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ABSTRACT 

 
The estimation of probability of mutual collisions 
between orbital objects can be specified as a problem 
of calculation of collision integrals like it is in 
statistical physics. The approach based on a definition 
of the concentration (space density) of a single particle 
in a Keplerian frame as a generalized function is 
proposed to solve problems of this kind. The advantage 
of a such conception is that it makes the conversion 
from sky mechanics formulas to statistical problems 
more explicit. 
 
1. INTRODUCTION 
 
The problem of operational safety with respect to 
orbital collisions differs from the typical problems of 
the classical celestial mechanics through its statistical 
nature. In this case the mathematical problem brings to 
solution of integral or integro-differential equations for 
distribution function, and the formulas for orbital 
motion of an individual objects is of dependant 
character similar that the evaluation of slowing-down 
area of neutron is in reactor  problems. The conversion 
from discrete conception on an orbital motion to 
statistical one can be realized using a generalized 
function approach.  The idea of generalized function, 
on the one side, gives a possibility to express in 
mathematically proper form such an idealized 
representation as the space density of a material point. 
And on the other side, it is a reflection of the fact, that 
there is no possibility to measure a physical value, but 
some averaged value in a finite vicinity makes sense. 
So the generalized functions are a suitable method to 
describe distributions of different physical values, and 
they are also called as distributions.  The generalized 
functions were inserted by P.A.M in his investigations 
on quantum mechanics at the end of twenties in the last 
century [Dirac P.A.M., 1932].   
Let take up a one-dimensional function  
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It is not a usual function because in mathematics the 
symbol ∞ is not regarded as some defined value or a 
space point but as a consecution of points or the 
symbol of a limit. It can be said that the Dirac function 
is a generalization of the idea of matter density usually 
used in  the continued approach for discontinuous 
objects, and it allows to change from a discrete 
description of the environment to a  continued one and 
backwards. 
Delta-function has an interesting behaviour which 
stipulates for using in integrals of convolution type – 
integrals by Stieltjes T. J. The Dirac operator 
transferring a function into other one has a view:     
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The idea of delta-function can be used in three-
dimensional space. Such definition for multi-
dimensional function was given in the well known 
monograph by L. Landau on theoretical physics. The 
three-dimensional Cartesian space is considered, and 
the three-dimensional delta-function  is a simple 
product of usual one-dimensional delta-functions:  
 
δ(x,y,z)=δ(x)δ (y)δ(z) 
 
The idea of a delta-function can be also used in a non-
Euclidean space – a Keplerian space. Fidelity of the 
widening don't raise doubts because it is based on well 
known properties of the one-dimensional delta-
function.  
The properties and some effluent relations are 
following. 
A separate particle that moves uniformly with velocity 
v, is described by a formula: 
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It is an averaged density of the distribution in 1-D 
space: the particle is overlapped over the interval  Tv, 
which it moves through.  
Here 
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The physical sense is: somewhere in space there is a 
particle.  
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When a Keplerian motion is described reciprocal 
unambiguity of reflection of the usual Cartesian space 
on the Keplerian one must be considered.  To 
understand the solution principles the problem of a 
discrete particle oscillating with frequency ω is 
considered: 
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Here T – a period of oscillations, T =
2π
ω

.  If the 

time interval is equal of a some integer number of the 
oscillation periods kT, the integral repeats k times,  k 
the denominator and the numerator are cancelled, and 
the same result is obtained. A notion: for the change of 
variables the polysemy character of the function 

t =
arcsinξ

ω
 must be considered, the polysemy leads 

to appropriate fragmentation of the integration region 
Also it must be considered that the particle passes 
every point twice for an oscillation. In the points of 
x=±1  the density turns to infinity.  
In this case the space integral is equal unity: 
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Notice that the same result can be used if the 
expression is integrated over the region where the sine  
is a mutually single-valued: a half-period  [-T/2, +T/2]. 
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There is no ruses conditioned to the polysemy 
character of the functions used for the variable  
A general case of 2D and 3D spaces: when a discrete 
particle moves in a 3D space the averaged over a time 
interval T space is: 
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Here the functions X(t), Y(t), Z(t) are a parametric 
representation of the particle trajectory. This formula 
can be used also in derivation of equations for particles 
in a non-Euclidean space.  
A distribution in geocentric coordinate frame when 
there is a motionless discrete particle: in this case the 
space distribution is  
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This delta-function is chosen having in view 
conditions of normalization and symmetry: 
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The first equality shows that there is a particle in the 
space.  
The second equality shows that the particle is 
equidistributed over the volume between radii  R1 and 
R2. 

 
2. ORBITAL MOTION 

 
A discrete particle moving in an orbit.  
Its coordinates vary in time as Φ = Φ(t), Ω = Ω(t) и R = 
R (t). In this case the distribution depends on the time. 
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Let the particle is moving in elliptical orbit with 
inclination i, longitude of ascending node Ω0 and 
argument of pericentre θ0. Without decreasing of 
commonality let 0 ≤ i ≤ π/2.  The distribution at any 
instant is ρ1(ϕ,ω,r,t), that is obtained from (1) after 
substitution of the equations for Φ, Ω, and R time 
dependent. 
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p is a focal parameter.  
Using properties of delta-function δ(Ω-ω), for 
example,  the following expression for the distribution 
is obtained (the particle is overlapped over its orbit): 
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 (3) 
The values of Φ and R  are determined with the 
following expressions: 
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A precessing orbit case.  
Let in the equation (3) the longitude of ascending node 
Ω0  is precessing with a period T2 Then in the equations 
(3)-(7) the time dependence Ω0(t) occurs, and this 
correlation determines the time dependant function 
ρ2(ϕ,ω,R,t).  Averaging over the period T2, the density 
is obtained in the case when the particle is overlapped 
over the surface of a rotation ellipsoid: 
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Using properties of delta-function δ(sinΦ - sinϕ), and 
considering that for the whole period of the precession 
every value sinΦ repeats twice, and considering the 
relations between the precession period and the speed 
of motion of the longitude of ascending node 
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Here  -i ≤ ϕ ≤ i, 
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Now consider that in the equation (9) the argument of  

a perigee θ0  precesses with period of 
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d
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phenomenon leads to overlapping of the particle over 
some body like a ring:  r1 ≤ r ≤ r2 , -i ≤ ϕ ≤ i. Here r1 
and r2  - a perigee and an apogee of the orbit. Averaged 
density is: 
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Considering that the particle passes through every 
value of radius twice an orbit, the following expression 
is obtained:   
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where  -i ≤ ϕ ≤ i, r1 ≤  r  ≤  r2... 
 
The equation (9) can be written in a symmetric shape 
by D. Kessler as following:  : 
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where  а = (r1 + r2)/2 – a major half-axis of an orbit. 
Notice that all above distributions (1),(3),(8), and (9) 
satisfy the normalization condition: 
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 All this equations can be used for orbits with i > π/2, 
if i substitute for  π-i. 

 
CONCLUSION 

 
Thus the formal approach to development of averaged 
space density of orbital objects are proposed. This 
approach is not so simple but can be used due its 
generality. This technique allows to get explicit 
equations for different statistical problems of celestial 
mechanics. In particular, there is obtained the 
expression for the collisional integral before derived in 
[Opik E.J., 1951], [Wetherwlll G.W., 1967], [Kessler D 
J., 1981], and [Nazarenko A.I.., 1993] .  
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