

TASKING SOFTWARE OF THE ESA

FLYEYE TELESCOPE
M. Hübner(1), K. Mokos(1), M. Rasotto(1), K. Davies(1),

P. Bohn (1)

(1) Terma GmbH, Bratustraße 7, 64293 Darmstadt,

Germany, Email: {mahr, knm, mras, ked,

prb}@terma.com

ABSTRACT

The ESA Flyeye telescope aims at continuously scanning

the sky for Near Earth Objects (NEOs), making it an

important part of the ESA’s Space Situational Awareness

programme. Important goals include maximizing the area

that can be covered within a nightly observation period

and to minimize the number of consecutive observation

periods for achieving maximum possible sky coverage.

Thus, the optimization of the telescope observation

schedule is critical.

The Flyeye telescope Tasking Software is responsible for

planning and optimizing the Flyeye schedule as a

sequence of nightly observations to be made by the

telescope. The fundamental logic behind the Tasking

Software, based on the concept of opportunity modelling,

is described in [1]. The concept was used previously in

the development by Terma of a similar system for a

space-borne telescope of the Canadian Department of

National Defence's Sapphire mission.

The Tasking Software is an example of a planning

application whose driving requirement is to optimise the

efficiency of use of the Flyeye telescope in surveying the

night sky by maximising the area of the sky observed

each night. On top of this driving requirement, the

Tasking Software takes into account other factors

including areas of the sky observed by other telescopes

and the Flyeye telescope itself in the past days, Moon

brightness at the observed location, Sun angle and

galactic (Milky Way) brightness.

Besides its primary purpose for surveying the night sky,

the Tasking Software also allows the operator to include

follow-up observations at the expected locations of

specific NEOs of interest, specific locations in the sky,

and for performing telescope calibration observations.

Lastly, the Tasking Software can handle physical

restrictions that inhibit observations at certain locations

(“exclusion zones”).

The Tasking Software is currently in the operations

preparation phase and has benefitted from feedback from

Flyeye integration and test engineers, as well as the end

users, the astronomers who will be using the Flyeye

telescope in the future.

This paper presents how the Tasking Software meets the

diverse needs, describing the software techniques,

mechanisms and third-party open-source libraries that

have been used to provide astronomers with a highly

configurable and adaptable tool, which remains straight-

forward to use for routine survey operations through its

web-based GUI.

1. INTRODUCTION

The currently in-development ESA Flyeye telescope will

continuously take observations of the night sky,

producing hundreds of images each night that will be

automatically processed with the purpose of detecting

Near Earth Objects (NEOs).

The Tasking Software is used to produce the schedule of

observations in the form of commands that the Flyeye

telescope control system executes each night. From its

early conception, driving requirements on the Tasking

Software were defined which characterise the capabilities

of the Tasking Software today. Key requirements

include:

• Maximizing the area that can be covered within a

given time-period in order to minimize the time for

achieving a full sky coverage. The target is to be able

to make a complete survey of the visible sky every 3

to 5 days.

• Taking into account observations made by the

Flyeye telescope itself and other telescopes in the

preceding days, to ensure priority would be given to

observing locations that had not recently be

observed.

• Taking into account the Moon and Milky Way

brightness at observation locations.

• Taking into account exclusion zones, where the

telescope must not be commanded to point to or slew

through.

• Ensuring a high level of configurability and

flexibility in order that the Tasking Software can be

easily adapted for other telescopes.

Although the priority for the Flyeye telescope is for

routinely surveying the sky, the Tasking Software needed

to have to capability for including follow-up observations

of NEOs, user-specified observation locations, and

calibration images.

An informal guide to the design and implementation

approach of the Tasking Software was also to “keep it

simple”, in order to avoid overt complexity that might be

difficult to maintain over the expected long lifetime of

the Flyeye telescope.

In this paper some of the novel techniques that were

utilised to meet the diverse needs are described.

The term ‘merit figure’ or ‘figure of merit’ in this paper

is used in relation to the weighting factor that is given to

each parameter used by the Tasking Software in

determining the optimum observation to be made at any

time. More information on the schedule generation and

optimisation concept and how it is implemented is given

in [1].

Proc. 2nd NEO and Debris Detection Conference, Darmstadt, Germany, 24-26 January 2023, published by the ESA Space Safety Programme Office

Ed. T. Flohrer, R. Moissl, F. Schmitz (http://conference.sdo.esoc.esa.int, February 2023)

2. OBSERVATION LOCATIONS

The primary purpose of the Tasking Software is to

produce an optimised plan of observations for ESA’s

Flyeye telescope, such that a complete survey of the

observable night sky can be made in the shortest time.

However, it is also a goal that the software is capable of

being easily adapted for other telescopes. This is

achieved by parameterising the variables that define the

characteristics of a telescope from the perspective of the

observations that it is capable of making. The tessellation

grid is one such input to the Tasking Software that

defines every potential observation location in terms of

pointing location and field of view of the telescope.

The tessellation grid can be adapted without requiring

changes to the Tasking Software, allowing users of the

Tasking Software to explore different observation

geometries. At the start of the development of the

Tasking Software, it was assumed that the telescope

camera would be mounted square to the horizon, and a

tessellation grid was defined as shown in figure 1, which

shows the Mollweide projection of the celestial sphere

overlaid with the tessellation grid.

Figure 1. Tessellation Grid Version 1

Later, it became known that the Flyeye camera is

mounted at 45° to the horizontal. Analyses were made by

the Tasking Software developers and astronomers at ESA

to find suitable tessellation grids that traded off high

levels of sky coverage with few gaps (which requires a

high degree of overlapping of tessellation cells) against

grids with more gaps but less overlapping of cells. A

tessellation grid with a high degree of overlapping cells

will result in less efficient use of the telescope since it

will be observing many overlapping locations. This

would result in a longer time needed to survey the

complete night sky. An example of the overlap of

observation areas is shown in Figure 2, which shows a

close-up of the tessellation cells over the North Pole.

Figure 2. Overlapping Observation Cells at North Pole

Figures 3 and 4 show examples of the evolution of the

tessellation grid designs, where different approaches

were tried to find the optimum trade-off between the

amount of overlapping and the total area of the regions

that would never be observed (gaps).

Figure 3. Tessellation Grid Version 2

Figure 4. Tessellation Grid Version 3

By having the user-defined tessellation grid as the

starting point for the planning the observations, the

Tasking Software is able to support telescopes with

different optical characteristics, such as field of view,

without modification.

3. SKY COVERAGE

In order for the generation of an observation schedule to

take into account observations made by the Flyeye and

other telescopes in the previous days, the Tasking

Software imports sky coverage information once per day.

For the Flyeye telescope, the coverage information is

provided by the Flyeye Data Processing Chain (DPC),

which determines whether each observation location has

been successfully observed (a minimum of four adequate

images of a location during the night are needed for the

location to be considered to have been observed). There

is a one-to-one match between the coverage areas

reported by the DPC and the observation areas defined

by the tessellation grid, therefore checking whether a

location has been observed previously is trivial.

In the case of sky coverage data from other telescopes,

the problem is more complex. Reported sky coverage

information from other telescopes is retrieved daily from

the IAU Minor Planet Center [3]. An example of sky

coverage data available from the MPC is shown

graphically in figure 5. It can be seen in figure that

external observations vary in size, shape as well as

coordinates. It is difficult to match the tessellation cells

of the Flyeye telescope with the external observation

locations. This difficulty is further exacerbated by the

fact that the Flyeye tessellation grid cells are tilted by

45°.

Figure 5. Sky Coverage Data from Minor Planet Center

The locations observed by other telescopes can be at any

location and with varying (and narrower) fields of view.

To recognize which tessellation cells of the grid have

been previously observed, the Tasking Software has to

organise and process the imported sky coverage data,

which it does in two steps.

In a first step, all imported external observations are

grouped by date. The individual observations for each

date are then merged to create contiguous areas for each

night in the specified time frame, using a built-in Java

package, java.awt.geom [4]. This package provides the

Java classes for defining and performing operations on

objects related to two-dimensional geometry.

In a second step, for each tessellation cell that lies fully

within one of the merged areas, the corresponding survey

object’s figure of merit is adjusted relative to the time

since the date the external observations. More recent

external observations result in a lower figure of merit,

resulting in the area being less likely to be included in the

observation schedule.

4. MOON BRIGHTNESS

The Tasking Software takes into account the Moon

brightness at each location in order to select the locations

to be observed. An initial, overly simple, approach was

to apply a merit figure based on the angular distance

between each observation location and the Moon. This

was subsequently improved by implementing an

algorithm which also takes into account the phase of the

Moon, as described in the master thesis paper of P. Kollo

[2]. Figure 6 shows the parameters involved in the

calculation. All indicated distances are angular distances.

Figure 6. Moon Brightness Calculation Parameters

The brightness impact of the Moon on a location defined

by its tessellation cell is a function of the angular distance

between the Moon and the centre of the tessellation sky

cell (ρ), the phase angle of the Moon (α), the zenith

distances of the Moon and of the tessellation sky cell and

the extinction coefficient.

Testing of the algorithm subsequently revealed that it was

effective until the angular distance to the Moon became

small, at which point it was sufficient to simply avoid

observations for locations that were less than a certain

(configurable) angular distance from the Moon.

5. GALACTIC BRIGHTNESS

The Milky Way brightness is defined as a fixed 2-

demonsional (2D) model, with the brightness value

calculated for each tessellation cell. The calculation of

the Milky Way brightness is based on the master thesis

paper of P. Kollo [2]. Figure 7 shows a representation of

the Milky Way brightness model, where the brightness

value at a location is represented by a colour scale.

Figure 7. Milky Way Brightness 2D Model

Since the 2D model is fixed, the brightness value for each

observation location can simply be added to each

observation location in the tessellation grid.

For additional flexibility, the user is provided with a

configurable merit factor to adjust the impact of galactic

brightness values on observation location selection.

6. EXCLUSION ZONES

The Tasking Software provides for the definition of

custom exclusion zones to prohibit the telescope from

pointing to specific locations (no-go zones), or to

constrain the telescope’s motion when moving from one

area to another (no-slew zones).

Exclusion zones are defined by the user as a set of

coordinates forming a polygon, either using equatorial

coordinates (RA-Dec) and horizontal coordinates (Az-

El). However, that since all the underlying computations

in the Tasking Software’s scheduling algorithm are

performed using equatorial coordinates, a conversion

might be needed in case horizontal coordinates are used

for defining an exclusion zone. In detail, the process of

converting a sky region from horizontal to equatorial

coordinates requires careful handling. Converting the

coordinates of each polygon vertex might lead to

incorrectly converted areas, despite the correctness of the

transformation for an individual point. This is due to the

limited domain of trigonometric functions involved in the

transformation, which might cause an angle to be

wrapped around the admissible domain and therefore

alter the distance between one vertex and the others, that

is, the sides of the polygon and consequently the polygon

itself.

A more robust approach has therefore been adopted,

based on converting the centre of each cell of the

tessellation grid into horizontal coordinates (by default

provided in equatorial coordinates) and building an area

around it which approximates (in horizontal coordinates)

the original sky area. The level of approximation depends

on the size of the cells used in the tessellation grid. Larger

cells lead to a larger approximation error. Each area is

then directly compared with the polygons defining the

exclusion zones using the Java library java.awt.geom [4],

which conveniently provides Java 2D classes for defining

and performing operations on objects related to two-

dimensional geometry. If complete or partial

overlappings are found, then the corresponding original

cell is identified as belonging to an exclusion zone and

the information is stored in a map. It is worth highlighting

that due to the time dependency of the coordinates’

transformation, these computations are performed at each

time step.

During the scheduling computations, for each candidate

object and for each time step, the cell in which the object

is belonging to is first identified and then compared with

the previously generated map of no-go zones. Similarly,

for no-slew zones, the algorithm first computes the

telescope trajectory between one point in the sky and

another, and then checks the no-slew zone map for

possible intersections. In case of positive matches, the

corresponding merit figures are set to zero, thus ensuring

these locations are not selected for inclusion in the

observation schedule.

7. NEO FOLLOW-UP OBSERVATIONS

Although primarily designed for planning optimised sky

surveying, the Tasking Software also allows the operator

to include specific observations of NEO follow-up

objects, or a specific user-defined location. Lists of

follow-up objects are imported from the NASA JPL

Scout NEOP Hazard Assessment web server [4] and from

the ESA near-earth objects coordination centre (NEOCP)

“Risk List”.

Once imported, the operator can adjust priorities of

follow-up objects and other merit factors and generate the

schedule until satisfied with the time of inclusion of the

follow-up observation in the schedule. Inclusion of a

follow-up observation is not guaranteed since the

Tasking Software is always trying to optimise the use of

the telescope, taking into account all factors such as the

time to slew the telescope to the observation location.

Examples of merit factors that the operator can adjust

include a factor for the apparent magnitude of the object

to be observed.

8. SCM STANDARD

The schedule of commands generated by the Tasking

Software and sent to the Flyeye Telescope Control

System for execution conforms to the Scheduling and

Commanding Message (SCM) Standard [5]. The

standard is a new CEN/CENELEC standard for tasking

telescopes for NEO and SST purposes. It defines the data

as an XML document compliant to the schema defined

by the standard. The Tasking Software can in principle

support any telescope which utilises the SCM standard.

9. PROGRAMMATIC INTERFACE

The Tasking Software is implemented as a server

application with a web-based user interface (UI), which

allows it to be operated using a standard web browser.

The web user interface is implemented using

Representational State Transfer (REST), which allows

the exposed interfaces to be used by any application that

supports such an interface. Most modern programming

languages have libraries that provide support for REST

interfaces, which means that Tasking Software can be

controlled programmatically as well as through the web

interface. Examples of how this approach is beneficial

are:

• Testing the application can be automated by scripts

using the same functions that the user interface uses.

Testing is done using Python scripts, but any suitable

scripting language could be used.

• Users are able to write scripts to drive the Tasking

Software remotely, for example, using Python

scripts in Jupyter Notebooks.

10. LESSONS LEARNED

The technologies used for the development of the

Tasking Software (including Spring Boot [7] and

Angular [7]) allowed for early prototyping and rapid

development. Coupled with a continuous integration /

continuous deployment (CI/CD) approach for delivering

the software to ESA, this meant that users were given

working versions of the Tasking Software from the early

stages of its development, and iterative updates later as

functions were added. This allowed feedback to be

provided to the developers at the time of the actual

development, particularly in the area of usability. As an

example, changes were made in the layout of the web UI,

which users requested in order to make their workflow

using the Tasking Software more natural. The current

web UI is shown in figure 8 below.

Figure 8. Tasking Software Web UI

With the technologies used, such changes could be made

rapidly, and quickly deployed, keeping the feedback loop

between the software developers and the users short.

11. CONCLUSIONS

The Tasking Software provides a highly flexible tool to

astronomers for the scheduling of telescope observations

that combines pragmatism of function and operation with

the use of modern and straight-forward-to-use open-

source software.

12. REFERENCES

1. Mokos, K., Davies, K., Pedersen, J.S., Bohn, P., Gad,

R. (2019). An Opportunity Model Strategy for

Scheduling NEO Observations.

2. Kollo, P. Investigation of Survey Strategies for the

Observation of Near-Earth Asteroids with ESA’s Fly-

Eye Telescope Master Thesis, ESA-SSA-NEO-RP-

0188.

3. IAU MPC Sky Coverage, online

https://www.minorplanetcenter.net/iau/SkyCoverage.

html

4. Java 2D classes package java.awt.geom, online

https://download.java.net/java/early_access/loom/doc

s/api/java.desktop/java/awt/geom/package-

summary.html

5. SCM - Scheduling and Commanding Message -

Standard, CSN EN 17350

6. Spring Boot framework, online

https://spring.io/projects/spring-boot.

7. Angular framework, online https://angular.io/.

https://www.minorplanetcenter.net/iau/SkyCoverage.html
https://www.minorplanetcenter.net/iau/SkyCoverage.html
https://download.java.net/java/early_access/loom/docs/api/java.desktop/java/awt/geom/package-summary.html
https://download.java.net/java/early_access/loom/docs/api/java.desktop/java/awt/geom/package-summary.html
https://download.java.net/java/early_access/loom/docs/api/java.desktop/java/awt/geom/package-summary.html
https://spring.io/projects/spring-boot
https://angular.io/

