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ABSTRACT

The paper will present an extension of MDPANTO
(Meteroid/Orbital Debris Protection Analysis Tool) to
optimize the protection system of a given spacecraft in
order to obtain a low number of penetrations and a mini-
mum of additional mass.

The optimization of protection systems is a complex task,
due to the strong non-linearity of the problem. The clas-
sical, derivative based optimization procedures are un-
suited, because of that. Therefore three search algo-
rithms are tested and the results are compared. This pro-
cess yielded a suitable optimization procedure to design a
mass effective protection system against micrometeroids
and orbital debris.

The wall configurations investigated include single wall
structures and double wall configurations. In the later
case the study showed that the governing equations have
to reflect the influence of shield thickness properly. Only
some of the equations used for calculating the number of
penetrations were found to do this.

Key words: Space Debris, Meteroids, Protections Sys-
tems, Optimization.

1. INTRODUCTION

The ability to calculate the probability of serious damage
to a space structure by micrometeroids or orbital debris
is a prerequisite for the design of protective measures.
Since additional protective measures represent additional
weight to be carried into orbit the designer is required
to add only so much mass as to meet the safety require-
ments.

Among the large variety of optimization strategies, the
derivative based algorithms are unsuited in the given case,
because of the discontinuous nature of the impact behav-
ior of multiple wall systems and because additional con-
straints evoke difficulties in the calculation of derivatives.
Also, the large number of local optima impose consider-
able difficulties in identifying the global optimum.

For these reasons, in this study three different search al-
gorithms are tested, namely a genetic algorithm, a simu-
lated annealing program and the Hooke-Jeeves algorithm.
They are applied to different spacecraft geometries with

different wall configurations. First single wall structures
are used to determine a suitable optimization procedure.
After that it is tested on double wall structures. The re-
sults of these optimizations necessitated an investigation
of the applicability of different sets of equations used for
calculating the number of penetrations. A summary and
outlook concludes the paper.

2. MDPANTO

The code MDPANTO (Meteroid/Orbital Debris Protec-
tion Analysis Tool) is used for calculating the number of
impacts on a defined spacecraft in meteroid and/or space
debris environments. It has been developed during the

last ten years. It is a non-commercial code, written in
standard FORTRAN 77.

The surface of a spacecraft is described by quadrilateral
elements. For model generation, pre- and postprocessing
a PATRAN interface is available. The self-shadowing ef-
fect is computed using a hidden surface algorithm. The
accuracy of the algorithm does not depend on the size of
the elements. It calculates the correct size of the surface
area which can be hidden from a particle from a certain
direction. Therefore the spacecraft geometry can be mod-
elled with relatively few elements, leading to low compu-
tational requirements for the calculations. The numerous
runs for the optimization process can thus be carried out
in an acceptable time.

The program includes the orbital debris model and the
meteroid debris model as defined in [1] as well as
the orbital debris model given in [2]. The damage
equations for single wall structures according to Cour-
Palais [3], for double walls according to Christiansen [4]
and Reimerdes [5] and for triple walls according to
Reimerdes [5] are implemeted. Benchmark comparisons
with BUMPER II and ESABASE/DEBRIS have shown
good agreement.

3. OPTIMIZATION PROBLEMS

Optimization problems are frequent throughout the en-
gineering sciences (see for example [6]). The theoretic
principles fall within the mathematical sciences. For
completeness the fundamental relations are stated here,
Gill [7] and Baier [8] give a more detailed description of
optimization problems.
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The mathematical definition of an optimization problem
is given by:

—

Minimize f(X) (1
withgo(X) =0 a=1,2,...,m' )
and g, (X) > 0 a=m'+1,...,m 3)
and X5 <X <X5 fB=12,...0 4)
and X3, € D;g fB=n'+1,...,n 5)

Dy = {X0,., X))

The target function 1 describes the feature to be opti-
mized. In this paper it is the average wall thickness,
which is proportional to the weight. In the presented
study, the wall thickness of single wall configurations or
the back wall thickness and shield thickness of double
wall structures are the variables, combined in the vector
X. The equalities, inequalities and boundaries in equa-
tions 2-5 place restrictions on the variables. In our inves-
tigations, the variables have upper and lower boundaries
(equation 4) and a chosen number of penetrations must
not be exceeded (equation 3)

To illustrate the complexity of the optimization problem
described above, table 1 gives two different configura-
tions for a single wall cube as shown in fig. 1, with
one meter edge length in a meteroid environment. The
maximum allowable number of penetrations was set to
N = 1073, the required wall thickness for a constant
thickness on all surfaces is 6.226 mm.

Table 1. Comparison of two configurations with nearly
identical masses

wall thick- config. 1 | config. 2 | difference
ness [mm]

front 8.485 8.052 54 %
back 3.087 2.657 16.2 %
right 6.098 5.555 9.8 %
left 5.123 5.145 -0.4 %
top 5.340 6.359 -16.0 %
bottom 3.040 3.396 -10.5 %
average

thickness 5.194 5.195 -0.02 %
numb. of pe- || 0.9997 0.9965 039
netrations N 1073 1073 =

The two configurations have almost identical average
wall thicknesses and very similar numbers of penetra-
tions. These properties suggest similar configurations.
Howeyver, the individual wall thicknesses differ consid-
erably up to 16%. The right and left wall are impacted
symmetrically by meteroids. This leads to the expecta-
tion of the same wall thickness for those surfaces. Clearly
in both configuration this is not the case. All of this shows
that the optimization problem has numerous local optima,
complicating the identification of the global optimum.

back left

earth

"~ flight direction
bottom

Figure 1. Cubic spacecraft

3.1. Optimization Strategies

In general there is a large variety of optimization strate-
gies. One large group is based on derivative analysis.
Many local optima will have zero derivative, necessitat-
ing the analysis of numerous potential optima. Also the
boundaries and the inequalitiy for the number of penetra-
tions are difficult to incorporate into one target function.
One way of doing this is to introduce penalties, whenever
one of those conditions is not met. This results in steps
in the target function which are not pratical for derivative
analysis. For these reasons derivative based algorithms
are not used in this study.

Another group of algorithms are the search algorithms.
These search according to a specific method for a direc-
tion or point, where an improvement of the optimization
task is obtained. In the presented case, the search algo-
rithm of Hooke-Jeeves [8] identifies in a first step the
direction in which the greatest improvement of the tar-
get function is found. This is not done using derivatives
but by comparing the target function values of points in
a distance defined by a step size. After that it contin-
ues moving the investigated point into that direction until
no further improvement is found. Then it tries to find a
new direction. If no improvement from the current point
is possible the step size is reduced. The algorithm stops
if a certain minimum step size is met. It is immediately
clear that the algorithm will not move away from a lo-
cal optimum. For that reason, a priori knowledge of the
proximity of the global optimum is necessary or it is re-
quired to test a wide range of different starting points. In
the later case it might become necessary to choose the
points at random, if the target functions become so com-
plex that the approximate location of the global optimum
is not apparent.

Heuristic algorithm like simulated annealing or genetic
algorithms apply principles of sciences that are not re-
lated to optimization directly. Genetic algorithms make
use of the principles of natural evolution. They main-
tain a set (the population) of points (individuals) in the
search space and evaluate their quality. By a combination



of genetic operators like mutation, selection and recom-
bination, they find a new population that constitutes the
next generation. The chance of an individual to survive
into the next generation or for one of its offsprings to be
in that generation depends on the quality of the individ-
ual as well as on chance. In this way the overall quality
of the population increases over the generations. By in-
troducing the genetic operators with a certain amount of
randomness, the algorithms can leave local optima. In
this study a genetic algorithm employing simple muta-
tion, recombination and selection is used.

Simulated Annealing algorithms use the principles of the
physics of annealing processes. From a starting tempera-
ture the specimen is cooled down, to achieve a desired
(optimal) crystal structure. This point is characterized
by a minimal potential energy. The higher the poten-
tial energy, the more instable the system is. However,
if the cooling process is too fast, imperfect crystal strc-
tures are formed. These imperfections are local minima
of the potential energy, which cannot be left, because the
quick cooling process withdraws the thermal energy too
quickly. With these information a simulated annealing
process for optimization can be derived:

The potential energy of a system in physics is given by the
target function in an optimization, while the state of the
system is determined by the crystalline structure, respec-
tively the values of the variables. The random change of
these corresponds to the change in crystal structure, while
in both cases the temperature serves as a control parame-
ter. One important difference to normal search algorithms
is the fact that a simulated annealing algorithm accepts
an increase (i.e. worsening) of the target function with
a temperature depending probability. This allows the al-
gorithm to leave local optima, or in analogy to leave an
imperfect crystal structure, if sufficient thermal energy is
present [9].

Simulated annealing and genetic algorithms, although
stemming from completely different areas, can be trans-
formed into each other. If the genetic algorithm is re-
duced to population size one using only mutation as ge-
netic operator and the chance of accepting an increase in
the target function for the simulated annealing is reduced
to zero, the algorithms become identical monte carlo al-
gorithms.

So far heuristic algorithms have not been verified totally
by mathematical proof. Michalewicz [10] however gives
a clear concept of how the optimization by genetic al-
gorithms works. It is based on the Schema Theorem by
Holland [11]. The effects of the three main categories
of genetic operators (selection, cross-over and mutation)
on schemes lead to the conclusion that genetic algorithms
seek near-optimal performance through the juxtaposition
of short, low-order above average schemes. For an in-
depth analysis see [10].

4. INVESTIGATED STRUCTURES

Two spacecraft geometries have been investigated in this
study. The first one being a simple cube with one meter
edge length (see Fig. 1). The structure has been inves-
tigated with independent single walls on all surfaces as
well as double walls with indepedent bumper and back
wall thicknesses on all surfaces and a fixed spacing of
100 mm.

The second structure investigated here, is a cylindrical
tube, representative of a pressurized module (see fig. 3).
The tube has a diameter of one meter and a length of two
meter. The circumferential wall is composed of 24 ele-
ments, while each cap is composed of twelve elements
having the same wall thickness.

Most investigations have been performed in a meteroid
environment, because in the space debris environment
modell used, the spacecraft would only be hit from the
front and the sides. Therefore the meteroid environment
is more demanding for the optimization algorithm.

5. OPTIMIZATION RESULTS

The results of the optimizations performed will be pre-
sented in two parts. First the optimization results of sin-
gle wall configurations of the spacecraft described above
will be given. These results are used to evaluate the suit-
ability of the tested algorithm and to subsequently deter-
mine a suitable optimization procedure. In a second part
double wall configurations were investigated with this op-
timization procedure.

5.1. Single Wall Strutures

The results from the optimization of the single wall con-
figurations in a meteroid environment were achieved us-
ing a maximum allowable number of penetrations of
N = 1073. Table 2 shows the results for the different
procedures. The first row contains the structures, the sec-
ond one gives the constant wall thickness for all surfaces,
which is required to meet the maximum allowable num-
ber of penetrations. The results from the Hooke-Jeeves
algorithm are given in the third row, they were calculated
from choosing row two as starting values for all walls.
For the genetic and the simulated annealing algorithm
(rows four and six respectively) a total of five runs were
performed for each structure. This is necessary because
they are statistical algorithms, which yield different re-
sults with the same parameters. The best of these results
were then used as starting points for the Hooke-Jeeves al-
gorithm. These results are given in rows five and seven.
The best results for each structure are marked by bold
letters.

It can be seen that the combinations of the heuristic al-
gorithms with the Hooke-Jeeves as postprocessing algo-
rithm yield the best results. The genetic algorithm has a



Table 2. Average wall thickness [mm] of single wall
spacecraft from different optimization procedures

strategy cube | cylinder
required const. 6.026 6.886
wall thickness ) ’
Hooke-Jeeves 5.431 6.711
genetic (5 runs) 5.181 5.746
genetic + HJ 5.181 5.740
sim. an. (5 runs) 5.183 6.815
sim. an. + HJ 5.162 6.123

good performance with all test structures. The simulated
annealing algorithm outperforms the genetic one in the
case of the cube. For the cylinder though, it yields results
that are 6.6% worse than the results from the genetic al-
gorithm. It was also found in other test cases that the per-
formance of the simulated annealing algorithm decreased
with increasing number of variables. The last column in
table 2 has 26 independent variables as compared to six
in the second column. For this reason the combination
of genetic algorithm and postprocessing with the Hooke-
Jeeves algorithm was determined to be the best optimiza-
tion procedure. The algorithms need a certain amount of
parameters, e. g. mutation rate, cooling speed, initial step
size, which can be optimized themselves. These param-
eters were determined in the first part of the study and
remained fixed thereafter. This leads to an optimization
procedure which is usefull for a lot of different structures,
while at the same time being suboptimal to a certain, ac-
ceptable extent.

The wall thickness distributions for the best results of the
cube and the cylinder are shown in fig. 2 and 3. The
weight savings for the cube, compared to a constant wall
thickness for all surfaces, is 17%. For the cylinder it is

16.5%.
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Figure 2. Wall thickness distribution for a single wall
cube

To test the procedure in a debris environment the cube
with single walls and a maximum allowable number of
penetrations of N = 103 was optimized. The purpose
of this was to demonstrate the possibility of using the pro-
cedure in this environment and to test the performance
of the optimization procedure when the upper and lower
bounds of the variables are encoutered. Since the space-
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Figure 3. Wall thickness distribution for a single wall
cylinder

craft is not hit by debris from the top, bottom and back,
these wall thicknesses should be at the lower bound of
1mm. The result of this optimization is given in table 3.
As expected the three walls that are not hit have a wall
thickness of the lower bound.

Table 3. Optimization of a cube with single walls in a
debris environment

wall ty [mm]
front 15.0
back 1.0
right 7.4
left 7.8
top 1.0
bottom 1.0
average 5.5

5.2. Double Wall Structures

In the second part of the investigation the optimization
procedure was used for double wall structures. Since the
bumper significantly increases the protection, the maxi-
mum allowable number of penetrations was decreased to
N = 10~*. This was done purely to obtain thickness val-
ues in a reasonable range. The first optimizations showed
that the bumper thickness tended to the lower bound set
for it. Lowering those bounds did not change this behav-
ior and the resulting configurations were not reasonable
as can be seen in columns 2 and 3 of table 4. The bumper
thickness was found to be 10 pm, which was the lower
bound. A bumper of this thickness can not be expected to
shield properly.

The reason for this was found in the equation used for
particle speeds greater or equal 7 km /s [3]:

1
2 1 1 2 1 /0,\3
derit = 3918459, Vi ¥ 5% (28)" 0



As the bumper thickness does not enter equation 6,
the minimum weight is always found with a minimum
bumper thickness. Thus, for optimization purposes a set
of equations is needed that properly considers the influ-
ence of all variables that are being optimized.

In the next optimization runs the following modified
equation for Vy > 7 km/s was used [5]:

—2 2 oL Loz 1 (0y\F
derie = 4096 F5 F thpp* p, " Vi * 5% (28)° (1)
with

143
o= 1 2)>02
Z , <d>_
2
173 43 ty
Fy = 5405 ) +100{ =) 5 () <02
; 5 0<d>+ oo<d> , <d><0

()

It should be noted that equation 6 and 7 differ only by the
factor F3', which introduces the dependency on the shield
thickness. Fig. 4 illustrates the effect of this parameter. It
depicts the required total wall thickness as a function of
the ratio between shield thickness and particle diameter.
If the ratio is above 0.2 the required back wall thickness
tp is almost constant independent on the shield thickness.
Below that ratio however, the required back wall thick-
ness increases by about a factor of five, when the shield
thickness approaches zero. This effect is approximated
by the parameter F}) in equation 7, extending the valid
range of the equation down to low shield thicknesses.

d,S and v constant
t =ty +t,

0 0,25 0,50 0,75 1,00
tyld —
Figure 4. Total wall thickness versus shield thick-

ness/particle diameter

The optimization results of these two equations were
compared in two different test cases. First the optimiza-
tion on the double wall cube described above was per-
formed again using the modified equation 7. In a second
test both equations were used on a structure with very thin

shields (10 pm). The first case tests if the equations en-
able the optimization algorithms to find reasonable con-
figurations, while the second case checks, whether the
equations can handle the continous transition from dou-
ble wall to single wall configurations.

Table 4. Comparison of optimization results obtained
with different equations: cube with double walls (spac-
ing 100 mm) in meteroid environment

original equ. modified equ.
wall tw [mm] | tp [mm] || ty [mm] | ¢, [mm)]
front 2.07 0.01 2.00 0.84
back 1.03 0.01 0.91 0.85
right 2.26 0.01 1.25 0.83
left 1.84 0.01 1.25 0.83
top 1.10 0.01 1.75 0.81
bottom 1.25 0.01 0.98 0.85

The results for the first test are given in table 4. The modi-
fied equations yield bumper thicknesses which are clearly
more reasonable as for the original ones. For the sec-
ond test case table 5 shows the results. The last columns
displays the results when a single wall configuration was
optimized. The average wall thickness obtained with the
modified equations agrees very well with those from the
single wall configurations. Still there are considerable
differences in the individual wall thicknesses. The rea-
son for this can be found in the facts that the double wall
equation 7 does not converge into the single wall equa-
tion exactly and in the strong non-linearities as shown in
table 1.

Table 5. Application of double wall equations to sin-
gle wall structures: cube with double walls (spacing 100
mm) in meteroid environment

original eq. | modified eq. single

wall ty =10um | tp, = 10 um wall
ty [mm)] ty [mm)] ty [mm)]

front 2.07 11.55 14.79
back 1.03 6.15 4.96
right 2.26 9.59 10.17
left 1.84 9.53 10.51
top 1.10 10.18 9.13
bottom 1.25 5.48 4.25
average 1.64 8.94 8.97

Table 6 summarizes the results that were obtained for
the optimizations of double wall structures. Two refer-
ence values are given, first the constant wall thickness
on all surfaces for a single wall configuration in order
to meet the required maximum number of penetrations
N = 10~*. The second reference is the average thick-
ness for the same double wall configuration on all sur-
faces, where the shield is half as thick as the back wall.
The weight savings achievable with an optimized dou-



ble wall configuration are 80% compared to single wall
and 9.5% compared to double wall configurations with
the same thicknesses on all surfaces.

Table 6. Results of double wall optimizations using differ-
ent equations: cube with double walls (spacing 100 mm)
in meteroid environment

configuration original eq. | modif. eq.
avg. t [mm] | avg. t [mm)]

single wall 11.62 11.21

double wall,

const. for all 2.52 2.44

surfaces (t,, = 2tp)
double wall, vari-

able t,, and ¢ 1.64 2.23
for all surfaces

single wall, vari-

able for all surfaces 9.64 8.94
double wall, vari-
able for all surfaces 1.64 8.97

(tp = 0.01 mm)

6. SUMMARY AND OUTLOOK

In this study, an optimization procedure for achieving re-
quired protection with minimum weight in the microme-
teroid and space debris environment has been determined.
The optimization problem encountered in this task is
characterized by strong non-linearities even for simple
spacecraft geometries such as a single wall cube. During
the optimization of the cube it was found that although
the left and right side of the spacecraft are symmetrically
subjected to impacts the optimal solutions found, did not
always show the same wall thicknesses for these walls.
For this reason the engineer should consider such symme-
tries beforehand in order to reduce the complexity of the
optimization task. The heuristic genetic algorithm with
fixed parameters and the subsequent use of the Hooke-
Jeeves search algorithm were found to be the most effec-
tive approach. The parameters for the optimization algo-
rithms were fixed once suitable choices were found.

It was also found that for optimization purposes, damage
equations are needed that properly describe the influence
of the variables that are being optimized. A modification
of the Cour-Palais/Christiansen [4] equations proposed
by Reimerdes [5] has been found to yield acceptable op-
timization results, while the original equations produced
misleading results.

The future work in this area will focus on improving
the optimization procedure to reduce computational time
and to include further parameters. Furthermore structures
with greater complexity will be investigated. Finally, the
study has shown that it is necessary to develop more ver-
satile damage equations.

REFERENCES

[1] Space Station Program Environment for Desgin.
NASA SSP 30425, Revision B, 1994.

[2] D.J. Kessler et al. A Computer-Based Orbital De-
bris Modell for Spacecraft Design and Observa-
tions in Low Earth Orbit. NASA TM 104825, 1996.

[3] B. G. Cour-Palais. Hypervelocity impact in metal,
glass and composites. International Journal of Im-
pact Engineering, 5, 1987.

[4] E. L. Christiansen. Design and performance equa-
tions for advanced meteroid and debris shields.

International Journal of Impact Engineering, 14,
1993.

[5] H.-G. Reimerdes, K.-H. Stecher, and M. Lambert.
Ballistic limit equations for the columbus-double
bumper shield concept. In Proceedings of the 1st
European Conference on Space Debris, April 1993.

[6] H. A. Eschenauer, C. Mattheck, and N. Olhoff.
Engineering Optimization in Design Processes.
Springer Verlag, 1991.

[7] P. E. Gill, W. Murray, and M. H. Wright. Pratical
Optimization. Academic Press, 1981.

[8] H. Baier, C. SeeBelberg, and B. Specht. Opti-
mierung in der Strukturmechanik. Vieweg, 1994.

[9] J. Giinnewig. Optimierte aktive Schwingungs-
ddmpfung von Leichtbaustrukturen. VDI Verlag,
2000.

[10] Z. Michalewicz. Genetic Algorithms + Data Struc-
tures = Evolution Programs. Springer Verlag, 1994.

[11] J. H. Holland. Adaption in Natural and Artificial
Systems. University of Michigan Press, 1975.



