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ABSTRACT

The mathematical model of a space debris particles
detector on the basis of pumped metal-dielectric-metal
(MDM) film structure is designed. The efficiency of its
usage for registration of space debris particles at
different altitudes is estimated, and also the information
possibilities of the detector are considered. The analysis
of influencing of noise characteristics on observed data
is done.

The detector of micrometeoroids and space debris
proposed in [1] is the most perspective one. Its technical
characteristics meet requirements for such instruments.
In this paper the mathematical model of the combined
ionization and capacitor detector is considered. This
instrument schematically shown in Fig.1 has a spherical
design and large sensitive surface. There is a spherical
coordinate system as for ion scattering used in Fig.1.

Fig.1. Schematic illustration of the detector
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where 0N  is an amount of ions emitted after the high-
velocity impact of the space particle and the target (the
metal-dielectric-metal (MDM) structure); V

!
 is a

velocity of an ion; iV
!

 is a velocity of the ion having the

same direction as impact; Vp is the most probable
velocity of ions.
The values N0, iV , Vp depend on the space particle

speed V0, its density ρs and mass m [2,3]
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Q0 is the total ion charge generated by the high-velocity
impact; m is the micrometeorite particle mass (for a
round fragment 6/3

ss dm ⋅⋅= ρπ ; ds is a diameter of
the fragment); c is a constant depending on properties of
a material of the particle and the target; V0 is a speed of
the particle; e is an elementary charge; ρs, ρt are the
densities of the particle and target.
Let's convert the function of ion distribution on speeds
to the same one of time, i.e. to dependence I(t).
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While performing the transformation of Eq.6 a spherical
coordinate system is used, this system has its center at a
point where the space particle encounters the exterior
sphere (Fig. 1)

dV
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Equation describing the internal sphere can be written as

( ) )(222 ωωω AaRRRrs =+−−= , (8)

where a, R are radii of the internal and exterior spheres
respectively; rs is a distance from the impact point of
the particle up to an impact point of the ion on the
receiver, θω Cos= .
Time of flight of the ion in a gap between two spheres is
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We can see from the expression (9), that
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Taking into consideration that θω Cos=  and
θθω dSind ⋅−=  and using the Eqs.7-10 we get the

distribution function of concentration on time.
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In case the ions move on a tangent to the internal sphere
a magnitude ω can be derived from the following
formula

RaRRrsmmm //cos 22 −=== θω , (12)

Thus, the Eqs.5,13 describe dependence of a current
pulse of the ion receiver on arguments V0, m, P.
Time of flight of ions from the impact point on exterior
sphere to ion receiver equals
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The solution of the integral in Eq.13 has a rather
complicated form. It can be essentially simplified
considering the physical processes during the charged
particle's flight in a drift room of the detector. The field
of interaction of the charge carrier with a charge
induced by it on a conducting plate of the exterior
sphere is decelerating. The external field of the detector,
vice-versa, is accelerating for the given particle. Electric
intensity of interaction of the charge carrier with the
induced charge is very great nearby the conducting plate
and exceeds an electric intensity of the detector. When
the particle moves to the detector's internal sphere there
is an attenuation of interaction with the induced charge
and increasing of the detector's field action.
The charged particle is decelerated by the field of the
induced charge, and then it is accelerated by the
detector's field. Thus, the Eq.14 for time of ion arrival to
the internal sphere can be rewritten as
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where coordinate r0 is determined from a condition of
balance between energies of decelerating and
accelerating fields
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The substitution of Eq.14 for Eq.13 contributes to an
inaccuracy of measuring of ion arrival time, but it
considerably simplifies a solution. After series of
transformations we have the time of ion flight in the
detector's drift room

21 ttt += , (16)
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Fig.2. Spectral and integral dependencies of current
pulse

The results obtained indicate that if there is no electric
field applied between spheres of the detector the
recorded current pulse has no separation on masses.
The leading-edge time of the current pulse measured
from the impact up to the maximum of impulse is
inversely proportional to the space particle's speed, and
integral of a current is proportional to product m⋅V0

3. If
the voltage applied to the ion receiver is greater than
300…400 V the spectrum of ionic currents is registered
on its output. This spectrum can be calculated using the
Eqs.16-18. With the voltage U=1000 V and R=3 m
ionic impulses can be separated for a range of mild
masses (1…20 atomic mass unit). Increasing of ion
mass leads to the resolution capability drop just as it
takes place in ordinary time-of-flight mass
spectrometers. The spectrum of ions having different
masses is shown in Fig.2.

To improve the resolution capability of the considered
detector design we offer to use decelerating electric
field applied between two spheres. Secondary electron
multipliers mounted on the internal surface of the
exterior sphere of the detector are used as ion receivers.
In this case charged particle (ion) motion can be
described by an expression
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where W is a total energy of a particle; L is a moment
of a particle relatively the center of the sphere; γ is an
angle between vectors r!  and V

!
; mi is the mass of an

ion, 
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The Eq.19 is converted to the following one
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where 
r

-=r(W p
δ)  is a potential energy of the particle

in the electric field; c1, c2 are the integration constants.
The first expression in Eq.20 is a law of motion of the
particle along a trajectory, the second one is the
particle's trajectory equation. The shape of particle's
trajectory is a hyperbola.
The time of particle's flight is derived from integration
of the Eq.20. As well as in case when ions fly from the
exterior sphere to the internal one to obtain a rather
simple solution it is required to simplify the first
expression of the Eq.20. When the particle (ion) is near
the conducting surface of the exterior sphere the total
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particle moves to the detector's internal sphere the first
two components of total energy increase, and the last
one reduces. Therefore the particle's motion in the drift
room can be considered as two different stages.
1. Deceleration of the ion in the field of the charge
induced by it on the surface of the exterior sphere.
2. Deceleration of the ion in the field of the detector.
Using such method the first equation of the Eq.20 can
be converted to
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where the magnitudes δ1, δ2 are determined as the
similar magnitudes in Eq.13; coordinate rmin is a
minimum distance the particle comes towards the center
of the inner shell, and it can be derived from the
following equation
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Coordinate r0 is the maximal value { }000 ,max rrr ′′′=
for a system
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The solution of Eq.21 has less accuracy of measurement
of flight time but it has more simple form than strict
solution derived from Eq.20. After a series of
transforms we have
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The Eq.24 allows to study detector's resolution
capability in a mode of space particle element
composition measurement. Variation of the voltage U
applied between spheres enables to transfer a maxima of
a curve RC = f(mi) in broad enough range of element
masses the natural or artificial space particle contains
of.
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