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MOTION AND ITS APPLICATION FOR SPACE DEBRIS MODELLING
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ABSTRACT

The statistic theory of satellite ensemble motion is

developed. Unlike traditional approach of

astrodyna-mics, which considers the individual

motion of every satellite, this approach is based on a

statistic description of satellite motion, as continuous

environment. Five basic problems of the satellite
ensemble motion are solved,namely:

1. Statistical description of space debris (SD)
sources and disturbing factors;

2. Mid- and long-term forecast of the SD
environment;

3. Construction of the altitude-latitude distribution
of both spatial density and SD velocity vector
characteristics;

4. Estimation of satellite collision probability and
velocity collision parameters;

5. Collision probability determination with regard
to the shape and orientation of typical spacecraft
modules.

We shall consider briefly each of listed problems.

1. STATISTICAL DESCRIPTION OF SPACE
DEBRIS SOURCES

The main reason of small- and medium-size SD
formation is the orbital fragmentation of space
objects. We apply the averaged approach to the
description of SD sources. Its characteristic feature is
that we apply, instead of the data on specific
launches and breakup cases, the following averaged
data: (a) the altitude distribution dp(th P’d) of a

number of annually formed objects sizing larger
than d (here t is time, hy is the perigee altitude), and

(b) statistical distributions of their eccentricities
p(e,d) and inclinations p(i, d). The substantiation of
such an approach is as follows:

- The SD number varies insignificantly during a

year (a few percents only). Therefore, the more
detailed (in time) modeling of SD sources is
excessive: it strongly complicates a model, practically
not influencing the accuracy.
The note. This statement does not exclude the possibility
and expediency of detailed modeling of breakup
consequences at short time intervals, when the SD "cloud"
remains rather compact. However, the cloud scattering
process is known to proceed rather quickly, as a rule. The
duration of this process is about 1 month.

- The reasons and conditions of satellite
fragmentation, which resulted in formation of the
majority of small SD fragments, are extremely
diverse. Therefore, it is difficult to expect that the
results of modeling of consequences of all known

fragmentations (the number of particles, the fly-
away velocity) are accurate enough. The level of
errors of such a modeling is unknown. Hence, the
approach, based on averaged data, seems to be not
only not worse, but even more preferable.

- The previous statement is even more valid for the
future moments of time, for which the reasons and
circumstances of fragmentation are unknown. The
use of averaged data on the intensity of new SD
formation is optimum at fulfilling the forecast.

The dependencces of initial distributions on
objects’ size are constructed based on the natural
assumption, that all small-size SD were formed as a
result of large (catalogued) objects fragmentation.
Such an approach is based on using: (a) the Monte-
Carlo method, (b) statistical distributions of annual

surplus dp (hp:dcat Jp(edeat ) p(i,degt ) construc-

ted from the real data on catalogued objects, and (c)
a priori data about the dependence of SD fly-away
velocity on their size. The less the size of a particle,
the greater velocity increment it receives at the
formation time. In such a manner the initial
distributions are updated by using the fragmentation
modeling data.

2. FORECAST OF THE SPACE DEBRIS
ENVIRONMENT [1]
Let us consider various space objects (SO), whose
orbit perigee altitude does not exceed 2000 km.
Choose the perigee height (h,) from the vector of
SO orbital elements. We shalf suppose that among
all variable SO parameters only the perigee height
essentially influences the evolution of height
distribution of SO number. The other orbital
elements will be designated by 3. We sub-divide the
whole set of objects with different elements 9 into
some finite number of sub-sets (groups) with
elements I, 1=1,2,...,Imax - Let p(t,h) be the density
of the perigee height distribution for objects from the
selected group at time t. Then we state the problem
of sudying the laws of density variation in time.
Index 1 will be omitted hereafter in analyzing the
distribution evolution for some particular SO group.

The partial derivative equations are derived for
describing the evolution of height distribution of SO
number:

d(t,h) _ @ (t,h)  pt,h) (1)
P V(t,h)[ 7 H(t,h)] +dp(t,h,...)

Here V(t,h) is the perigee lowering velocity; H(t,h) is

the atmosphere scale height; dp(t,h,...) is the rate of

SD density increment due to various reasons.
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Explanations. In calculating the evolution of
height distribution of SO number the following
factors are taken into account:

- the atmospheric drag at heights of up to 2000 km;

- the sub-division of all SO by parameters into the
groups which differ in size d, eccentricity e and
ballistic factor S;

- the initial height distribution of SO of various
types;

- the expected intensity of formation of new SO of
various types as a result of launches and explosions:
dp(t,h,...) is the increment of SO number at various
heights per time unit;

- the non-stationary of factors taken into account,
namely, the atmospheric density in connection with
solar activity variation during the 11-year cycle and
the intensity of new launches.

The algorithm for numerical solution of equations
(1) is developed. The compromise between the analy-
sis detailization of and the simplicity of an algorithm
is required in choosing a number of SO sub-divisions
into groups: when the sub-division is too detailed,
the memory will be not enough and the calculation
time will increase. Besides, one should take into
account, that the initial data for the environment
forecast have rather high uncertainty, which makes
the excessive algorithm detailization senseless.

3.1. CONSTRUCTION OF THE ALTITUDE-
LATITUDE DISTRIBUTION OF SPATIAL
DENSITY [2]

The developed technique has some similar features
with well-known D. Kessler’s technique [3].
Characteristic features of our technique are as
follows: the problem of the total SD concentration
construction is solved on the basis of histograms of

distributions p(hp), p(e) and p(i).

The algorithm basis. We denote the altitude-
latitude distribution of the SD number in a volume
unit (the spatial density) as p(h,p). Here h is the
altitude of a point over the Earth surface, ¢ is the
geographic latitude of this point.

The following formula was deduced for
function p(h,o):

F(p)
ph,p)= —————F—-
2:r2‘(ll +R)2 Ah ®
'h.[ IAT(hpre)(I)(hp!e!h)p(hp )p(E)Ihpde
P €
Here R is the Earth radius,
2
_(1-e¢f( h+R
d:’(hp:e:h)“‘ !_l_ez (hp +R) ’ (3)
p()-di

F(cp)=j’———-—————£— , for sinizsinp. (4)
i\,.sinzﬁ-sin @

A7 (hp,e) is the normalized (in fractions of a
period) time interval, during which the SD with

elements h pr € is situated in the altitude range of

(h,h+Ah).

It follows, that the altitude range should be sub-
divided into intervals, and formulae (2, 3 and 4)
should to applied the for spatial density calculation
at points of space with various altitudes and
latitudes. Here it is convenient to use the same sub-
divisions of arguments, which are applied in

histograms p(hy), p(e) and p(i). Then the integrals
in (2) are replaced by the appropriate sums.

3.2. CONSTRUCTION OF THE VELOCITY
VECTOR CHARACTERISTICS
The principles of the technique given below were
presented at the Space Mechanics Symposium [4],
but were not published.

The problem statement. Let us consider the
arbitrary point in the near-Earth space with
spherical coordinates r, ¢, A. Assuming the SD
spatial density p(r, @) to be known, we determine the
number of objects, which pass in this point's vicinity
through the cross-section of size 8F per the time of
one period (one revolution), and construct the
azimutal distribution of frequency (probability) of
such passages p(A).

Basis of the algorithm. The total number of
objects being in the spherical layer (r, r+or) is o
n=p(h)-or, where

) /2
pth)=27-r> [ph,p)-cosp-dp. (5
—n/2
Only a small fraction of dm passes in the given
point’s vicinity. The problem is: to determine the
number of objects which pass in such a manner, that
the shortest distance 8b (along the binormal) from

the given point satisfies the condition:
b|<sér/2. (6)

Taking into account the above considerations, all
possible trajectories are determined by two elements:
inclination i and ascending node longitude Q (that
will be counted clockwise from the given point longi-
tude). For the trajectories passing strictly through
the given point these elements satisfy the relation
tgi-tgQQ=tgp. (7)

If for any value of Q and i=f(Q2) we determine such
deviations 8Q and 3i=f(6Q2), that the condition (6)
is valid, then it will become possible to determine
quantitatively the sought fraction of objects from a
priory specified distributions p(i) and p(Q2) and from
the relation

&l(ci)) =p(i) -p(Q) co-XD. (8)
This is just the fraction of objects from the on
number, which have the node longitude within the

(Q, Q+58Q) interval and pass through the db-vicinity
of the given point. There exists a single-valued



correspondence between the elements and velocity

vector direction azimuth, namely
cosi sin €

= . 9)
cose ;isinzﬂ . cos* @ + sin® @

The value of azimuth relates to the same quadrant,
as the ascending node longitude value.

The basic problem consists in finding, for the set
of trajectories i=f(g, (), such 8i and 6Q values (the
"tube" of trajectories), that the condition (6) be
satisfied. Once this region S is constructed, the

curvilinear integral of the first kind
dn(5b) = | pi)- p(Q)-dS. (10)
S

will determine the fraction of objects from the dn
number, which are situated inside the "tube"
mentioned above. As a result of this "tube"
construction, the curvilinear integral is presented as
an ordinary integral

27
&(a’)=r-m¢; é[)p(ﬂ)-p(i)-.s'ini-dQ, (11)

Sin A =

The inclination i in the integrand is associated with
the ascending node longitude by relation (7). The
total number of objects, which pass in the given
point's vicinity through the cross-section of area
OF=08r-6b per one period time, is equal to

27
p(h)-&-a:(a:)=£-ﬂ,ﬂ- [p()-p(i)- sini-dQ. (12)
r sing
So, the first problem stated above is solved. Now
we shall pass to the construction of objects’ density
distribution in azimuth p(A). This density satisfies
the relation

jp(A)dA =1. (13)
We shall make use of expression (11). The quantity
b
- 1 . 171 . — ¢ . AQ l
- Sm‘pp(Q) p(i)- sini-AQ = D(Q) (14)

that corresponds to specific values of i, Q elements
and to the discrete increment AQ), characterizes the
number of objects (the fraction of dm), which fall

inside the ob-vicinity of the point under
consideration. All these objects pass through the

azimuthal sector (A, A+AA), where

dA
A=——AQ. 15
AA =-5 (15)

The derivative is determined from the relation (9). It
follows from (14) and (15), that the azimuthal SO
distribution density will be

dA sini dQ
A)=k- Q/(—— =k. -—-p(Q)-p(i) .(16
P(A) =k-0(0) /{ g5) = k-5 T2-0(0) 8(1)-(16)

Here some simplification was applied, that does not
have any principal significance. The constant
parameters are replaced here by some normalized
factor k which is determined from the condition (13).
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Explanation. The Monte-Carlo method is applied
to construction of the discrete distribution p (A) (the
histogram) on the basis of formula (16). The
ascending node longitude value gets out on cast lots.
The inclination and azimuth values are calculated by
formula (7) or (9), respectively, for chosen values of
ascending node longitude and latitude. The
particular azimuth sub-division interval corresponds
to this azimuth value. The summation of density
estimations is made for each of sub-division intervals
in accordance with the right-hand part of expression
(16). The normalization of obtained histograms is
made on the basis of condition (13) after completing
the random choice.

For obtaining rather stable distributions p(A) the

number of implementations in applying the Monte-
Carlo method should be not less than 10 000.

4. THE ESTIMATION OF SATELLITE
COLLISION PROBABILITY AND VECTOR
VELOCITY PARAMETERS [5]

The problem statement. It is assumed that the
spacecraft has spherical shape and moves over the
known orbit. The concentration of SD particles of
different sizes at any near-Eatth space (NES) point
is supposed to be known as well. The SD velocity at
the given altitude can be calculated to sufficient
accuracy by the elementary formula for circular
orbits. The statistical distribution of possible SD
velocity directions at any NES point is also
considered to be known. Such a description of
velocity assumes, that the flux of particles is planar.
This assumption is valid, because the most part of
orbits are close to circular ones. Thus, the complete
statistical information about SD - their
concentration and field of velocities - is available.

The SC are also assumed to be essentially larger
in size than the fragments, the danger of collision
with which is estimated. It is required to estimate the
average number of SD which cross the SC surface
per time unit (a year).

The basis of an algorithm. The technique of esti-
mating the average expected number N of collisions
of spherical-shaped SC with SD is based on

integrating the following differential equation:

AN 2
——=F-pt)-| [ptA)Viat4)-dd|  (17)

dt 4=0

Here: t is the time; F is the cross-section area of a
sphere; p(t) is the space debris density (the number
of SD in a volume unit); A is the direction azimuth
of possible collision of SC under consideration with
other objects; p(t,A) is the density of distribution of
objects' flux directions at the given point of space;
V o1(t,A) is the azimuthal dependence of collision
velocity at the given point. The relative velocity
is equal to the vector difference between SD
and SC velocities. The relative velocity direction is
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characterized by its deviation AA from the tangential
component of SC velocity only. This angle is equal

to
AA=rn—- Ac—-Asp )/ 2. (18)

Here indices SC and SD denote the azimuths of the
velocity vector direction of the given SC and some

SD, respectively. The relative velocity value V .o is

determined by the formula
Vel #2-V. -cos(AA ). (19)
The right-hand part in formula (17) has a
meaning of instant value of the SD flux through the

surface of a given sphere. This right-hand part is
almost a periodic function with the period, equal to
the time of one revolution. Therefore, to determine
the average flux value it is necessary to integrate
equation (17) over one revolution interval interval
and to divide the result by the SC period. In so doing
the calculation of the integral in the right-hand part
of expression (17) is replaced by summation of inte-
grand function values with an azimuthal step equal
to the discreteness of histogram specification p (t, A).

The above technique allows to take into account in
detail the variability of SD flux as a function of
orbital elements of SC under consideration and its
position in space. The technique uses the condition,

that variable functions p(t), p(t,A) and V .., appe-

ared in the right-hand part of expression (17), are
known. The construction of these functions is carried
out with the help of methods mentioned above.

The proposed technique also allows to calculate
rather simply various characteristics of expected
SC/SD collisions: the distribution of directions of SD
approach at possible collisions as well as the density
of distribution of relative velocity values. These
characteristics are rather simply constructed on the
basis of formulas (18) and (19), which allow to
establish the relation between the instant value of a
flux in the elementary sector dA

F-pt)-ptA)-Vyelt, A)-dA (20)
and appropriate values of A and V ..; . Then the

summation of estimations (20) in corresponding

"boxes" of histogram of distributions p(AA) and
P( V ;o ) is made. The normalization of histograms

is carried out after completing the integration.

5. THE ACCOUNT OF SHAPE AND
ORIENTATION OF TYPICAL SPACECRAFT
MODULES [6]

The average value of a flux determined on the basis
of equation (17) for a spherical-shaped SC with the
cross-section area of Fi A is designated by Fy. For

other shapes of SC the SD flux through their surface
can be calculated by simple formula

P=CNFR. (21)

Factor (N takes into account here the influence of

SC shape and its axis orientation. This factor is
determined by formula

[cosy (AA)p(A A)-dF

(N = | S — | (22)
FRA
Here y(AA) designates the angle between the external

normal to an elementary arca of SC surface and the
arbitrary direction of a relative SD flux; Fyg 4 is the

characteristic area of SC under consideration; p(AA)
is the distribution of directions of SD approach at
possible collisions. The integral in the right-hand
part of (22) is taken over the whole external surface
of SC under consideration with regard to the SC
shape and orientation (without account of the

shadow).

6. THE APPLICATION OF SPACE DEPRIS
MODELING
The algorithms and programs for solution of
mentioned problems were developed. The software
module was integrated into a complete set of
programs, called “Space Debris Prediction and
Analysis” (SDPA-model).

The first version of this model was ready at the
end of 1992 [7]. Many studies were carried out with
the help of this model [8,9,10,11,...]. The model has
been used in a number of Russian organizations:
Center for Program Studies, RSC "Enrgiya",
TSNIIMASH, " Krasnaya Zvezda " and "Vympel".
The second version is now in progress.

6.1. The reliability of results is provided by
updating the parameters of above-mentioned
algorithms from the known experimental data. The
flux of fragments of various size, passing through
the 50-km layer of Haystack radar’s field of view at

the 900 km altitude, was modeled.

I
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Figure 1. Cummulative measured and modeled flux

of objects of various sizes for the altitude range

of 850-950 km
The results were compared with the experimental
data on a flux, published in paper [12] and related to
the zenithal direction of radar’s axis. These data are
presented by the authors for observations in
different years separately (5 plots for the years
1990 to 1994, respectively). For further use in the




analysis we have taken the mean estimations, as
well as the maximum and minimum values of a me-
asured flux. One should note that for some sizes the
authors attend their experimental estimations of the
flux with corresponding standard deviations. These
deviations grow with increasing of object’s size and,
as a rule, greatly exceed the actual scatter of estima-
tions for different years. The standard deviations
data were taken into account in the analysis.

The model and experimental data are presented

in Figure 1. They show that for fragments larger
Total SD number for the end of 1996
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than 1 cm in size, as well as for fragments sizing
larger than 8 cm, the model and experimental
estimations of the flux are in a good agreement. For
the other sizes of fragments the model data slightly
exceed experimental ones, but in all cases they lie
within the region of possible standard deviations.

6.2. Current Space Debris Environment. Table 1
presents the total number of objects of various sizes
with perigee heights in the altitude range of 400 to
2000 km.

Table 1

_No.ofrange,j | 1 [ 2 | 3 | 4 | S5 | 6
from0.5 | from1.0 | from2.0 to| from4. to | from8.0 | morethan
to 1.0 to 2.0 4.0 8.0 to 20 20
The data on a current distribution of perigee and the number of technological fragments are
heights for fragments of various sizes were re- preserved.

calculated into corresponding values of SOs
concentration. The obtained results are presented in

Fig. 2.

550 750 950 1150 1350 1550 1750 1950
Altude (km)

Figure 2. Distribution of perigee altitudes of SD
various sizes, 1996

6.3. Prediction of the Environment. The analysis
of the evolution of SD altitude distribution was car-
ried out for particles sizing larger than 1 cm. 4 scena-

rios of future technical policy were considered here.

Forecasting of a number of SDs larger than 1 cm in
size for various future technical policy options
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Figure 1.

Scenario 1. The intensity of launches and SD
fragmentation is preserved the same as in 1991-1995
years (“Business-as-usual”).

Scenario 2. The average number of explosions is 5
times reduced, whereas both the intensity of launches

Scenario 3. The average number of explosions is
reduced down to 0, whereas both the intensity of
launches and the number of technological fragments
are preserved (“No-explosions™).

Scenario 4. The number of technological fragments
(remained in space) is 2 times reduced with the
intensity of launches preserved; the explosions are

completely excluded (“Deorbiting in 2000%).

Number of sDg  NUmber of SDs larger than 1 em in size in the 100 km

in 100 km ati-  altitude bin according to the forecasting data (2100),
de bin as well as initial distriburion in year 2000

Figure 2

The environment forecasting was carried out up
to the year 2100. The results are presented in
Figures 3 and 4. The change of SD number for
particles sizing larger than 1 cm in the altitude range
of 400 - 2000 km is shown in the first of Figures. The
resulting data indicate, that the SD number grows in
all scenarios, except the latter. The greatest growth
(more, than 2 times) takes place, naturally, under the
first scenario conditions. For Scenario 4 some
decrease. of SD number will be achieved in
comparison with the initial level of technogeneous

pollution in 2000.

The expected altitude distributions of SD in
2100 and the initial distribution in 2000 are shown in
Figure 4 for all scenarios considered. These data give
rise to the important, in our opinion, conclusion,
that the growth of SD number at altitudes higher than



NS

38

1000 km will be kept even in case of the strongest
decrease of SD formation intensity (Scenario 4).

6.4. General characteristics of SDPA-model: this

Principal characteristics of SDPA-Model

Forecastoftheenvironment [ Fulfiled

Modeling method

Users’ possibilities for solving the above mentioned

yroblems (items 5 -7

NI

=)

.5. The example of one of sections of the model menu
is shown in Figure 5.
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