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ABSTRACT

We present the preliminary results of modelling the
long-term dynamical evolution of space debris by
means of a symplectic mapping technique. The map-
ping we use is an implicit, first-order integrator ap-
plied to averaged equations of motion, with a step
equal to the orbital period. The method guarantees
the absence of spurious secular trends in semi-major
axis, eccentricity and inclination. In 1ts preliminary
version, our integrator includes zonal harmonics up
to degree 4, resonant tesseral harmonics up to degree
and order 6, Lunar and Solar perturbations, direct
Solar radiation pressure, and atmospheric drag. We
demonstrate the application of our software in the
problems of GTO objects lifetime and LEO objects

breakup.

1. INTRODUCTION

Like other orbital problems of celestial mechanics,
the problem of space debris may require accurate in-
tegrators for particular objects and faster, but less
accurate, algorithms to obtain some qualitative in-
formation about a great number of objects. The
latter class usually contains analytical and semi-
analytical theories. The method presented in this
paper 1s semi-analytical, which means that we nu-
merically integrate analytically averaged equations
of motion. The salient feature of our theory is the
use of a low order symplectic integrator — namely, the
implicit, generating function, order one integrator®.
When combined with the particular integration step
like an unperturbed orbital period or a period of a
perturbing force, such integrator is usually called a
symplectic mapping.

2. THE METHOD AND SOFTWARE

In this paper we describe the version of our method
as implemented in the FORTRAN package dubbed

“SYMPSAT 1”. When discussing the perturbing for-

ces, we only focus on some non-typical details intro-
duced during the development of the program.

2.1 Integrator

The process of integrating the motion consists of rea-
peted integrator steps — each jumping over the inter-
val of one orbital period 7 (the value of 7 contains
first-order contribution of Js harmonic). One can
also interpolate between the endpoints of two steps
taking some fraction of 7. We follow the trajectory

of an object in Poincaré variables z;, X; related to
the classical Dealaunay set as

zy, = l4+g+h,

X1 = L,

z; = —V2(L—-G)sin(g+h), (1)
X, = V2(L-G)cos(g+h),

z3 = —/2(G— H)sinh, |

Xs = /2(G— H) cosh,

with uppercase momenta and lowercase coordinates.
At the n-th step of integration we solve by iterations
(on average 4 iterations per step) a set of implicit
equations

X;(n) _ -Xi(ﬂ_l) + ,],_1—;;:(_/1{(1".'.),:E(r:»-—l)?t(-n—l)):I
£ = 2" 4o fi(X™), (0 =) (2)
t(n) = =Dy 7

The right-hand sides Fj, f; are the sums of Hamilto-
nian and dissipative (only atmospheric drag in our
case) contributions

P o= 53(?:) n ( ngrag]>j
f= %(}fi) +<i,‘[€drag]>‘ (3)

K is the Hamiltonian function of the problem and the
time derivatives labelled “[drag]” are derived from
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Gauss equations. The symbol ( ) denotes the average
with respect to the mean anomaly, evaluated along a
Keplerian orbit. In the absence of dissipative forces,
the mapping defined by Eq. 2 has no spurious secular
trends in energy and action-like variables; the secular
error in angles is only linear in time!. After including
a weak drag perturbing the motion, we still have a
mapping with remarkable stability properties?.

One special property of the mapping considered 1s
worth noting: although we integrate a mean trajec-
tory, the echo of a short-periodic noise re-enters the
output as a numerical artifact inherent to all sym-
plectic integrators. The amplitude of these numeri-
cally generated oscillations depends on the order of
the integrator and on the time-step. Our practice
shows, that with the first-order mapping and with 7
equal to one orbital period, we obtain an amplitude
comparable to that of short-periodic perturbations,
although 1t 1s not a strict rule.

2.2 Hamiltonian perturbations

Being 1nterested in qualitative effects only, we ave-
raged all the perturbing potentials only at the first
order. The important exception 1s the potential of
J2 harmonic — the libration of the argument of pe-
rigee can occur only at the second order of the ave-
raging transformation. For the terms in JZ we take
the “centered” Hamiltonian of Métris and Exertier®.
Wherever possible, we do not introduce the expan-
sions in powers of eccentricity, thus aiming at the
application of the “SYMPSAT” for high-eccentricity
orbits. This requirement 1s satisfied in all zonal terms
of the geopotential (we take J,, J3, and J4 harmo-
nics), 1n a lunisolar potential and in a direct radiation
pressure potential.

The lunisolar potential depends on the positions of
the Sun and the Moon; simple (but not Keplerian!)

ephemerides for the perturbing bodies are based on

the formulas given in The Astronomical Almanac*

on pages C24 and D46. As an option, one can use
doubly averaged potentials independent of the lon-
gitudes of the Moon or the Sun. For the Moon, as

well as for the Sun, we take only the term with the
second degree Legendre polynomial P, from the clas-

sical expansion of the perturbing function.

In the direct radiation pressure potential we ad-
opt a traditional simplification neglecting the diffe-
rence between the vectors Earth—-Sun and satellite—
Sun. We also assume a constant value for the factor

satellite surface

(reflectivity coefficient) x : .
satellite mass

Tesseral harmonics of the geopotential may pro-

duce significant long-periodic effects only when a re-
sonance occurs. In this part, having not found ano-
ther way, we adopted the expansion of Kaula-Wnuk?®
in powers of eccentricity. The harmonics up to de-
gree and order 6 are included, and the allowed ma-
ximum power of the eccentricity i1s limited only by
practical factors like computer memory available and
computation time. At the beginning of the integra-
tion, all possible frequencies are checked, and reso-
nant combinations of indices are stored. The eccen-
tricity functions of Kaula G(e) and their derivatives
GG’'(e) required for the resonant terms are tabulated
at 8 values of e; father in the program this grid ser-
ves to evaluate cubic splines or — for some functions
— a “quasi-quadratic” approximation. The latter 1s

Grpq(e) ~ el (A+ Be?), (4)

very efficient for e < 0.1 when applied to all eccentri-
city functions except () , o(e), and to all derivatives
except G} 4,(e); it requires only two constants A,
B to be stored. The combination of these two me-
thods guarantees the relative error of G(e) or G’(e)
not exceeding 10~% for e < 0.1, or 1072 for e < 0.9.

2.3 Drag perturbations

Averaging the influence of atmospheric drag 1s dif-
ficult for two well known reasons: 1.) it is hard to
give an accurate model for the physical state of the
atmosphere, 2.) the quadratures occuring in Gauss
equations are too complicated for analytical expres-
sions. “SYMPSAT” permits any atmosphere density
model to be included, but in the first version we take
only the model of Jacchia et al. for T, = 1000 K, as
given 1n Ref. 6. We derived polynomial approxima-
tions for the logarithm of density as functions of the
inverse of altitude

6

log(p) ~ ) ax (1/h)F, (5)

k=0

with four sets of a;, coeflicients for different intervals
of 1/h. The relative error of density computed from
this approximation 1s less than 0.006. We added a
quadratic extrapolation beyond A = 2500 km

log(p) =~ —40.28608 4 1.125714/h
+0.0367/h?, (6)

where h should be expressed in Earth radii, and p is
in kg/m?.

The perturbing force depends on the velocity of a
satellite with respect to the atmosphere. We assu-
med that the atmosphere has the angular velocity of
FEarth rotation, and in all expressions we neglected



the squares of the ratio

Earth rotation rate

satellite mean motion

We can state, that our assumptions are to a large

extent compatible with those of Sterne’. For the
purpose of “SYMPSAT” we derived Gauss equati-
ons for drag effects in Delaunay variables from the

scratch — they are given in a special report available
from the first author upon request.

Averaging required the evaluation of quadratures
of a general type

Q=/M®WWNﬂ (7)

where ¥ is the true anomaly (actually, wherever 1t
i1s more convenient we switch to eccentric anomaly
instead). The presence of density p as a factor 1m-
plies a rapid drop of the value of p W away from the
perigee ¥ = 0, even for moderate eccentricities. On
the other hand, when e is small, the integrand p W
is either almost sinusoidal or almost constant. To

evaluate () we start by checking the ratio

p(0) W(0)
Am)W(m) | (8)

When o is less than some treshold value (usually
between 50 and 300) we can approximate the integral
Q@ by a three-point (J = 0,7/2,7) trapezoid rule.
Otherwise, we take the approximation of Zeldovich
and Myskis®

p(0) W(0)
p(0) W(0)]" |

The relative error of so computed () does not exceed
0.15 in most cases and it tends to zero when the
eccentricity diminishes. This approximation works
really fast, and the error of 0.15 is acceptable taking
into account all simplifications concerning the state

of atmosphere.

Q ~ p(0) W(0)4/2m (9)

3. EXEMPLARY APPLICATIONS

Our ”SYMPSAT 17 is a basic version, still requiring
further development, but 1t can already be exploited
in quite various problems concerning the orbital mo-
tion. In all the examples we give, the ratio of the

effective surface to the mass 0.01 m?/kg was taken
(the same for a satellite or its fragment) and the re-

flectivity coefficient was 1.14. The programs were

executed on a PC 486DX2 and on a SUN SPARC 20
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(2x125 MHz).

3.1 Low orbits

As a first example we trace the orbital evolution of a
swarm of 1000 of fragments originating from a parent
satellite. The satellite’s orbit had the apogee altitude
h, = 648km, e = 0.00815, : = 90°.01, w = 70°, and
2 = 80°. We assumed an i1sotropic explosion ad-
ding 750 m/s to each fragment, and the orientation
of this velocity increment was randomly generated.
The results are presented in Fig. 1. Only 545 pieces
survived the first 90 minutes and then their spatial
distribution became more and more isotropic, with
447 pieces remaining after 4 years.

3.2 Geosynchronous transfer orbits

The second application was inspired by the work of
Siebold and Reynolds®, discussing the dependence of
a GTO lifetime on the initial orientation of the or-
bit with respect to the Sun. Figure 2 (compare with
Fig. 5 in Ref. 9) shows the results obtained for a
given perigee altitude of 250 km and apogee altitude
of 35758 km, the argument of perigee being w = 0.
We show the dependence of the lifetime on the right

ascension of the Sun « and on the right ascension of
the satellite’s ascending node 2 (thus on the day and
hour of launch respectively) for different values of

orbital inclination :. Our model of orbital motion is
more elaborated than in Ref. 9 (we take more pertur-
bing factors into account). The semi-analytical cha-
racter of our mapping allows to avoid the problems
at certain values of inclination where the analytical
formulas of Siebold and Reynolds® break down; we
note especlally ¢ ~ 46.°37, where the denominator
w + €2 tends to zero. We must acknowledge however,
that the purely analytical approach of Ref. 9 1s pro-
bably more efficient for orbits permitting its appli-
cation. The problem is indeed fairly time-consuming
for ’SYMPSAT”, if one requires a dense grid of o
and 2. We took a grid of 100 x 100 points and each
ficticious satellite was integrated on the interval of 30
years (unless it re-entered the atmosphere before re-
aching this age). A test run — practically equivalent

to integrating more than 10° revolutions of a single
satellite — took about 4000 minutes on SPARC.
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Figure 1. The evolution of a swarm of fragments resulting from a ficticious explosion of a low satellite (see
Sect. 3.1). To the left, the view from a direction perpendicular to the initial orbital plane of a the primary
object; to the right — from above the North Pole. N is the number of fragments, T" 1s the time after the esplosion
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Figure 2. Long life orbits for GTO objects with an initial perigee altitude 250 km (see Sect. 3.2). Black dots
mark these couples of initial right ascensions of the Sun « and of the ascending node 2, for which an object
remains in space at least for 20 years. Each plot was obtained for a different 1nitial inclhination 2.



322

5. REFERENCES

1. Yoshida, H., Recent Progress in the Theory and
Application of Symplectic Integrators, Celestial Me-
chanics and Dynamical Astronomy, Vol. 56, 27-53,
1993.

2. Zhou, J., et al., Mapping Models for Near-
Conservative Systems with Applications, Celestial
Mechanics and Dynamical Astronomy, Vol. 60, 471-
487, 1994.

3. Metris, G. and Exertier, P., Semi-Analytical
Theory of the Mean Orbital Motion, Astronomy and
Astrophysics, Vol. 294, 278-286, 1995.

4. The Astronomical Almanac for the Year 1993
Washington /London, 1992.

0. Wnuk, E., Tesseral Harmonic Perturbations for
High Order and Degree Harmonics, Celestial Mecha-
nics, Vol. 44, 179-192, 1989.

6. Zarrouatl, O., Trajectoires Spatiales, CEPA-
DUES, Toulouse, 129-130, 1987.

7. Sterne, T., E., Effect of the Rotation of a Plane-
tary Atmosphere upon the Orbit of a Close Satellite,
American Rocket Society Journal, Vol. 29, 777-782,
1959.

8. Zeldovich, Ya., B. and Myskis, A., D., Elements
of Applied Mathematics, Mir, Moscow, 76-82, 1976.

9. Siebold, K. H. and Reynolds, R., C., Lifetime
Reduction of a Geosynchronous Transfer Orbit with
the Help of Lunar-Solar Perturbations, Advances in
Space Research, Vol. 16, No. 11, (11)155-(11)161,
1995.



