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ABSTRACT 
 
The orbital debris environment is described in the form 
of mathematical models.  However, all models and the 
measurements they are based upon are subject to uncer-
tainty.  Measuring instruments never really measure 
exactly what it is we want to know – they always meas-
ure some auxiliary quantity.  Knowledge of the limita-
tions of the instruments (measurement uncertainty) is 
only half the problem.  The actual transformation of the 
data into models adds more uncertainty to the final 
model result. 
 
In this paper, I provide examples of the basic types of 
uncertainties that we encounter in making orbital debris 
measurements. I outline the distinctions between Bayes-
ian and frequentist interpretations of statistics and how 
this influences the types of conclusions one should or 
should not draw from uncertainty assessments.  I also 
outline how uncertainties tie into such calculations as 
probabilistic risk assessments (PRAs), and the benefits 
and pitfalls of such analyses.   
 
1.  INTRODUCTION 
 
The study of orbital debris consists of two primary ac-
tivities: measurements and modeling.  Both activities 
have limitations due to uncertainties.  These activities 
are intended to give users of the space environment an 
accurate assessment of the risks to their assets or how 
much risk their missions pose to other space assets or to 
people on the ground, and how to plan their missions so 
as to reduce that risk.  They also should help nations and 
other launching entities know what kinds of actions they 
can take today to mitigate future growth of orbital de-
bris hazards. 
 
Measurement uncertainties arise for a variety of reasons.  
All instruments have an intrinsic measurement uncer-
tainty.  In addition, an observer never really measures 
what he wants to measure.  For example, a radar opera-
tor may want to measure particle size, but in fact meas-
ures voltages in the receiver that are interpreted as radar 
cross section.  Measurements near the noise limit of an 
instrument (such as occurs when measuring small de-
bris) are notorious for introducing uncertainties in 
measurements.  In practice, an observer cannot observe 
an infinite region for an infinite amount of time, so there 
will be “sampling error” due to this finite coverage. 

Modeling can also introduce uncertainties.  Often these 
are model choices to make the model more tractable on 
a computer, such as binning or numerical integration.  
Sometimes simplifying assumptions are made, such as 
treating objects as if they were in perfect Kepler orbits.  
Other uncertainties are conceptual, such as projecting 
unknown launch rates or solar activity into the future. 
 
In addition to these uncertainties, adapting the meas-
urement data for modeling purposes can introduce un-
certainty.  This is because the models usually need orbit 
and other debris characterization information that is 
missing, incomplete, or inferred from measurements.   
 
Over the years, a variety of mathematical tools have 
been developed to help quantify and work with uncer-
tainties.  Many of these are applicable to debris studies. 
 
It is the purpose of this paper to highlight the impor-
tance of doing proper uncertainty analysis, especially 
for the products provided to the spacefaring community.  
While such analysis is not always easy, accurately un-
derstanding the uncertainties in our models and meas-
urements is needed in order to make meaningful deci-
sions regarding the space environment. 
 
2.  “TRADITIONAL” METHODS 
 
A significant fraction of statistical work is done under 
the assumption of normal (Gaussian) distributions.  
Many practical problems do lend themselves well to 
normal distributions, and over the years, a number of 
analytic tools have been developed to work with such 
distributions.  Even the language of statistics (e.g., stan-
dard deviation) is often based on analyses using normal 
distributions.   
 
However, few systems are truly normal, and so the 
application of Gaussian distributions can introduce 
unwanted errors.  The analysis of many types of prob-
lems using normal distributions may actually result in 
misleading results.  These include Poisson problems 
with sparse data and non-normal noise analysis. 
 
An orbital debris application where normal distributions 
are used is in collisions avoidance.  This is a classic case 
where the perturbations are small and well-behaved.  
The uncertainty in the future position of an object in 
orbit can be defined as a 3-dimensional Gaussian func-
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tion described by a 3x3 covariance matrix.  The prob-
ability of collision for the conjunction of two objects 
turns out to be a straightforward mathematical problem. 
 
However, this example reveals one of the recurring 
problems of statistical analysis.  Often the choice of 
statistical models introduces unstated assumptions that 
may bias the answer.  In the case of collision avoidance, 
the tacit assumption has been made that the positional 
uncertainties of the two conjoining objects are inde-
pendent of one another.  This would be true if the terms 
in the covariance matrix were only due to measurement 
uncertainty.  However, part of the downrange uncer-
tainty comes from an uncertainty in the projected drag, 
which is correlated to unknown future variations in the 
solar activity.  If the solar activity and atmospheric 
density goes up or down, then there may be a correla-
tion between downrange positions of both objects.  A 
preliminary study (Matney, 2003) showed that there 
was, indeed, some correlation in the downrange position 
uncertainty that could be attributed to atmospheric drag.  
This correlation means that the problem is not one of 
two 3x3 covariance matrices, but a single 6x6 covari-
ance matrix that identifies all correlations (and anti-
correlations if they exist). 
 
Even in the case of collision avoidance, the normal 
approximations break down after a time, and the posi-
tional uncertainty distributions no longer lend them-
selves to convenient mathematics. 
 
3.  THE QUESTION 
 
The first thing one must ask oneself when doing a statis-
tical analysis is “what is it that I seek”?  This sounds 
like a trivial question, but many statistical tools may 
answer a different question than the one you wish to 
answer. 
 
In the measurement context, we are typically faced with 
a set of data from which we would like to extract some 
set of parameters and their associated uncertainties.  For 
instance, a radar may observe some rate of objects of a 
particular type for some length of time, and we would 
like to know how many such objects we would see if we 
were to observe an “infinite” amount of time.  
 
4.  FREQUENTIST STATISTICS 
 
The “standard” tool is supplied by a branch of the statis-
tical arts known as “frequentist statistics”.  Frequentist 
statistics tells you that of a given a set of possible pa-
rameters, which ones have the highest confidence of 
producing the observed data.  The answer is usually 
given as “confidence intervals” – lower, upper, or cen-
tral, depending on the question being asked.  A very 

good explanation of such confidence intervals can be 
found in Feldman and Cousins, 1998. 
 
Frequentist confidence intervals have a very nice prop-
erty known as “coverage”.  Consider a case where you 
know the actual set of parameters that determine the 
probability of various measurements (e.g., you know 
what average rate for a Poisson process).  Now you 
randomly draw data from that distribution.  For each 
data set drawn, pretend you don’t know the correct 
answer and compute the appropriate confidence limits 
(e.g., 90% upper confidence limits).  If you were to 
repeat that procedure many times – randomly drawing 
data and computing the confidence intervals – you 
would find that the confidence intervals would 
“bracket” or “cover” the correct answer a fraction of the 
time equivalent to the percentage confidence limit cho-
sen.  Consequently, if you computed 90% confidence 
limits for all your data sets, you would know that ap-
proximately 9 out of every 10 estimates would “cover” 
the correct answer. 
 
Computing confidence limits for multidimensional 
problems can lead to some problems.  As can be seen in 
Fig. 1, if you wish the confidence limits on one parame-
ter out of many, you end up “over-covering” the correct 
answer.  One solution is a procedure that computes the 
“profile likelihood” (Rolke and López, 2001).  This is 
the maximum likelihood for each value of the parameter 
of interest held fixed and allowing the other parameters 
to vary.  The limits of this curve within the confidence 
bounds approximate the one-dimensional confidence 
bounds of the parameter of interest.   

 

 
 

Figure 1. Consider a two-dimensional confidence re-
gion in parameters x1 and x2 where we wish to construct 
the confidence region for parameter x1 only.  Simply 
projecting the two-dimensional confidence region onto 
the x1 axis results in over-coverage – the one-
dimensional confidence region covers more possible 
solutions than desired.  Instead, compute the curve that 
defines maximum likelihood for fixed x1 lying within in 
the two-dimensional confidence region.  This “profile 
likelihood” gives approximate coverage for the one-
dimensional confidence limits of x1.   
 



There are some computer-intensive tools that are very 
useful for computing systems that do not follow the 
textbook rules.  They are resampling methods, where 
the actual data is resampled multiple times to compute 
the desired information (Efron, 1982).  These proce-
dures work because the data you have sampled repre-
sents a single subset of the “true” data set, which you 
cannot access.  However, a sub-sample from your data 
imitates multiple actual samples from the “true” data 
set. 
 
One method is known as the jackknife.  Suppose you 
have a set of N data points (x1,x2,…,xN).  In the jack-
knife, you compute the parameter of interest (e.g., the 
median) N times, excluding one data point in turn each 
step.  You end up with N realizations of the parameter 
which are used to estimate the uncertainty on the pa-
rameter θ: 
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Another method is known as the bootstrap.  In this 
method, you randomly resample N data points from the 
original set of N points with replacement.  This means 
that for a resample you may choose any one data point 
one, two, or three times, or not at all.  For each resam-
ple, the parameters of interest are computed.  The distri-
bution of these parameters over many bootstrap samples 
corresponds to the approximate uncertainties in the 
parameters, and can be used to construct confidence 
limits.   
 
There is another type of bootstrap method known as the 
parametric bootstrap.  In this method, you assume that 
you have information on the parametric form of the 
probabilities.  The parameters are estimated from the 
original data (e.g., the mean and the standard deviation 
of a normal distribution), and the sampling is done from 
that fitted distribution. 
 
Bootstrap methods in particular tend to be very com-
puter intensive.  In many cases, the number of bootstrap 
resamples may need to exceed 1000 in order to achieve 
the desired results.  There are some parametric bootstrap 
techniques using a pivot – a point with one or more 
parameters held fixed – that give excellent results in 
multidimensional problems (Scholz, 1994).  However, 
they require bootstrap resampling from the bootstrap 
resample itself, and so are very computer-intensive.  

Despite all the advances with frequentist techniques in 
recent years, the results are not always what we would 
like.  While the coverage property gives us confidence 
we have “covered” the answer, frequentist techniques 
do not tell us the relative probability of the various 
possible solutions within the confidence limits.  This is 
due, in part, to the fact that there is no unique set of 
confidence limits for a particular problem.  For exam-
ple, if one wishes to construct 90% confidence limits, 
one can construct upper limits, lower limits, central 
limits, or anything in between.  In order to assess the 
relative probability of different solutions, we need to 
turn to another method. 
 
5.  BAYESIAN STATISTICS 
 
The question we are usually asking is “given a set of 
data x, what is the probability that the actual parameter 
of interest is y?”  This can be written 
 

.)|( xyp                                   (2) 
 
What we usually have, however, is a model where if we 
know y, then we can compute the probability of sam-
pling a data set x, given by 
 

.)|( yxp                                   (3) 
 
The relationship between these two was originally pro-
posed by Reverend Thomas Bayes in the 18th century: 
 

)()|()()|( ypyxpxpxyp =               (4) 
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This requires knowledge of the function p(y), known as 
the “prior”.  The prior describes the relative probability 
of the various parameters before data has been added to 
the mix.  For instance, an observer might have some 
vague idea of the range of possible values of a parame-
ter before it is actually measured.   
 
There is substantial literature on computing priors, es-
pecially for what are termed “non-informative priors” 
(Kass and Wasserman, 1994).  These are priors where 
no subjective information is brought in before the meas-
urements are made, other than the form of p(x|y).  In 
general, non-informative priors are not simple con-
structs, but are based on information and entropy argu-
ments.  Use of naïve priors such as arbitrarily setting 
p(y) to a constant may lead to erroneous results.   
 
Bayesian analysis has the potential for providing the 
kinds of answers we seek.  However, there are some 
drawbacks.  Bayesian solutions do not always have 
simple frequentist properties, so it may be difficult to 



determine if a particular non-informative prior is giving 
the correct results.  Computation of multidimensional 
non-informative priors is often difficult and computer-
intensive (Lafferty and Wasserman, 2001).  Also, if the 
observer brings subjective knowledge to a situation, 
how is that knowledge to be rigorously quantified in the 
prior? 
 
Because Bayesian analysis can provide the right kinds 
of answers, we return to the original question, “What is 
it we seek?”  Consider the notional chart in Fig. 2, 
showing the cumulative distribution of some orbital 
debris population as a function of size.  Historically, the 
question has always been “What is the cumulative flux 
or population and the associated uncertainties at a par-
ticular size x?”  If the “error bars” are constructed cor-
rectly, then we simply look up the answer on the chart.  
However, this assumes that we are asking for the value 
at x1 independently of the value at x2.  What if we ask 
for the flux and uncertainties at x1, x2, and many other 
points simultaneously?  The values of the flux and their 
uncertainties at these points are often correlated/anti-
correlated with one another, so that the confidence lim-
its on a variety of fluxes will generally look different 
than those for a single parameter.  Consequently, one 
must be very careful how the problem is framed, or you 
may not get the answer you desire. 
 

 
Figure 2.  Consider the cumulative distribution of some 
parameter (like flux) as a function of particle size x.  
One can ask what the uncertainty of the flux estimate at 
a point x1 independent of x2 and compute the answer.  
However, if one is looking for the uncertainties of the 
flux at both x1 and x2, the resulting confidence limits or 
“error bars” will not be the same as the point-by-point 
answer.  This is due to correlations or anti-correlations 
between the parameters.  Such situations may arise in 
estimating uncertainties in Bumper-type models that 
compute fluxes at different sizes simultaneously. 
 
This situation arises in detailed risk analyses of space-
craft hazard.  NASA’s Bumper code models a space-
craft as a series of surfaces.  Each surface is susceptible 

to perforation by particles of a given size at a given 
angle and impact speed.  The orbital debris environment 
is provided by the NASA ORDEM2000 Engineering 
model.  Because Bumper is integrating the flux on a 
surface from different debris sizes, directions, and 
speeds simultaneously, any attempts to assign uncer-
tainty to the final risk numbers will need to accurately 
assess the correlations and anti-correlations of the debris 
fluxes across the size, direction, and speed spectrum. 
 
6.  PROBABILISTIC RISK ASSESSMENTS  
 
Probabilistic risk assessments (PRAs) represent an at-
tempt to incorporate statistics and their associated un-
certainties to determine failure modes in engineering 
systems.  For spacecraft, one of the potential failure 
modes is orbital debris/micrometeoroid collisions, so 
there has been a desire to tailor engineering and risk 
assessment models to incorporate the necessary struc-
tures to be used in PRAs. 
 
PRAs model the different failure modes by using the 
associated probability of a given event occurring.  These 
probabilities are usually based on a combination of 
experiments and engineering judgment, and themselves 
have an intrinsic uncertainty.  For instance, a particular 
component may have a failure mode that behaves in a 
Poisson manner with some average failure time T.  This 
failure time in turn has some uncertainty associated with 
it σT – itself described by some model distribution 
(normal, log-normal, etc)   
 
PRAs typically model failures by running Monte Carlo 
simulations and computing random failure modes.  
These computations can be quite complex, with certain 
failure modes triggering others.  The only limit is the 
complexity of the model selected. 
 
The uncertainties in the failure modes are handled by 
randomly choosing the parameters according to their 
distribution given by the user (in the example above, 
randomly choosing T from the user-supplied model 
each Monte Carlo run).  The final results, in principle, 
offer an improved estimate of the total probability of the 
risk to the system. 
 
However, there are some drawbacks.  PRA analyses are 
only as good as the data supplied to them.  In general, 
the parameters are computed based on some data, and 
the uncertainties on these parameters are typically com-
puted using Frequentist methods.  However, the manner 
in which the parameters are sampled in a PRA – selec-
tion based on a probability model – is manifestly Bayes-
ian.  Therefore in order to do an accurate PRA it may be 
important that a proper Bayesian analysis is performed 
on the uncertainties of the failure mode in question. 
 



7.  CONCEPTUAL UNCERTAINTIES 
 
A different type of uncertainty occurs when we use 
models to extrapolate into areas where we have insuffi-
cient information.  One example is projecting future 
launch rates and types.  How do we bound that prob-
lem? 
 
Typically, orbital debris models use Monte Carlo simu-
lations to sample the range of future activities based on 
a set of assumptions.  It would be prudent to construct 
our models to accurately reflect the range of possible 
future outcomes.  For example, it is widely recognized 
that future solar activity has a strong effect on the future 
evolution of debris.  However, only the gross behavior 
of the 11-year cycle of solar activity can be predicted.  It 
is not known if any particular future cycle will be high 
or low. 
 
Some researchers have computed approximate high and 
low confidence limits on the next solar cycle based on 
past cycles.  But the how do we use these?  One method 
is to simply randomly sample from the distribution over 
the complete cycle (Fig. 3).  This does not reflect his-

tory, however, where higher solar cycles tend to stay 
high through the complete cycle and low solar cycles 
stay low throughout the complete cycle.  Another option 
is to just take the average solar cycle and project it out 
into the future.  However, this does not reflect solar 
activity in the past, and probably will not reflect the 
future behavior. 
 
The solution I propose takes advantage of the Monte 
Carlo nature of the calculations and draws on the inspi-
ration from PRA analyses.  For each Monte Carlo run, 
have a different future solar activity with randomly 
alternating high and low solar activity profiles.  In this 
method, each entire solar cycle is chosen at random, 
presumably from a catalog of possible solar cycles 
based on history.  That way, the solar cycles themselves 
will behave in a reasonable manner, and the future solar 
profile for each Monte Carlo run will be different.  The 
Monte Carlo runs of the model will now better “map 
out” the future possibilities.  A similar method can be 
used for launch traffic and other future assumptions.  
The idea behind this approach is to properly formulate 
the question, “What is the reasonable range of possible 
futures we could expect to see?” 

 

 
Figure 3.  It is possible to estimate the upper and lower confidence limits on a solar cycle by examining historical be-
havior of the Sun (figure on left).  But how are these uncertainties implemented in models that seek to predict future 
behavior of the orbital debris environment?  One way (top) is to have the F10.7 cm flux of the Sun vary randomly each 
point in time.  However, this does not reflect the way the Solar activity has behaved in the past, where the entire cycle 
tends to stay low or high – indicating correlations of solar activity within an entire cycle.  Historically, models have 
used the average solar activity (center) to model the future solar activity.  However, the solar activity has never be-
haved like that in past, nor is it likely to do so in the future.  Another option (bottom) is for each Monte Carlo realiza-
tion of the future projection model to have a different set of high and low solar activities that reflect the range of possi-
ble futures.  A method like this is more likely to sample the range of possible futures. 



8.  CONCLUSIONS 
 
In this paper, I have endeavored to highlight the impor-
tance of doing proper statistical analyses on orbital 
debris models and measurements.  I have also outlined 
some old and new tools that are available.  The follow-
ing are a set of heuristic rules that I have found useful 
when doing statistical analyses. 
 
Be sure that you are answering the question you wish to 
answer.  Too often, statistical tools are applied that are 
easy to use, but answer the wrong questions.  Simple 
statistical tools make a set of tacit assumptions about 
your problem that may not be appropriate, so be sure 
you are using the right tool for the job. 
 
Be sure you are formulating and implementing your 
question correctly.  Be careful about your assumptions 
on the inter-relation of the parameters and data.  Are the 
parameters correlated? 
 
Frequentist statistics may be easy to calculate, but they 
may not be answering the questions you really want 
answered.  Bayesian statistics may give you the answers 
you really want, but the road to get to that answer may 
be difficult. 
 
Be careful how you implement conceptual uncertainties 
in models.  Be sure they model the world of solutions 
you wish to explore. 
 
We in the orbital debris science community should 
make it a priority to better understand and report the 
uncertainties in our products.  The road is long and 
difficult, but the accurate presentation of our models 
allows users to make meaningful decisions.  The task is 
worth the effort. 
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