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ABSTRACT

A series of high sensitivity debris observation cam-
paigns conducted by FGAN’s TIRA L-band radar
as the primary transmitter/receiver and the new
multi-beam system of the Effelsberg radio telescope
as secondary receiver in bi-static beam-park mode
is planned in order to improve the characterization
of the population of space debris in LEO. The first
of these campaigns is going to take place in 2006.
The current development of a 7-beam receiver at
L-band for the Effelsberg radio telescope will al-
low a more accurately determination of the trajec-
tory parameters and the RCS of even sub-centimeter
sized objects. For this purpose new algorithms for
multi-beam data analysis have to be developed. This
paper presents the theoretical basics and the perfor-
mance of these algorithms.
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1. INTRODUCTION

To validate and update space debris environmen-
tal models like ESA’s MASTER, especially in the
1-10 cm size class, measurements have to be con-
ducted frequently due to the highly dynamic popula-
tion. Because of their all-weather and day-and-night
performance, powerful ground based radars are the
most suited sensors to carry out these measurement
campaigns in LEO.

Since 1994 FGAN’s TIRA L-band radar has success-
fully taken part in ten internationally coordinated
24-hours beam-park experiments, six of them cover-
ing the LEO full altitude range (300-2000 km). Care-
ful data analysis revealed that TIRA is capable of de-
tecting down to 2 cm sized objects at 1000 km range.
Higher detection sensitivity can currently only be
achieved with the help of an additional passive re-
ceiver with a very large aperture and low noise re-
ceivers. The suitability as secondary receiver of the
Effelsberg radio telescope, operated by Max Planck
Institute for Radio Astronomy (MPIfR), was demon-
strated in COBEAM-1/96 thanks to the 100m aper-
ture, the cryogenic cooled receivers and close location
to TIRA of the Effelsberg facility (Leushacke, 1997).

COBEAM-1/96 was also a TIRA-Effelsberg bi-static
beam-park experiment, but with a single beam re-
ceiver in Effelsberg. Debris objects of 9mm size at
1000 km range were detected for the first time in Eu-
rope during COBEAM-1/96.

The low detection level of the Effelsberg radio tele-
scope allowed a first statistical estimation of the
population density in the 1-2 cm size class. Never-
theless the RCS and the trajectory parameters of
those very small objects could not be estimated from
the COBEAM-1/96 results due to the ambiguities
caused by the antenna pattern’s side lobes. The ne-
cessity for an exact knowledge of the object RCS
forced to equip the Effelsberg radio telescope with
a multi-beam receiver and to develop new analy-
sis algorithms, in order to be able to resolve the
ambiguities by matching the information from the
different beams. For this purpose a 7-horn multi-
feed at L-band for the Effelsberg radio telescope is
being developed by MPIfR under ESA/ESOC con-
tract. This multi-beam system will supply 14 inde-
pendent channels, since each of the seven horns will
provide two channels with orthogonal polarization.
The central horn will have circular polarization and
the six outer horns linear polarization. The foot-
print at sky of the Effelsberg multi-beam system is
sketched in Fig. 1. The beam axes are represented
as solid points and their 3 dB beam widths as solid
circles (Q3dB ≈ 0.16o). An object’s passage example
with passage offset Θ and passage direction Φ is also
illustrated. Straight trajectories can be assumed due
to the short passage duration.

As shown in Fig. 1 the multiple beams do not over-
lap. That means that monopulse techniques can be
used neither for the extraction of the passage pa-
rameters, nor for determination of the object RCS
like with TIRA, because the comparison between
the different received signals can not be performed
simultaneously (Sherman, 1984). New algorithms,
which analyze the pulses sequentially during the
whole passage, have to be developed to extract the
object RCS. The algorithms will pay special at-
tention to 1-2 cm targets, which are detectable at
1000 km by the Effelsberg radio telescope but not
with TIRA. At L-band wavelengths the vast major-
ity of these small debris objects is characterized by a
RCS practically independent of the observation an-
gle, a RCS-size relationship through Rayleigh for-
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Figure 1. Footprint at the sky of the Effelsberg multi-
beam system and an object’s passage example .

mula (Eq. 1) and a poor SNR of the corresponding
received signals.

RCS =
9 · π · d6

4 · λ4
(1)

The rest of this paper is organized as follows. Af-
ter a brief description of the problem statement in
section 2, section 3 explains the theoretical basics of
the developed algorithms. The performance of the
proposed algorithms is studied through Cramer-Rao
Lower Bound, Monte-Carlo simulations and a couple
of illustrative examples in section 4. Finally, some
concluding remarks are reported in section 5.

2. PROBLEM STATEMENT

Taking the multi-beam system shown in Fig. 1 into
account, the primary task of this work is the deter-
mination of the space debris RCS and the trajectory
parameters of its passage through the overlapping
volume between the beams of TIRA and the Effels-
berg radio telescope by processing obtained multi-
beam data. The main trajectory parameters are the
passage offset (Θ), the passage direction (Φ), the
passage inclination with respect to the projection
plane (α), the time of closest approach to the line
of sight (tCPA), the velocity (v) and the range at
CPA (RCPA). These six parameters together will be
sufficient to be able to characterize the passage un-
ambiguously, if the two parallel paths with the same
offset are distinguished by means of a different sign.
To simplify the notation the six trajectory parame-
ters are gathered into a vector parameter (ω), that
means ω = [Θ,Φ, α, tCPA, v, RCPA].

The received power signals by each horn can be cal-
culated through the bi-static radar equation (Eq. 2),

where index i symbolizes any signal or gain pattern
of the Effelsberg 7-beam system and takes values be-
tween 0 and 6. P i

r symolizes the received power, Pt

the transmitted power, G the antenna gain pattern
and R the ranges. L is the total losses and gath-
ers the losses in the transmitter Lt, the atmospheric
losses Lat and the losses in the receiver Lr (Eq. 3).

P i
r =

Pt · λ2 ·RCS ·GTIRA(ω) ·Gi
EFFE(ω)

(4π)3 ·R2
EFFE ·R2

TIRA · L
(2)

L = Lt · L2
at · Lr (3)

Actually, the received power will be also affected by
the system noise, since both I and Q components will
be corrupted by a zero-mean gaussian noise. The
system noise power, that is, the variance of the noise
σ2, will be measured during the observation cam-
paign. In the case of COBEAM-1/96, the NERCS
(Noise Equivalent Radar Cross Section) added up to
-68 dBsm at 1000 km. The actual received power Y i

will follow the statistic shown in Eq. 4.

Y i =
(√

P i
r + Ni

I

(
0,

σ2

2

))2

+ Ni 2
Q

(
0,

σ2

2

)
(4)

In short, the problem lies in the estimation of the
object RCS and its trajectory parameters ω accord-
ing to available multi-beam data Y i grouped into the
vector Y.

3. ALGORITHMS FOR MULTI-BEAM
DATA ANALYSIS

3.1. Non-Statistical approaches

This class of algorithms summarizes all methods with
an analytical character. For example, the passage di-
rection could be calculated from corresponding time
differences between the intensity maxima in a ref-
erence beam and the other six horns, if all beam
patterns were assumed circular symmetric (actually,
they are not). These algorithms require a very low
computational effort, but offer an insufficient accu-
racy for noisy signals and actual beam patterns.

3.2. LSE: Least-Square Estimation

An important feature of the LSE methods is that
no probabilistic assumptions have to be made about
available data. Therefore in general these methods
have no optimality properties (Kay, 1993). Data
is firstly modelled according to Eq. 2 without taking
the noisy components (Eq. 4) into account and subse-
quently, the unknown parameters (RCS and ω) are
estimated by the minimization of the square error
between modelled and actual data. The minimiza-
tion process is implemented by an initial coarse grid
search followed by an iterative search by the Nelder-
Mead method.



3.2.1. LSE1: a first possibility of LSE

Under the assumption of a constant RCS during
the whole passage, the quotient between any two
received signals is equivalent to the quotient be-
tween the corresponding Effelsberg beam gain pat-
terns. This relationship is shown in Eq. 5, where i
and j symbolize any two different beams of the multi-
beam system. The relationship is also true for all
received pulses. Two matrices, the first one of quo-
tients between received signals and the second one
of quotients between Effelsberg beam gain patterns,
are built by gathering all possible combinations be-
tween beams and all received pulses. The trajec-
tory parameters w are estimated by the minimiza-
tion of the square difference between both matrices.
Weighting matrices have to be also applied in order
to penalize noisier signal combinations. The RCS
is estimated through a second least square method
via Eq. 2, where the previously calculated trajectory
parameters ω were already substituted. The sequen-
tial computation of the parameters is very interesting
from the computational effort point of view.

Y i

Y j
=

Gi
EFFE(ω)

Gj
EFFE(ω)

(5)

3.2.2. LSE2: a second possibility of LSE

The computation of the quotients in LSE1 does not
turn out to be statistically advisable, since the very
noisy echoes degrade the corresponding quotients
severely. An independent data analysis of each beam
would render more accuracy. Therefore, in LSE2
the parameters are estimated by minimization of the
square difference between actual data Y i and mod-
elled data P i

r . Nevertheless, LSE2 has the weakness
that both parameters RCS and ω have to be evalu-
ated simultaneously.

3.3. MLE: Maximum Likelihood Estimation

Unlike the Least-Square techniques, the maximum
likelihood estimations (MLE) take the noise and
its statistics into account. The maximum likeli-
hood estimates correspond to the values of the pa-
rameters that maximize the data likelihood function
(Kay, 1993). In general, the MLE has the asymp-
totic properties of being unbiased and achieving the
CRLB (Cramer-Rao Lower Bound). The maximiza-
tion processes are also implemented by an initial
coarse grid search followed by an iterative search by
the Nelder-Mead method. In order to simplify the
notation of Eq. 2, let G be the product of both an-
tenna patterns and a the collection of all constant
values during the passage. Eq. 6, 7 and 8 clarify the
simplifications made in Eq. 2.

G(ω) = GTIRA(ω) ·Gi
EFFE(ω) for i = 0 . . . 6 (6)

a =
Ps · λ2 ·RCS

(4π)3 ·R2
EFFE ·R2

TIRA · L
(7)

Pr = a ·G(ω) (8)

3.3.1. GMLE: MLE for Gaussian noise

For sufficient SNR, both orthogonal I and Q
Gaussian noise components may be substituted by
only one I Gaussian noise component (Eq. 9), since
the Q noise component does not have a serious ef-
fect on amplitude data

√
Y . This approximation is

implemented by the GMLE algorithm.

√
Y =

√
P r + NI

(
0,

σ2

2

)
(9)

Knowing the Gaussian PDF of the noise and taking
Eq. 9 into account, the likelihood function of ampli-
tude data

√
Y depending on the parameters a and ω

may be described through Eq. 10, where n symbol-
izes the number of echoes.

LF
(√

Y ; a, ω
)
=

(
1√
π · σ

)7·n

· e−
|
√

Y −
√

a·G(ω)|2
7·n·σ2

(10)
The estimation of the parameters will be performed
by the maximization of the likelihood function
(Eq. 10). The parameters can be estimated indepen-
dently, since the differential equation can be solved
in closed form. This reduces the necessary computa-
tional effort of the estimation. The trajectory para-
meters will be estimated by the values which maxi-
mize the absolute value of the cross-correlation be-
tween the vector of received signals and the corre-
sponding normalized gain pattern vectors (Eq. 11).
The estimation of a is performed with the estimated
trajectory parameter through Eq. 12. The estimates
of the parameters are symbolized by â and ω̂.

ω̂ = max
{∣∣∣∣Y T · G(ω)

|G(ω)|

∣∣∣∣} (11)

â =
Y T ·G(ω̂)
|G(ω̂)|2

(12)

3.3.2. RMLE: MLE for Ricean distributed data

Due to the two Gaussian noisy components of Eq. 4,
the received amplitudes in the multi-beam system
have a Ricean probability density (Rosebrock, 1999).
The Ricean probability density is shown in Eq. 13,
where Io is the modified Bessel function of the first
kind and order zero, and j symbolizes any of 7 · n
received echoes. The joint probability density of re-
ceived amplitude vector

√
Y is the product of the in-

dividual probabilities because they are statistically



independent by assumption.

p
(√

Yj ; a, ω
)
=

√
Yj ·e−

Yj+a·Gj(ω)
2 ·Io

(√
Yj · a ·Gj(ω)

)
(13)

Thus, the RMLE method estimates the parameters
by maximization of the log-likelihood function, that
is shown in its simplified form in Eq. 14.

ln
(
LF

(√
Y ; a, ω

))
=

7·n∑
j=1

ln
(

Io

(√
Yj · a ·Gj(ω)

)

−a

2
·

7·n∑
j=1

Gj(ω) (14)

Unfortunately an analytical calculation of the ML
estimates from Eq. 14 is not possible, because the
solution of the differential equation results in a dif-
ficult nonlinear constrained problem and no closed-
form solution is available. Several approximations
were also tested to simplify the solution process, but
the results were not positive either:

• ln(Io(x)) ≈ x leads to GMLE.

• ln(Io(x)) ≈ x − 1
2 · ln(2 · π · x) is suitable at

high SNR but diverges toward plus infinity at
low SNR.

• ln(Io(x)) ≈ x2

4 − x4

64 is suitable at low SNR but
diverges toward minus infinity at high SNR.

For these reasons the estimation of all parameters
has to be performed simultaneously by maximizing
Eq. 14 iteratively.

4. PERFORMANCE OF PROPOSED AL-
GORITHMS

4.1. Cramer-Rao Lower Bounds

The fundamental limitation in an estimation prob-
lem is often assessed using the Cramer-Rao Lower
Bound (CRLB), which is a lower bound on the es-
timation error variance for any unbiased estimator.
The CRLB provides a benchmark against which we
can compare the performance of any unbiased esti-
mator, in this case, the accuracy of the proposed
algorithms (Kay, 1993).

The determination of the CRLB consists mainly in
taking the derivates of Eq. 14 with respect to the un-
known parameters and subsequently the calculation
of the expectation with respect to the actual data
PDF. Mathematical expressions for the elements of
the Fisher Information matrix I (a) and I (ωk) corre-
sponding to the parameters a and ωk are presented
in Eq. 15 and Eq. 16 respectively, where the integral

Aj (Eq. 17) could not be calculated in an explicit
form and had to be computed numerically. I1 sym-
bolizes the modified Bessel function of the first kind
and order one, whereas G′

j(ω) represents the first
derivative of the antenna pattern with respect to the
corresponding trajectory parameter ωk.

I(a) =
7·n∑
j=1

Gj(ω) ·
(
2 + Aj − a2 ·Gj(ω)

)
(15)

I(ωk) = a
7·n∑
j=1

G′
j(ω) ·Aj − a2

7·n∑
j=1

Gj(ω) ·G′
j(ω) +

+3a2

( 7·n∑
j=1

√
Gj(ω) ·G′

j(ω)
)2

(16)

Aj =
∫ ∞

0

Yj

2
·
I2
1

(√
a ·Gj(ω) · Y j

)
I0

(√
a ·Gj(ω) · Y j

) ·e−Yj+a·Gj(ω)
2 ·dYj

(17)
The CRLBs for the estimation of the parameters
are the inverse of the corresponding elements of the
Fisher Information matrix.

4.2. Monte-Carlo Analysis

The performance of the algorithms explained in sec-
tion 3 is analyzed through the root mean square es-
timation error for the object size, the passage offset
and the passage direction. The estimation accuracy
actually depends only on the SNR of the received
signals. But on the other hand, the SNR is mainly
depending on the object RCS and the attenuation by
crossing the beam patterns (Eq. 2), since the SNR of
received echoes corresponds to the RCS/NERCS re-
lationship of the object attenuated by the gain pat-
terns.

Firstly, the estimation accuracy depending on the
object size is evaluated through Monte-Carlo simu-
lations with 500 trials for passages through the over-
lapping volume with offset smaller than 0.25o w. r. t.
the Effelsberg antenna axis and an arbitrary passage
direction. The root mean square object size esti-
mation errors of the studied algorithms have been
displayed in Fig. 2 for several object sizes. In the
same way, Fig. 3 and 4 show the root mean square
offset and direction estimation errors of the two MLE
methods respectively.

The first clear result of the simulations is that the
estimation accuracy of the Maximum Likelihood al-
gorithms is substantially higher than in the Least-
Squares approaches for the same computational ef-
fort due to its statistically better processing of the
system noise. With regard to MLE algorithms
GMLE proves to be a reasonable approach, but
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Figure 2. Size estimation error of the proposed algo-
rithms as a function of the object size.
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Figure 3. Passage offset estimation error of the MLE
algorithms as a function of the object size.
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Figure 4. Passage direction estimation error of the
MLE algorithms as a funtion of the object size.
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Figure 5. RCS error histogram of RMLE for a 1.34
cm object.

1 2 3 4 50

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

S
iz

e 
es

tim
at

io
n 

er
ro

r 
re

la
tiv

e 
to

 o
bj

ec
t s

iz
e

Total passage attenuation [dB]

RMLE for a 1.34 cm object

Figure 6. Size estimation error of RMLE as a func-
tion of the total passage attenuation for a 1.34 cm
object.

RMLE estimations are still more accurately. In con-
clusion, the RMLE algorithm offers satisfactory qual-
ities w. r. t. to accuracy and volume of applicability.

Anyway, the performance of RMLE does not achieve
the CRLB, especially, for very small objects. This
does not necessarily mean that a better estimation
could be performed since the CRLB is far too op-
timistic at low SNR (Athley, 2002). It is known
that nonlinear estimators usually exhibit a SNR
threshold, below which the estimation error increases
rapidly due to outliers. This effect is not captured
by the CRLB, since it is a local bound that only
considers small deviations from the true parameter
value. At low SNR, noise may cause peaks in the
likelihood function far away from the true peak to
become the global maximum, yielding a large esti-
mation error. This is then called an outlier, which
will cause the MSE of the ML estimator to deviate
from the CRLB. The RCS error histogram of RMLE
simulation results for a 1.34 cm object is shown in
Fig. 5, where some outliers can be clearly observed.

Actually, the SNR of the received echoes depends not
only on the object size, but also on the attenuation
caused by crossing the antenna patterns. This at-
tenuation will be a function of the object trajectory.
Intuitively, one can perform a better parameter es-
timation for passages crossing three beams than for
outer passages (e.g. offsets larger than 0.2o). This is
illustrated in Fig. 6, where the object size estimation
error depending on the total passage attenuation rel-
ative to the minimal attenuation passage is analyzed
for a 1.34 cm object. Simulation results of Fig. 6
demonstrate that the parameters of the objects with
lower attenuation during the passage can be more
accurately estimated.

4.3. Two illustrative examples

In order to illustrate the satisfactory quality of
RMLE, Fig. 7 provides an example of a 1.63 cm ob-
ject with strong attenuation during the passage and



Figure 7. Estimation of a 1.63 cm object with strong
attenuation during the passage.

Fig. 8 of a 1.22 cm object with lower attenuation.
Fig. 8 is also an example of outliers, since the ambi-
guities of the antenna patterns could not be appro-
priately solved.

5. CONCLUDING REMARKS

Because of its satisfactory estimation accuracy and
its large volume of applicability, RMLE is finally pro-
posed as the suitable analysis algorithm for multi-
beam data of the future TIRA-Effelsberg debris ob-
servation campaigns. RMLE will allow an accurate
size estimation of objects in the 1-2 cm size. In
order to reduce the computational effort of the iter-
ative search processes in RMLE, initial estimations
will be performed through GMLE.

It is known that, if an estimator achieving the CRLB
exits, the MLE will achieve the CRLB too. There-
fore, the performance of MLE might serve as an indi-
cator, although not strictly a bound, of the ultimate
estimation accuracy that can be achieved. Other
estimation methods were also studied, but in our
case their performance would be equivalent to MLE:
Expectation-Maximization (EM), an iterative imple-
mentation of MLE for real-time estimations, and
Bayesian techniques, in which the parameter of in-
terest is considered as a random variable whose par-
ticular realization has to be estimated. For Bayesian
estimations a priori probabilities of the parameters
are needed, but in our case these distributions are
not available. If uniformly distributed parameters
were assumed, the Maximum A Posteriori (MAP)
estimation would be equivalent to MLE proposed in
this work.

Figure 8. Estimation of a 1.22 cm object with weak
attenuation during the passage.

ACKNOWLEDGMENTS

The author is very thankful to his colleagues of
FGAN-FHR’s Division Radar Techniques for Space
Reconnaissance (RWA) for their important collabo-
ration. This work was performed under ESA/ESOC
contract no. 17820/03/D/HK(SC).

REFERENCES

Leushacke L., Mehrholz D., Jehn R., First
FGAN/MPIfR cooperative debris observation
campaign: experiment outline and first results,
Proceeding of the second European Conference on
Space Debris, ESA-ESOC Darmstadt, Germany,
1997, 45-50.

Sherman S. M., Monopulse Principles and Tech-
niques, Artech Hause, Dedham 1984.

Kay S. M., Fundamentals of Statistical Signal
Processing. Vol. 1 Estimation Theory, Prentice
Hall PTR, New Jersey 1993.

Rosebrock J., Leushacke L., Mehrholz D., Cooper-
ative Debris Tracking and Development of Algo-
rithms for Mid-Size Debris Detection with Radar,
Final Report of ESA/ESOC Study Contracts No.
12248/97/D/IM and No. 12247/97/D/IM, Wacht-
berg 1999.

Athley F., Threshold Region Performance of Max-
imum Likelihood DOA Estimation for a Single
Source, In Proc. 10th ASAP Workshop, MIT Lin-
coln Lab., Lexington, MA, USA, 2002.


