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ABSTRACT

Dust particles orbit the Sun with velocities of tens of
km/s and represent hazard for space vehicles. They also
carry some information about the solar system structure
and its evolution. Knowing more about them increases
our knowledge about the behavior of the interplanetary
medium.

This paper presents the mathematical expansions set up
to take the impacting -directionality in both the
(m,rp,VorVonVo,) and the keplerian invariants phase space
into account. We assume axisymmetry of the cloud and
symmetry about the ecliptic plane. A bi-gaussian model
with both in-ecliptic and out-of-ecliptic temperatures 1s
worked out thanks to an algorithm which minimizes the
error in fitting the full set of available data. It fits the
flux along Galileo trajectory but needs at least the
interstellar contribution to fit the flux detected on-board
Ulysses.

This formalism produces an analytical out-of-ecliptic
mapping of the velocity distribution and allows to
compute macroscopic quantities. The adiabatic 1invariant
description opens possibilities for a secular evolution
model.

1. INTRODUCTION

Ulysses and Galileo have enriched our knowledge of
interplanetary dust populations with directional
information. Adding these new observations to the
previous ones, we defined a new a priori mathematical
representation of the cloud. It finds its root in the
equivalence between in-ecliptic description and
adiabatic invariants phase space. Hyperbolic and elliptic
trajectories are treated in the same way. The available
data is sorted in a database which may be updated with
future data of upcoming missions.

We will first introduce the canonical variables in the
invariant phase space and the main symmetry
assumptions made to reduce the number of descriptive
variables. Then we produce the new parametric
mathematical representation from the in-ecliptic
distribution function and 1its attached statistics. The
model parameters are tuned to minimize the error made
while reproducing the measurements. Finally the
resulting model is compared to Galileo and Ulysses data
to evaluate its quality.

2. MATHEMATICAL REPRESENTATION OF
THE DUST POPULATION

The dust cloud has a complex behavior. Each particle 1s
submitted to several physical processes. The main force
is Sun gravity but the keplerian motion is perturbed by

secondary dissipative effects which structure the mass
and velocity distributions. For small particles the
Poynting-Robertson effect competes with radiation
pressure whose apparent effect 1s to reduce the solar
attraction. The former one spirals the particles towards
the Sun whereas the latter may drive particles on
hyperbolic motion after fragmentation or collision in the
vicinity of the Sun where the density 1s higher. For very
small particles, electromagnetic field enhances the
dispersion of the velocity. In this study we will not try to
reproduce these effects but we will present an a-priori
mathematical representation of the dust population,
assuming that on a short time scale the orbit of each
particle is keplerian.

2.1 Adiabatic invariants of the keplerian motion

In the action-angle set of variables defined in classical
mechanics actions are adiabatic invariants. For cyclic
motions such as keplerian closed orbits, they can be

derived using the orbital parameters (q, e, i, w, {2, M)

l=M =n(t-—-t0),

g = J—ual-e , g=w, (1)
(1 e )cosi, h=L.

The set (£.¢.#,l,g,h) 1s called the Delaunay variables. £
is directly linked to the total energy &£, & is the
magnitude of the angular momentum and # is the z-
component of the angular momentum. Unfortunately the
hyperbolic motion is not cyclic, but we know that
hyperbolic motions have the same physical origin as the
elliptic ones. This origin 1s gravity. It gives reasons to
build an extension of the Delaunay variables for
hyperbolic trajectory. [, g, h are kept but £ 4% are
extended to

4=-@,¢=\/‘(e -1), Jyae (2 =1) cosi  (2)

The Jacobean function of the transformation from
position-momentum space to this new set of variables is
equal to 1. This shows its canonicity.

2.2 Choice of variables

The whole (£.4.%) space 1s not accessible. Both couples
(£.49) and (4.%) must verify the following inequalities

%=41_ez <1 and [#<g, 3)

which define accessible and forbidden zones. The
accessible (£. ¢) domain 1s not continuous and we

prefer to replace £ by &, where the (£,4) definition
domain 18
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2 2
1+ gf > 0. (4)

u
Unfortunately, (£.4.#,,g,h) 1s not a canonical set

anymore, but the Jacobean function of the
transformation 1s very simple.

2.3 Axisymmetry, symmetry about the ecliptic

Dust cloud observations do not show any strong
deviation from axisymmetry about the South-North
ecliptic axis. Moreover zodiacal light observations
have shown that a plane of symmetry exists very close to
the ecliptic (about 7 deg. inclined on the ecliptic plane).
As an approximation we will suppose the cloud
axisymmetric (H;) and symmetric about the ecliptic
plane (H,).

2.4 Relation with the canonical representation

Assumptions H; and H, involve simplifications in the
number of variables used to describe the cloud either 1n

(r,6,z,v) or (€.4.%M,w,£2) variables. H; and H; allow
us not to consider the azimuthal angle & and negative z
in the classical phase space, and the ascending node (2

in the invariant one. Averaging the number of particles
on a single trajectory, we suppress the mean anomaly
reducing the descriptive variables to (€. 4. #,).

This averaging procedure has consequences on the now
reduced (r,z>0,v) phase space. We assume that the local
particle density on a single trajectory is proportional to
the inverse of the velocity magnitude (H;). Thanks to
H;, we can rebuild the entire distribution along the orbit
knowing the number of particles present at one orbital
position. The most 1nteresting representing position of
the whole trajectory is the ascending node (rg,vy)
because every kind of keplerian trajectory has at least
one point in the ecliptic. In the particular case of a
unique in-ecliptic descending position, Hy allows us to
consider it as the symmetric of an ascending node.

Let f be the velocity distribution in the reduced phase
space. The two sets of variables are linked by the
following relation

f(e.6.%.0) {2lg
——d&dgd#dw, (5)
oleg) ||

V'I]
where O 1s yielded from the normalization of the
previously explained spreading model (H3) and
involves elliptic integrals. The transformation from

(ro,Vo) to (£.4.%,w) is unique.

f(rﬂ,i?n)drud?ﬂ =

3. DESCRIPTION AND REDUCTION OF THE
DATA

3.1 List of available data, sources

We used two kinds of measurements: in-situ records
made on-board space probes, and Earth-bound remote
measurements. The most recent 1n situ data set has been
gathered by Griin et al.*” from Galileo and Ulysses dust
detectors records. Pioneer'’ 10&11, Helios'! I and II

fluxes and zodiacal light measurements detected along
the trajectory are older sources of data.

Earth-bound observations of meteors produced a
database of recorded events containing radiant direction
and mass estimations which is maintained by IAU.
Levasseur-Regourd”” gathered zodiacal light 1ntensities
observed from Earth giving some out-of-ecliptic
information. Griin’s interplanetary flux’ gives the dust
particles mass distribution at 1AU.

We built a database which contains the necessary
information associated to the measurement such as
trajectory, sensor detection, detection threshold curve
for impact records, or direction of the line of sight and
distance of observation for zodiacal light. This database
1s easy to maintain and may be updated with upcoming
measurements from future missions.

3.2 Making use of the Galileo and Ulysses data sets

For each recorded event on-board of Ulysses and
Galileo, the detector axis direction, the impact velocity
and the impact date have been stored. We removed from
the data set’ the following events: events with a too
high error factor, events without associated directional
information, events within a planet influence sphere,
events which are clearly identified to be of interstellar
origin.

First, knowing the spacecraft trajectory we computed a
raw velocity distribution without taking into account the
measurement error. An example of the resulting
distribution 1s shown on Fig.1.

Then we use a Monte-Carlo sampling method to
reproduce the measurement error in mass, impact
velocity magnitude and impacting direction, using the
attached error factors and the relative sensitive area. The
uncertainty on the impacting direction smoothes the non
significant peaks but keeps the main one (Fig.1).

3.3 Choice of the representation

The distributions in each direction show a strong peak
(Fig.1) and decrease very fast for high velocities.
Moreover, the physical phenomenon that disperses
particles out-of-ecliptic and the one that structures the
cloud within the ecliptic are different. For these reasons
we represent the cloud by a bi-gaussian function f that
includes the mass distribution’. The expression is the

following
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Fig. 1 Velocity distribution. Galileo events at 1.175 AU. Solid line is
the Monte-Carlo processed velocity distribution and the shaded
distribution 1s the raw data distribution.
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Fig. 2 Average azimuthal velocity as a function of
radial distance rp and mass m.

where m is the mass, r, is the radial distance in the
ecliptic, ve. is the in-ecliptic velocity vector and vy, the
out-of-ecliptic velocity component. Both standard

deviations ¢, and o, and both average in-ecliptic
velocity vector U, and out-of-ecliptic velocity
component U, are supposed to be function of ry and m.

In order to account for the density decreasing with the

radial distance we include a power law 75~ (v>0)

3.4 Choice of gaussian parameters functions of (r, ,m)

The choice of these functions is based upon a statistical
study of the impacts on Galileo and Ulysses, the meteor
radiants'® data set and upon considerations on dust
dynamics. We have distributed the events shown on
Fig.3 into 6 mass bins ranging from 10%° to 10 kg, and
12 radial distance bins ranging from 0.5AU to 5.9AU. In
each cell we computed the average velocity components
and the associated standard deviations of the processed
data. Fig. 2 represents the average azimuthal component
and its relative position with respect to the circular
orbital velocity at the same distance. The quality ot
statistics in a given bin is directly linked to the time
spent by the probe in that bin. Galileo flew once by
Venus and twice by the Earth. This improves a lot the
statistics quality between 0.7 AU and 2 AU where a lot
of impacts have been detected.

Statitics show an average out-of-ecliptic velocity
component very close to O for each range of mass which
confirms assumption H,;.  Therefore in  this
representation, U, 1s set to zero.

3.4.1 Radial velocity

The radial velocity is strongly biased. In its orbital
motion, Galileo preferentially detects particles which
orbit the Sun with a slightly positive radial velocity if
Galileo moves towards the Sun and slightly negative if
Galileo moves away from the Sun (the most probable
direction is about 60 deg. inclined on the positive spin
axis?). The same phenomenon appears for Ulysses, but
this time it prefers positive radial velocity as it remains
only in the ecliptic during its journey to Jupiter and
because the most probable direction is 95 deg inclined
on the positive spin axis’. On a closed orbit, two orbital
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Fig. 3 Events in the (ro, log m) plane showing
statistics quality for each bin.

positions exist with the same radial distance. They have
opposite radial velocity components which are both
taken into account in our formalism (H;). Thus, the
average is zero. The Poynting-Robertson effect spirals
intermediate-sized (10" to 10 kg) particles towards
the Sun reducing eccentricity towards 0. This urges to
assume a zero average radial velocity for every kind of
particles.

3.4.2 Azimuthal velocity

Particles with m>10® kg are mainly on low eccentric
orbits so that their average azimuthal velocity 1s very
close to the keplerian one (Fig. 2). Beyond 2 AU the
average velocity is much lower than the local keplerian
one because particles are generally near their aphelion
where the velocity is smaller. This velocity may tend
towards zero for hyperbolic orbits of some very small
particles (m<10"* kg). The average azimuthal velocity
detected at 1 AU for prograde orbits is 29.7 km/s which
is in good agreement with our interpretation. Thanks to
statistically relevant points picked up from Fig.3, we
choose to reproduce the observed shape with the
following parametric representation

s U0 0.66+ ¢ P4*7 :
g 1+ePHT ")

which involves four free parameters ,f3,%0 and the
mass logarithm u.

3.4.3 In-ecliptic standard deviation

Near 1 AU, the statistics from 10™ to 10"° kg is good
(Fig. 3) and the computed standard deviations obtained
are quite reliable. The in-ecliptic observed standard
deviation, obtained from radar meteors radiants, is about
15 km/s. At this distance, the standard deviation
decreases with decreasing mass before reaching a
minimum. Then it increases again for very small
particles. Life of large particles (m>10" kg) is
dominated by collisions which give to this population a
natural dispersion. The Poynting-Robertson effect
narrows the velocity distribution for smaller particles
(10 to 10°® kg) until the high number of collisions due
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to high density of very small particles (m<10™* kg)
Increases again.

As we have very little information on particles with
m>10"° kg except in the vicinity of 1AU, we will
consider that their dispersion in the ecliptic is almost
constant with the radial distance. Collisions increase the
dispersion at low heliocentric radial distances. In order
to account for these tendencies and to keep this shape
when tuning parameters are varying, we decided to take
this two-fold representation

)

" 4 _( u—E)z -E(l-tmt{ u~u
usu.o,=|o, -Ac,e 2 ? g
\
_ 8
1 ( _(H-E)z —%(l—tanh(u-u Dl" ( )
U200, =|0.-AC,e 18 g

\

,0‘,31, Ao, AG,, u 3 and « are free parameters.

IN

v
<|

where,a,}i

3.5 Out-of-ecliptic standard deviation

At 1 AU we observe a similar smoother valley-shape
variation with respect to mass. Very small particles
(m<10"* kg) are dispersed by the electromagnetic
effects. Leinert et al.'? suggest that the spread in orbital
inclination around ecliptic follows a law proportional to
r'?. As the out-of-ecliptic velocity component at both
ascending and descending nodes is directly linked to
sin i, we will take the same kind of law for the velocity
standard deviation. The standard deviation at large
heliocentric distances is near zero and increases near the
Sun because of collisions. For particles with m>10" kg
the standard deviation is almost constant. At 1AU the
statistics on radar meteors give about 20 km/s. We took
the following representation for the standard deviation.

( _(H_E:)Z \
G, expl —re 20 _
\ j 0.5[1+tanh ”;3" ]
O‘z — "( (u—i’)z T r ’ (9)

1+dexple 20°

\ )

where o), u”, o and B’ are free parameters.

4. OPTIMIZATION OF THE REPRESENTATION
AND DETERMINATION OF THE MODEL

The parametric representation described with equations
Eq.6, Eq.7, Eq.8, and Eq.9 is constrained by the
available measurements using a conjugate gradient
algorithm which searches for the local minimum. The
function to be minimized represents the RMS error
made by the model while trying to reproduce the
measurements. As we must assess such diverse physical
quantities as zodiacal light, impact flux, impact rate,
impacts, and velocity distributions, we use a common
way of writing the error between model assessment

val,,,; and actual measurement val,,,, . The RMS error’

1s incremented as follows
( Y2
/ 1-log J (10)
\

/

It val,,,=val,., then the increment is zero. If
val,,g>>val,,.,, or val,,,<<val,,,the increment is 1.
We will now explain how we compute val,,, for the
different kinds of observation.

val,, 1 val,, 1

RMS = RMS +[log

va meas va meas

4.1 Flux, impact rate, impacts, distribution functions

As probes orbit the Sun at very low inclination (except
Ulysses), we will consider that instruments which
perform impact detection remain in the ecliptic plane.
The expression of the number of particles which impact

the detector during a time interval At makes use of the
sensor average detection area™ S, the detection
threshold”® Th (function of impact velocity magnitude
and mass which is 1 if the impact is detected and O if
not), and the mathematical representation defined in
paragraph 3. One can write

)

.

1 ._
AN = At — h(u)10* In10 du Th(‘ﬁ’i +U-V,

o P
Wi W ()
- - B T2
.--S()’;)Iﬁ’;+U-VSP e 2633 20 dw,w,dw, da

where u=log m, w; is the thermal velocity with its
component vector w -(w ,0) perpendicular to the spin

axis and its component w, along it, U, o, and o, are the
average velocity vector the in-ecliptic and out-of-ecliptic
standard deviations for mass m and radial distance r,. A
Monte-Carlo sampling is performed to evaluate the total

number of impacts received during the time step Az. We

convert the information of each sample into impact rate,
flux and velocity distribution. For radar meteors, the
detecting surface is modeled by a flat plate whose
average sensing area is a cosine function of the angle
from the radar axis.

4.2 Zodiacal light

The calculation of zodiacal light is based upon the
scattering partition function B(6) of the particle which is

derived from Leinert et al.'® and the cross-section
partition function’ A(u). The zodiacal light observed at

distance R, along the line of sight (B,6) (Fig.4) is
reproduced by our model as follows

FURI% T oo Rma:
— 6
= Rsin y('[r 4B \) . aAw) me ary
..f'“de;f 40 +md€?f[ Y20 ] (12)
e \0‘5«/5) e O,V2
] [vr_Ur I;’
€X J\v ’ y T 1
r[}VUg 20_12 ( 10220 rO)I If'o



Fig. 4 Left: Angles involved in the zodiacal light calculation. € and
characterize the line of sight and Reps the detector position. Right:
connection between in- ecliptic and out-of-ecliptic position.

where standard deviations o, and o, are function of u
and ry, U, 1s a function of v, and v, and J i1s the

Jacobean of the (v,q Vg V0)—(rs Vi V) transformation.
For each scattering point and a given velocity v at this
point a unique ascending velocity v, is defined in the
ecliptic. Instead of using v, components as integration
variables we prefer (ryv,v,) which are more
convenient for Monte-Carlo sampling.

4.3 Results

The model gives velocity distributions that are in pretty
good agreement with the processed data (Fig. 5). The
peaks and their intensities are respected before 2.5 AU.
Beyond this limit the peak intensity and position are
different from to the processed data one. The zodiacal
light is not fitting very well the experimental data when
the observer is close to the Sun (Helios I trajectory'’)
and when the line of sight points 1n a direction close to

the Sun (¢=40 deg.). The model gives a flux impact rate

on Pioneer 10&11 close to the measurement before
4AU. Beyond this limit the model seems to
underestimate the measurements. A beginning of
explanation is the absence of interstellar particle flux
model.

The flux computed along the Galileo trajectory is in
good agreement with data and Divine’s model’ (Fig. 6).
The curve obtained during the Ulysses ecliptic traverse
(Fig. 7) from our model, clearly shows a lack of
particles in the out-of-ecliptic medium, and a little
overestimation in the ecliptic vicinity. The model does
not account for interstellar particles which are dominant
at high latitudes’. That explains the differences. The
overestimation is not yet explained.

As a summary, the model does not fit very well out-of-
ecliptic fluxes, measurements made close to the Sun and
at large heliocentric distances.

5. DISCUSSION

This mathematical representation allows an analytical
mapping of the adiabatic i1nvariants phase space

(E.46.%#,w) by means of equation Eq.6 and the following
transformation formulae from one space to the other

. 284"
v0r=—¢—51nw 1+ >
7]
( 284" 12
vm=£—~1+ I+ |—, (13)
7\ o
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Fig. 5§ Comparison between model (solid line) and Monte-Carlo
processed Galileo data (shaded curve). From left to right radial,
azimuthal and out-of-ecliptic velocity components are displayed. The
upper line represents the distance 1.175 AU and the lower one 2.075

AU
_H
Vo, —;
2
__ Fn
ro = —
284
1+ {1+ S COS@
H

This mathematical representation involves ¢ which is
the gravitational constant associated to the Sun
gravitation. For particles with mass between 107" and

10% kg the effect of the solar pressure cannot be
neglected.

Some particles may experience injections on repulsive
hyperbolic orbits if solar radiation is too strong ( >1) .

The model presented here is not yet able to include such
trajectories and cannot represent these particles. A

systematic cut-off is implemented at 10" kg where B=1.

Moreover, in this description B-meteoroids which are

produced 1n the vicinity of the Sun and ejected from
solar system on hyperbolic orbits have size beyond
Ulysses and Galileo detector threshold*”. The model for
particles under 107 kg is still uncertain.

It 1s possible with this formulation to compute
macroscopic quantities of the cloud simply using the
relation between two positions on the same orbit. The
out-of ecliptic mapping 1s the following (using H3)

Vol

f(r:Z*;’)zf(ro:‘jo)"l'ﬂ (14)

where rp and v, are function of r, z, and v. (r, z, v) are
calculated through the successive transformations (r, z,

V)= (E.G.#,0) —(ry, vp.). Macroscopic quantities may
be derived from Eq.14 as follows

_\ [V N
S [IFULC AN LA PR

If the function p is equal to 1, ¥ and v* the macroscopic
quantity P 1s density, average velocity and energy.

p— — —

*
P is the ratio of the radiation pressure to the gravity magnitude.
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6. CONCLUSION

From Ulysses and Galileo directional information and
dust dynamics considerations we derived a new
mathematical model of the dust cloud, different from the
one used by Divine.

Its results in the ecliptic are in good agreement with
measurements between 0.5 and 3 AU but 1s uncertain for

particles whose mass is lower than 107* kg. S
meteoroids and interstellar particles are to be modeled
separately in order to span thé mass range from 10! to
10" kg and enhance the model accuracy.

It vyields analytical out-of-ecliptic and adiabatic
invariants phase space mappings and macroscopic
quantities evaluation. Its gaussian shape 1s convenient
for Monte-Carlo computation techniques and the link
with adiabatic invariants is convenient for long time
scale numerical simulations such as secular evolution.
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