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ABSTRACT

The space objects population is expected to continue its
rapid growth due to many factors such as the mega-
constellations and a wider accessibility to the space, but
also from fragmentation events whose occurrences are in-
creasing. In such situation, Space Situational Awareness
(SSA) services and products are of the utmost relevance
to maintain the safety and sustainability of the spacecraft
operations. Most SSA products rely in the knowledge of
both the state of the Resident Space Object (RSO) and
its associated uncertainty, or in other words, the Proba-
bility Density Function (PDF) that describes the state of
the object. For many SSA products such as collision risk
analysis or catalogue maintenance, the uncertainty of the
state is represented as a covariance matrix, retaining only
up to the second order moment of the state PDF. This
choice is generally based on a trade-off between accuracy
and computational efficiency. Under this assumption, it is
necessary to consider the different sources of uncertainty
that are present in the space environment in order to im-
prove the covariance realism. For these reasons, it is nec-
essary to develop efficient and accurate methodologies to
characterise the PDF of the state attending to the differ-
ent sources of uncertainty, which is known as Uncertainty
Quantification (UQ).

In this work, we present a covariance propagation
methodology named as Linear Stochastic Parameters
(LSP), based on linear theory that allows to analyze the
effect of time-correlated errors on the covariance evolu-
tion. Linear covariance propagation theory can consider
the impact of the uncertainty of dynamical parameters
on the evolution of the state by means of the so-called
sensitivity matrix, resulting from the integration of the
variational equations, and the consider parameter theory.
However, the correlation between parameters is not gen-
erally considered during linear propagation. In that line,
we present here a method to compute efficiently the ef-
fect of a series of uncertain time-correlated parameters on
the covariance. First, an auto-regressive function of order
1 AR(1) is used to model the time correlation in the se-
quence of parameters, controlling the correlation strength
by means of the power of the noise and the time-scale of
the correlation. Second, the properties of the variational
equations are exploited in order to compute the sensitiv-

ity matrix, in this case, of a series of multiple uncertain
parameters of the same kind (e.g. atmospheric drag er-
rors) from the case where a single constant uncertain pa-
rameter is considered. This formulation allows to analyse
the impact of stochastic perturbations on the covariance
evolution without requiring the integration of stochastic
equations of motion, and allowing to derive different per-
turbation models ranging from Gaussian noise up to a
constant perturbation depending on the selected correla-
tion time-scale. In this work, the LSP method is described
and applied to model the stochastic atmopsheric density,
represented with an AR(1) function. The methodology
is validated via Monte Carlo simulations with stochastic
dynamics, focusing on the achievable accuracy and com-
putational time performance.

Keywords: Covariance propagation; time-correlation; at-
mospheric density uncertainty, stochastic dynamics.

1. INTRODUCTION

In the currently overcrowded space environment, Space
Situational Awareness (SSA) and Space Traffic Manage-
ment (STM) services become the cornerstone for the sus-
tainability and efficiency of the space operations. SSA
deals with the capability of detecting, predicting and as-
sessing any hazard towards the active spacecraft popula-
tion orbiting the Earth, providing products such as colli-
sion risk assessment, re-entry prediction or fragmentation
analysis, among others. In order to provide such services,
Earth-orbiting objects (active or not, including debris) are
routinely tracked to estimate and predict their state (i.e.
position, velocity, and dynamic parameters). However,
the quality of these products does not only rely on the es-
timation and prediction of the state, but also in the proper
characterisation of the complete Probability Distribution
Function (PDF) defining the state uncertainty. The esti-
mation and prediction of such uncertainty is a wide field
of study generally known as Uncertainty Quantification
(UQ). The uncertainty of the state is represented as a PDF
due to the many sources of uncertainty present, for in-
stance, due to the accuracy of the observations or the lim-
ited knowledge of the dynamical system [18][10].
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SSA activities suffer from data scarcity, this is, that the
availability of observations for the Resident Space Ob-
jects (RSO) is very sparse due to having on-collaborative
objects as targets (debris) and limited network capacities,
which has a significant impact on the orbit estimation
processes. Therefore, the prediction of the state and its
uncertainty is key for accurate tracking and services reli-
ability, typically known as Uncertainty Propagation (UP).
Methods and classifications for UP have been extensively
studied in the literature [13][1].

Among the wide variety of complexities, efficiency and
applications of the different methods, a trade-off is gen-
erally made between complexity against accuracy when
propagating the initial PDF of the state. Some method-
ologies pledge for simplicity and efficiency, at the ex-
pense of accuracy and, on many occasions, applying sim-
plifications such as representing the PDF of the state with
only the two first moments of the distribution, i.e. the
mean and covariance. Some examples of these cases
are linear propagation via State Transition Matrix (STM)
[16] or Kalman Filters and their variants [24]. Though
simple, fast, and accurate depending on the system con-
ditions, their main drawback is that the linear approxima-
tion of the dynamics deteriorates with increasing propa-
gation intervals and growing initial uncertainty volumes,
as well as in the presence of agents that accelerate the de-
velopment of non-linearities in the dynamics such as the
atmospheric drag.

Several complex implementations that do not rely on
the linearization of the dynamics are widely studied
nowadays, such as the Unscented Transform (UT) and
Cubature methods [12][7], Polynomial Chaos Expan-
sions (PCE) [27][11], Differential Algebra (DA) [4][3],
State Transition Tensors (STT) [17], Gaussian mixtures
[2][8]1[26], Particle Filters [14][15] or the well-known
Monte Carlo methods.

Nonetheless, nominal spacecraft operators require sim-
ple but effective methods to propagate the uncertainty of
the state, generally assuming hypothesis such as Gaus-
sianity and linearity. Therefore, it is relevant to develop
methodologies that, even under the previous assumptions,
are able to represent the uncertainty sources of the space
environment. In LEO objects, the atmospheric drag is
one of the most perturbing forces, and the lack of knowl-
edge on the objects characteristics or the aleatory nature
of the atmosphere causes the drag uncertainty to be one
of the most relevant and studied sources of uncertainty.
The complex modelling of the atmospheric density and
its dependence on space weather parameters such as the
Solar Flux or Geomagnetic indexes lead to differences of
around 20% even between most modern models of the
atmosphere [25].

For all these reasons, stochastic processes have been ex-
tensively applied to model the aleatory behavior of atmo-
spheric density. White noise and Brownian motion have
been proposed to model the stochastic nature of the Solar
Flux [21][9]. Other studies propose more complex noise
models, based on white noise but with a controlled ten-

dency to mean values, such as Ornstein-Uhlenbeck [20].
Moreover, stochastic models that include time or spatial
noise correlation are an extensive line of analysis. Gauss-
Markov models, which can be defined as a special case
of an Ornstein-Uhlenbeck process, include different time
correlation scales. In [22], improvements in covariance
realism were observed when applying a Gauss-Markov
stochastic model in Kalman filter estimation as compared
with batch estimation. Nonetheless, despite the many
studies with the aforementioned stochastic density mod-
els for the atmosphere, operational applications of such
noise models are not common since, as previously men-
tioned, most operational applications still rely on linear
propagation, while other simple but accurate approaches
such as Monte Carlo are high time consuming.

In this work, we present a novel method, named as
Linear Stochastic Parameter (LSP) covariance propaga-
tion, that allows to analyse the effect of stochastic time-
correlated uncertainty on the time evolution of the covari-
ance, avoiding the integration of stochastic equations of
motion. The method is based on linear propagation the-
ory and exploits the properties of the variational equa-
tions to derive an efficient, yet accurate, procedure to
characterize stochastic noise sequences. The basis of
the methodology is to conceptually subdivide any uncer-
tain parameter (i.e. drag coefficient), typically applied
throughout the whole propagation arc, into multiple pa-
rameters. However, each of those parameters are now de-
fined as members of the stochastic noise sequence, mod-
elled by an auto-regressive function of order 1 AR(1).
Then, a procedure to model the effect of the noise se-
quence as a linear product for the linear covariance prop-
agation is defined. The LSP method is applicable to any
uncertain parameter such as the drag coefficient, the solar
radiation pressure coefficient or even manoeuvre modu-
lus or direction uncertainty.

The work presented here serves as a first validation ap-
proach for this methodology. The atmospheric density
uncertainty is modelled with the AR(1) stochastic dy-
namics, being dependent on an expected uncertainty of
the atmosphere each position, and controlled by a time
scale parameter. Monte Carlo (MC) simulations with
Stochastic Differential Equations (SDE) are conducted
for the validation of the LSP covariance propagation
method, focusing on the achievable accuracy and com-
putational time improvement. The reminder of the work
is structured as follows. Section 2 presents the LSP
methodology. Section 3 describes the validation process
and shows the most relevant validation results. Once
validated, Section 4 provides further discussion on LSP
methodology results and execution time performance. Fi-
nally, Section 5 contains the most relevant conclusions of
the work and future lines of improvement.

2. METHODOLOGY

This section describes the theoretical development of the
LSP covariance propagation method. Firstly, the linear



propagation method of the covariance is revisited. Sec-
ondly, the stochastic drag force model and the atmo-
spheric correlated noise is detailed. Finally, the proce-
dure to consider such correlated noise into the linear co-
variance propagation is explained.

2.1. Linear covariance propagation

A complete derivation of linear propagation theory can
be found in many well-known references, such as [16].
First, let us define the extended state vector as

)
Yext = 8 € R (1)
(t)

which is composed of the state vector x(t) = (r(¢), v(¢))
of size n,, estimated parameters q(t) of size n, and the
consider (uncertain) parameters of our analysis c(t), of
size n.. To account for the effect of the main dynamic
parameters in the propagation of the state, it is required
to integrate the variational equations. Its solution is the
Extended State Transition Matrix (ESTM)

O (1 1) < ® (t,to) St to) >

0 I
¥ c R(”z+np)x(nz+np)
® e ROC @
S e R6><np
IeRW*m

where:

* n,, is the number of dynamical parameters to con-
sider during propagation, which in this case corre-
sponds to the estimated dynamical parameters plus
the consider parameters, excluding position and ve-
locity: n, = ng + ne

* ® (t,t9) corresponds to the state transition matrix,
which relates the position and velocity at any time ¢
with respect to the initial state at time .

* S(t,tp) is the so-called sensitivity matrix, which
contains the partial derivatives of the state vector
with respect to the model dynamical parameters,
both estimated and considered. These parameters
are normally defined as constant in the dynamic
model as is customary in many propagation meth-
ods [23]. The uncertainty of these constant parame-
ters is mapped into the state covariance by means of
the sensitivity matrix.

The ESTM can be computed by solving numerically its
associated partial differential equations as shown in [16].

To account for the effect of the uncertainty of the consider
parameters in our covariance propagation, we have
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where Py is the initial state covariance, and C contains
the uncertainty of the parameters. Such consider parame-
ters are typically defined as constant in the linear formu-
lation, with a certain variance, for the complete propaga-
tion or determination arcs.

2.2. Drag force with correlated noise

Let us describe now the stochastic drag force model to
be applied in the system dynamics, detailing the time-
correlated noise model for the atmospheric density. The
classical definition of the drag force acceleration is

1 CpA

ip(t)
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Qdrag (t) = -

where Cp the drag coefficient, A the cross-sectional area,
m the object mass, v,¢; is the relative speed of the ob-
ject with respect to the atmosphere and p(t) is the atmo-
spheric density. The ballistic coefficient term (C'p A/m)
(i.e. the ballistic coefficient) is normally obtained as part
of the OD process. Though the cross-sectional area or
the drag coefficient are known to vary along the trajectory
of the object, the ballistic coefficient is considered to be
constant in the propagation arcs considered in this work,
as it is approximated in most SSA operational scenarios
for non-collaborative objects. We model the stochastic
atmospheric density as

p(t) = p(t) + p(t) (5)

where p(t) represents the perturbing noise, and p(t) cor-
responds to the mean atmospheric density at a certain
position and epoch, obtained with the NRLMSISE-00
model in this work. To introduce a zero-mean corre-
lated noise sequence for the perturbation error, an auto-
regressive function with time correlation of order 1 AR(1)
is proposed [5]. First, let us assume that the correlation
of two perturbations at two consecutive time steps p (¢,,)
and p (t,,—1), in discrete form, is as

Tp (tna tn—l) =E [p (tn)p (tn—l)] =To (tn) 67a|tn7tn,1|
(6)



where 7¢ (t,) = E [p(t,)?] is the power of the non-
stationary perturbation. Such correlation of Eq. 6 can
be guaranteed with the AR(1) model, as

p(tn) = a(n)p (tn-1) + u(n), (7)
with
_ ro(tn) —a(tn—tn_1)
a(n) - ro (tn71)6 ) (8)
u(n) ~ N (0,07 (n)) ©)
o2(n) =ro (t,) |1 — TZ(Zt(ii)l) e 2etn=tn-1)| and
(10)
p(to) = u(0) ~ N (0,7 (to)) (11

Thus, the noise at each step is related to the previous
noise by a factor a(n) and has a Gaussian term u(n).
The strength of the correlation is controlled by a = 1/7,
[1/s], which represents the inverse of the time scale of
correlation. This scale determines the strength of the cor-
relation. The variance of the Gaussian term, o2(n), is
also dependent on the power noise, but inversely propor-
tional to the correlation. In other words, the stronger the
correlation in the noise, the smaller the Gaussian term be-
comes.

Combining the noise model with the classical drag force,
the stochastic model for the drag is

1_,.CpA
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Where z(t) = p(t)/p(t) is the non-dimensional stochas-
tic noise. It can be noted from Equations 8 and 9 that two
limiting cases appear. If we assume constant power noise
(ro (tn) = 7o (tn—1)), in the limit when the correlation
time scale tends to infinity (7, ~ oc) we find

a2(n) = 0;p(ty) =p(ta_1). (13)

Thus, the stochastic noise is reduced to a constant noise
model. On the opposite side, when the correlation time
scale tends to very small values (7, ~ 0) we end up with

oa(n) =13 (ta);a(n) = 0;p(t,) =u(n).  (14)

This is, a purely Gaussian noise. These limits are relevant
to understand the maximum and minimum impact that the
stochastic noise can achieve in the covariance time evo-
lution depending on the selected correlation time scale,
which is a parameter analysed in this work. Finally, it re-
mains to describe the power of the noise sequence r¢ ().
It is chosen as the expected variance of the atmosphere

o2,,., computed as a function of altitude, latitude and al-
titude. This uncertainty of the atmosphere can be a sub-
ject of more in depth studies, and it is not the objective
of this work. To apply realistic values, the results of at-
mospheric density standard deviation, derived statistical
analysis of historical space weather data [6][1], are used

in this work.

2.3. Correlated parameters in linear covariance
propagation

Once explained the noise correlation model, the objec-
tive now is to assess the impact during covariance prop-
agation due to the correlation of a parameter, such as the
previously described atmospheric density. However, as
described in Section 2.1, linear propagation assumes any
uncertain parameter to be constant and with a fixed vari-
ance. Therefore, the proposed approach is to divide such
global parameter into multiple ones, applied sequentially
in time, and correlated in time according stochastic model
defined in Section 2.2.

In addition, linear covariance propagation generall the
modelled uncertain parameters to follow a Normal dis-
tribution with null mean and a certain variance in order
to assume. Therefore, we define u(n) of Equation 7 as
our uncertain parameters. It can be noted that Equation 7
can be written as a linear product in matrix form for the
complete set of time steps as:

p=Au, (15)
where
Po Uuo
p=| : |su=|  |[; (16)
Pn Unp,
1 0
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Where N = n + 1 is the number of stochastic parame-
ters, which corresponds to the amount of time-steps in the
noise sequence. Finally, a;; = [[] a(n); Vi < j, where
1 and j represent the row and column of the matrix, re-
spectively.

Returning to the propagation of the covariance, the
ESTM is composed of the state transition matrix and the
sensitivity matrix. We need the latter to be referred to our
uncertain parameter vector (u), thus:

_ ox(t) _ ox(t)9p _ 0x(t)
~ 9u Op Ou  Op A U9

S(t)



leading to:
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Where it is important to notice that the first element of
the noise sequence is drawn from a Normal distribution
whose variance is the power of the noise. Undoubtedly,
this formulation suffers from the curse of dimensional-
ity. As the number of stochastic parameters increase, the
matrices operations can become difficult to handle effi-
ciently with simple matrix products. This topic is dis-
cussed further in this work as a trade-off between com-
putational efficiency and accuracy.

2.4. From single to multiple parameters

According to the previously defined AR(1) model for the
parameters, any propagation or determination arc could
contain a large number of parameters. Thus, the nomi-
nal sensitivity matrix would contain thousands of param-
eters, being un-affordable to compute by soving the vari-
ational equations. This subsection describes how to ex-
ploit the properties of the variational equations to derive
the multiple-parameters sensitivity matrix from the single
parameter case.

Let us focus, for the sake of clarity, in a single uncertain
parameter such as the atmospheric density error. Our ob-
jective now is to analyze the impact on covariance propa-
gation of such parameter, but instead of being defined as
a single, constant parameter during the complete arc of
analysis, is now subdivided in many different parameters
applicable at different epochs. This is, instead of assum-
ing that a single value of the aerodynamic model error
is applied to the whole arc, we define different subarcs
in which different realizations of the uncertain parameter
are considered. A diagram of this concept is shown in
Figure 1, showing the different parameters p; and their
start and end times of application. Parameter p. repre-
sents the previous unique parameter applied to the com-
plete time arc.

First of all, the system dynamics are defined as

0
a—’t‘ —£(t,x,p); x(to) = xo. Q1)

The state transition matrix and sensitivity matrix are de-
fined, respectively, as

ox
P =— 22
Oxa (22)
ox
S == 23
p (23)
The variational equations are of the form [16]:
0P of
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Now, in order to separate this sensitivity matrix in the
contribution of many parameters applicable in different
time intervals, we define the individual sensitivity matri-
ces of the parameters as

ox(t)

Si(t) = 26
=" 26)

Which still has to fulfill

0S; of of
5 = a—xsl + 87]91, for tm' <t< tpi+1 27

with

Si|tpi =0 (28)

Where t,; and t,;11 correspond to the start and end
epochs of application of the parameter, respectively (see
Figure 1). The properties of the variational equations al-
low to relate sensitivity matrices resulting from the same
model, with the only difference being the initial condi-
tions. Therefore, the partial derivatives of the i*" param-
eter as a function of the overall partials of the constant,
global parameter, is

ox(t)  ox(t)  0x(t) 0x(tp)
opi  Opc  Ox(ty) Ope

for tpi <t< tpi+1
(29)

Ox(tpi) Ox0 \ Oxo(tpi)
epoch of the parameter (Z,;41), its contribution to the
state evolution is obtained through the state transition ma-
trix starting at the end epoch, since beyond ¢,,;,1 the pa-
rameter is no longer active, and thus @) = 0.
t>tpit1

op:
This leads to:
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Figure 1: Parameters application timeline
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Before the start epoch of the parameter (¢,;), the impact
of the parameter is null: S;(tpi11)

|t<tpi =

With this formulation, the sensitivity matrix for all the
stochastic parameters affecting the noise sequence can
be computed from a single-parameter sensitivity matrix,
and then, the correlation is included via matrix A for
the linear covariance propagation. It is relevant to high-
light that all previously described steps for the LSP co-
variance propagation method are applicable to any kind
of uncertain parameter that can be modelled with the
AR(1) stochastic model sequence. This includes relevant
and widely analysed parameters such as the solar radia-
tion pressure coefficient or the errors in manoeuvre thrust
magnitude and direction.

2.5. Limiting case: extremely high correlation

To further understanding of the proposed LSP method,
the case of extremely high correlation is analysed in depth
here. As previously described in Section 2.2, highly
correlated noise (7, ~ oo) will cause a(n) ~ 1 and
u(n) = 0, thus ending up with a constant noise sequence.
In such a case, the previously described LSP formulation
should be equivalent to the original constant parameter
covariance propagation. Assuming constant noise time-
step and power noise, matrices C and A become

’,“O ... DR 0
: 0 : n+1xn+1
c=| - . ,ER @31
0 0(n)
1 -+ 0
A= - | eRMPHL (32
1 1

If we focus only on the contribution of the sensitivity ma-
trix to the covariance propagation, we have

oxt)

P.(0)=S()-Cs)” = (%5

A> c-s)” (33)

Due to the characteristics of C in this constant case, only
the first column of matrix A is retained, which leads to

o1 (t oxa(t) \ T
E apn Z apn
P.(t) = “To - (34)
Bx ox
E Bgn Z agg

And, due to Equation 29, va 1 ag}‘m) = 35‘;(5) , recover-

ing the same equations as in the single parameter linear
covariance propagation.

2.6. Monte Carlo covariance propagation

Monte Carlo methods are widely used for uncertainty
propagation, and could be classified as non-linear non-
Gaussian probabilistic UP methods. They are based on
the selection of a set of independent and randomly dis-
tributed samples, and then those samples are propagated
through the non-linear process [19]. They are suitable for
the representation of any PDF and are not complex to im-
plement. However, depending on the application and the
target PDF, a high number of samples may be required
to ensure the convergence of the method to the real solu-
tion, being computationally expensive. The MC method
for the propagation of the covariance is summarised as
follows.

Let Z,, be the initial state, with its associated covariance
C, representing the PDF of the state. From these initial
conditions, a number V¢ of independent and randomly
distributed samples are generated following a multivari-
ate normal distribution as follows

z, ~ N (@,,Cyn), i=1,...,Nyc. (3%

Each of these samples is propagated forward in time ac-
cording to the given dynamics of the system as

.’chfLJr1 =f (t,a:;) . (36)



In this work, the dynamics of the system for the MC prop-
agation include the same stochastic model of the atmo-
sphere density for validation purposes. Finally, the state
and covariance matrix after the propagation can be esti-
mated as follows, where only the first and second moment
of the final PDF are retained:

1,
:/13\7L+1 == N ; [m;—&-l] (37)
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3. VALIDATION

This section, the procedure for the validation of the LSP
covariance propagation method is detailed first, providing
a description of the test cases, the RSO characteristics and
the dynamic model. Then, the results of the validation are
presented and discussed.

3.1. Validation procedure

As previously mentioned, the proposed method is vali-
dated via Monte Carlo simulations using stochastic dy-
namics for two different LEO scenarios. The character-
istics of the test cases and their corresponding RSO are
summarized in Table 1:

Table 1: Test cases summary

RSO1 RSO2
Altitude [km] 800 450
A/M ratio [m2/kg] 0.1 0.02
Semi-major axis 7181.994 km 6815.219 km
Eccentricity 1.387 1.612
Inclination 98.557° 87.411°
RAAN 314.523° 138.472°
Argument 77.836° 61.090°
of pericenter
True anomaly 70.547° 160.057°
Drag coefficient 2.84 0.485
05/09/2018 12/09/2017
Reference epoch 17:21:10.411  14:38:22.100
UTC UTC
MC 0 41m[kg/m?) 5.0e-16 5.86e-14
Samples 200 200

The two test cases correspond to LEO objects with a cir-
cular orbits at an altitude of approximately 450 km of
altitude, where the drag force becomes one of the most

relevant perturbations, and at 800 km, where impact of
the drag acceleration is lower. The chosen absolute un-
certainty of the atmosphere (0,4y,) is different in the two
cases in order to adapt to the variation in mean density
at such altitudes, taken from the atmospheric uncertainty
results of [6][1]. The dynamic model used in the high-
fidelity propagator for the Monte Carlo simulations can
be seen in Table 2.

For each correlation time scale under analysis, an inde-
pendent Monte Carlo simulation is carried out, whose
steps are summarized as:

1. 200 samples are generated from the initial state and
covariance of the RSO

2. Each sample is propagated 7 days, with SDE dy-
namics that include the stochastic drag model de-
fined in Section 2.2 and an integration time-step of
10 seconds

3. For each propagation, the corresponding noise
power to the RSO is applied (g4¢1,), as well as the
selected correlation time scale

4. The covariance at each propagation epoch is recon-
structed following the process described in Section
2.6

Please refer to [6] for more details about the Monte Carlo
simulations with SDE dynamics. Regarding the initial
covariance, only position and velocity covariance have
been considered as initial PDF, not including any drag
a-priori covariance. The reason is that the purpose of
the methodology is to represent the drag uncertainty by
means of the stochastic density model, instead of sam-
pling an a-priori drag covariance. The initial covariance
matrices for both RSO can be found in [6]. It is worth
mentioning that, as discussed in [6], the differences be-
tween 200 and 2000 samples Monte Carlo benchmark
were sufficiently small so that the MC results with 200
samples can be considered as reference values for the
validation. Further testing with an increased amount of
samples are left for future works.

In the case of the LSP covariance propagation, a single
7 days propagation of each RSO is carried out, with the
same dynamic model, and no stochastic component in the
drag acceleration. This would be equivalent to any orbit
propagation in nominal operations. From this process,
it is obtained the propagated ephemeris, the state transi-
tion matrix (® (¢, o)) and the partial derivatives with re-
spect to the global parameter (85;52) ) described in Section
2.4. Having such information, the LSP covariance prop-
agation methodology requires the initial state and covari-
ance of the RSO, a power of the noise in relative terms
Oatm/p» the time scale of analysis and a desired number
of stochastic parameters to include in the propagation arc
(N of Equation 17).




Table 2: Dynamic model

Reference frame J2000 ECI

Gravity field 32x32

Third body perturbations Sun & Moon

Earth geodetic surface ERS-1

Polar motion and UT1 IERS C04 08

Earth pole model IERS 2010 conventions

Earth precession/ nutation ~ IERS 2010 conventions
Atmospheric model NLRMSISE-00

Solar radiation pressure Not considered
Propagation step 10 seconds

3.2. Validation results

The following results focus on the along-track standard
deviation (o) of the propagated covariance in the TNW
local reference frame. Being aligned with the direction of
the velocity, this direction is expected to accumulate most
of the errors and uncertainty associated to the drag force.
Figure 2 below shows the evolution of o7 with propaga-
tion time, for some examples of correlation time scales,
comparing the results obtained with the LSP covariance
propagation (dashed lines) against the Monte Carlo re-
sults (continuous lines).

The relative sigma G4, applied in each case is also
showed in Figure 2. It is relevant to mention that the cur-
rent implementation of the LSP method expected a con-
stant power noise in relative terms (7 4+,,). However, the
SDE dynamic of the Monte Carlo apply a constant abso-
lute 044y, which does not yield a constant 7,4, since the
NRLMSISE-00 model is applied during the propagation,
with varying density depending on the epoch and loca-
tion of the RSO. Therefore, the 7,+,, values applied for
the LSP covariance propagation are computed by divid-
ing the 04, values of Table 1 by the mean density along
the propagation period.

Figure 2a depicts the time evolution of the along-track
standard deviation for different correlation time scales,
comparing the LSP with the Monte Carlo benchmark.
It has been chosen a parameter time step of 5 minutes,
which represents the interval of time at which each pa-
rameter is acting. This is, the lower the parameter time
step, the larger the amount of stochastic parameters in-
cluded in the LSP analysis, and vice-versa.

As will be commented in further detail in Section 4,
the along-track standard deviation grows faster in time
with increasing the amount of correlation, reaching con-
vergence to a maximum for time-scales greater than the
propagation period. As expected, the growth is larger at
lower altitudes, due to higher density. In addition to this,
Figure 2a shows that the LSP covariance propagation
method follows closely the Monte Carlo results. How-
ever, in the RSO2 case for a lower altitude, both methods
match except at very small correlation scales, equivalent
to purely Gaussian noise. The reason for this different
lies on the 5 minutes time step of the parameters, as ex-
plained next.

On the one side, the purely Gaussian case is expected to
provide the smallest covariance growth since, if the ac-
celeration is perturbed randomly, with a zero-mean con-
stant variance, and at a high frequency (10 seconds of
integration step in MC), the perturbations are expected
to approximately cancel out during the propagation. It is
important to remark that the perturbations are applied to
the acceleration directly, and not assumed as a Gaussian
step noise like a Wiener noise. On the other side, the fre-
quency of the perturbation that the LSP method is able to
represent depends on the number of stochastic parame-
ters, or analogously, on the parameter time step. Though
this is observed not to be relevant for high time corre-
lation or high altitudes, this issue becomes noticeable in
the lower altitude case, where the drag force is becoming
dominant, not allowing to cancel completely the purely
Gaussian noise by including a parameter each 5 minutes.

Figure 3 represents the relative o error with respect to
MC Gaussian noise, comparing 1 and 5 minutes of pa-
rameters time step. It can be seen how the error is largely
reduced when decreasing the step. However, the 1 minute
step still results in more than 100% of error, with clear
room for improvement. Both methods would converge
by reducing the step further, but a trade-off must be made
between accuracy and computational efficiency. It is also
seen that the accuracy at larger correlations is less af-
fected by the parameter step.

To assess in more detail the achieved accuracy with the
LSP covariance propagation, Figure 4 depicts the con-
tour of the relative error as compared to the Monte Carlo
simulations, for a wide range of correlation time scales
and as a function of the propagation time. The y-axis
represents the correlation time scale, but normalized with
the period of the orbits, a magnitude of relevance for cor-
relation analysis. 5 minutes step for the parameters is
maintained in Figure 4.

In the case of the high altitude RSO (Figure 4a), the er-
ror is kept below a 10%, finding the maximum error at
correlation scales between the orbital period (around 1.5
hours) and 10 orbital periods. Firstly, the correlation im-
pact on the covariance growth becomes noticeable upon
reaching correlation scales of the order of the orbital pe-
riod, converging to the upper limit of constant correlation.
Therefore, the errors are expected to be larger in such
areas. However, the reason for the observed errors was
found to be the differences in the relative atmospheric
density uncertainty of both methods, the LSP and the MC
simulations, as discussed previously. Though the LSP
applies an averaged 7 ,t.,,, When large periods of propa-
gation do not match the effective uncertainty in the MC
simulations, both methodologies diverge slightly.

In Figure 4b, the purely Gaussian correlation scale lower
bound has been removed from the graph, for proper vi-
sualization of the accuracy at the rest of the correlation
spectrum. In this case, analogous conclusions to the high
altitude RSO case can be extracted. The error is kept
below a 16% and, though the error is centered as in the
previous case around 1 and 10 orbital periods, it is more
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Figure 3: RSO2, relative error for Gaussian correlation
between LSP method and MC simulations for different
LSP data time-steps

spread across the correlation scales. Again, the reason
found was the differences in applied 7 4, in the MC sim-
ulations, which in this case were further from the mean at
the beginning of the propagation, as seen in 4b.

Contour plots of the error results applying a parameter
step of 1 minute have been omitted since the accuracy
was, in general, the same as in the cases presented here
except at low altitudes and very low correlation. For fur-
ther validation of the LSP method, new MC simulations
that enforce a constant ¢, must be carried out as future
work. Nonetheless, it can be highlighted that levels of ac-
curacy below 10 and 16% are achieved using a parameter
step of 5 minutes, compared against MC simulations ap-
plying high-accuracy atmospheric density models, which
is considered a promising result.

4. RESULTS

After assessing the accuracy of the LSP method through
validation in Section 3, this section provides further dis-
cussion regarding the performance of the method. The
focus is placed on the covariance growth obtained as a
function of the correlation and the efficiency of the LSP
method.

Figure 5 depicts the time evolution of the along-track
standard deviation for both RSOs, using the LSP method-
ology again with a parameter step of 5 minutes. As ex-
pected, the growth is larger for the lower altitude RSO
due to the higher mean atmospheric density at 450 km
of altitude, reaching more than 3 km after the correlation
time scale surpasses 10 times the orbital period. In both
cases, the most relevant covariance growth is observed for
time scales greater than 10 orbital periods, roughly half a
day. Afterwards, the covariance grows more rapidly until
reaching convergence after the correlation time scales are
beyond half the propagation period (3.5 days).

In Appendix A, 2D dispersion plots of the Monte Carlo
samples are shown (Figures 7, 8), where the LSP method
covariance is checked to be representative of the uncer-
tainty for the RSOs and propagation arcs considered. The
purpose of this kind of analysis is to control that the sys-
tem has not deviated too far from the linear and Gaussian
assumptions, so that the covariance is still a proper repre-
sentation of the uncertainty of the state. These results are
in line with previous studies [6], where more RSO cases
are analysed for SDE dynamics.

Figure 6 represents again the along-track covariance
growth for RSOL1 case, but normalizing the covariance
with the final covariance results for each correlation
scale. It is appreciated that for purely Gaussian (no-
correlation), or reduced time scales, the covariance grows
linearly with time. However, an exponential growth of
the covariance is observed for increasing correlation, with
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an exponential slope proportional to the correlation time
scale.

Finally, a relevant aspect to analyse is the computational
time achieved with the proposed methodology. Table
3 shows averaged CPU times of execution for the LSP
propagation method and the Monte Carlo benchmark.
The LSP results are averaged over 70 executions with dif-
ferent time-scales, both RSOs, and correspond to a single
kernel execution (Intel(R) Core(TM) i7-8665U CPU @
1.90GHz 2.11 GHz). Monte Carlo simulation times are
also shown with 6 cores parallelisation, with a || symbol.

It is shown that 78% of performance can be gained if us-
ing the LSP method with a 5 minutes parameter step,
as compared to the 200 samples MC with parallelisa-
tion. This performance improvement values are to be
taken with caution, since the parallelisation viability for
the LSP method is yet to be studied, and Monte Carlo
methods could be executed with more kernels, if avail-
able. As expected, with increasing the numer of param-
eters, the efficiency of the methodology is deteriorated
significantly, as seen in the 1 minute parameter step re-
sults of Table 3. However, it is relevant to notice that the
execution performances showed in Table 3 for the LSP
method correspond to the computation of all covariance
matrices at each propagation step, which also increases
the computational cost. If only few epochs of the covari-
ance are of interest, the LSP computational costs of Table
3 are reduced.

Therefore, a remarkable efficiency improvement can be
achieved with the LSP methodology, having an error
lower than 15% even at a low altitude case. Further
assessment of the LSP performance and accuracy are
planned lines of study. For parameter time steps of
around 10 seconds (similar steps to the integration step),
the LSP method time performance is decreased substan-
tially, due to the curse of dimensionality as the number

of stochastic parameters increase. It has been showed
that lower time steps are only required for accuracy at
very small correlation and low altitudes. Therefore, the
methodology for increasing the number of parameters,
specifically for very low correlation, is a line of improve-
ment.

Table 3: CPU time comparison between LSP covariance
propagation and Monte Carlo.

Average
Method CPU time [h]
MC 2000 samples 7.33
MC 200 samples 1.04
MC 2000 samples || 1.22
MC 200 samples || 0.17
LSP (5 min) 0.04
LSP (1 min) 0.26

5. CONCLUSIONS AND FUTURE WORK

In this work, the LSP covariance propagation methodol-
ogy has been described. It exploits the linear propagation
theory and the properties of the variational equations, al-
lowing to analyse the effect on the covariance of time-
correlated errors of stochastic dynamic models. The at-
mospheric density of an orbiting RSO has been modelled
with an AR(1) function for the stochastic drag model, and
it has been described how to include the effect of multiple
stochastic parameters in the covariance evolution.

The LSP method has been validated against Monte
Carlo simulations that apply an analogous stochastic drag
model on their equations of motion, for 2 different ob-
jects at high and low LEO altitudes. The evolution of
the along-track covariance during a 7 days propagation
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period has been analysed for a wide range of correla-
tion times scales, which represent the strength of the
correlation. It is shown that an error below 10% and
15% is achieved for an 800 km and 450 km altitude
RSOs, respectively, and as compared to the Monte Carlo
benchmark with stochastic dynamics and complete atmo-
spheric density model. For the low altitude RSO, very
low time scales of the correlation (almost no-correlated
noise, close to pure Gaussian noise) result in large rela-
tive error. The reason is that the frequency of the pertur-
bations for the LSP method is limited by the amount of
parameters that are modelled with their parameter appli-
cation time step, which becomes relevant for the required
accuracy at very low correlation. Due to the curse of di-
mensionality of the method as a function of the amount
of perturbation parameters, further reductions of the pa-

rameter step become impractical in terms of CPU perfor-
mance with the current methodology formulation, which
is a future line of improvement. Furthermore, the LSP
method has been shown to have a remarkable potential for
time efficiency. It has shown up to a 78% improvement in
computational cost while having around a 10-15% error.

Nonetheless, the results presented here correspond to the
first prototype and tests of the LSP covariance propaga-
tion method, and there is still a wide room for improve-
ment and further analysis. Firstly, the main source of
the errors with respect to the Monte Carlo benchmark
are due to a difference in the relative uncertainty of the
atmosphere applied in both methods, caused by small
implementation differences. Thus, further tests enforc-
ing a purely constant relative uncertainty of the atmo-
sphere must be conducted to assess the maximum accu-
racy achievable with LSP method. However, having be-
tween a 10-15% of error as compared with a realistic den-
sity simulation is a satisfactory result for these prelimi-
nary tests. Moreover, due to the observed accuracy loss at
low correlation and low altitudes, the software efficiency
at such regions must be upgraded in order to assimilate
a higher number of stochastic parameters with enough
computational time performance. Also, further tests in
more varied scenarios and RSOs characteristics are re-
quired. Finally, it is worth reminding that the proposed
LSP method is compatible with other uncertain param-
eters in the space environment, such as the SRP or ma-
noeuvre uncertainty. Thus, the performance and suitabil-
ity of the LSP covariance propagation method for more
uncertain parameters is to be assessed in future work.
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