
Ph.D. thesis, Department of Mathematical Meth-
dods and Models, University La Sapienza, Rome.
Available on-line.

Izzo D., 2005, Journal of Guidance Control and Dy-
namic, 2, 541
Izzo D., Valente C., 2004, Acta Astronautica, 54, 541



