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ABSTRACT

The risk of collisions in Earth’s orbit is growing
markedly [19]. In January 2021, SpaceX and OneWeb
released an operator-to-operator fact sheet that high-
lights the critical reliance on conjunction data messages
(CDMs) and observations, demonstrating the need for a
diverse sensing environment for orbital objects. Recently,
the University of Oxford and the University of Surrey
developed, in collaboration with Trillium Technologies
and the European Space Operations Center, an open-
source Python package for modeling the spacecraft col-
lision avoidance process, called Kessler [2]. Such tools
can be used for importing/exporting CDMs in their stan-
dard format, modeling the current low-Earth orbit (LEO)
population and its short-term propagation from a given
catalog file, as well as modeling the evolution of con-
junction events based on the current population and ob-
servation scenarios, hence emulating the CDMs genera-
tion process of the Combined Space Operations Center
(CSpOC) [1, 25]. The model also provides probabilis-
tic programming and ML tools to predict future collision
events and to perform Bayesian inference (i.e., optimal
use of all available observations).

In the framework of a United Kingdom Space Agency-
funded project, we analyze and study the impact of mega-
constellations and observation models in the collision
avoidance process. First, we monitor and report how the
estimated collision risk and other quantities at the time of
closest approach (e.g. miss distance, uncertainties, etc.)
vary, according to different observation models, which
emulate different radar observation accuracy. Then, we
analyze the impact of future megaconstellations on the
number of warnings generated from the increase in the
number of conjunctions leading to an increased burden on
space operators. FCC licenses were used to identify cred-
ible megaconstellation sources to understand how a po-
tential consistent increase in active satellites will impact
LEO situational safety. We finally present how our simu-
lations help understand the impact of these future mega-

constellations on the current population, and how we can
devise better ground observation strategies to quantify fu-
ture observation needs and reduce the burden on opera-
tors.

Keywords: Megaconstellations; Space Debris; Space-
craft Collision Avoidance; Probabilistic Programming.

1. INTRODUCTION

The risk of collision in Earth’s orbit is growing steadily.
The advent of the New Space era and the launch of mega-
constellations have accelerated this process [7]. Several
studies have warned about the increased collision risk
among objects, due to the predicted growth of the space
sector [22, 32]. Currently, the US Strategic Command
(USSTRATCOM) constantly tracks resident space ob-
jects via a global Space Surveillance Network (SSN) and
updates a public catalog of two-line element (TLE) data.
At the same time, the Combined Space Operations Cen-
ter (CSpOC), which is a joint military organization re-
sponsible for the surveillance and tracking of man-made
objects in Earth’s orbit, constantly detects and identifies
potential collisions between satellites and other objects
in space. Once this is done, if a potential collision is de-
tected, Conjunction Data Messages (CDMs) are issued
to the owner/operators of those objects, to warn them of
the potential collision. These messages contain informa-
tion about the time and location of the potential collision
and the relative velocity of the objects. Moreover, since
CSpOC uses a network of ground-based radar and optical
instruments to track objects and propagates this informa-
tion at future times with an orbital propagator, they also
have information on the dynamical models used for prop-
agation and on the propagated uncertainties at the time of
closest approach.

Albeit the thousands of objects in orbit, high-risk satel-
lites conjunctions are very rare and it is difficult to ob-
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tain a high sample of data from the CDMs, especially
because there is currently no open-source database that
contains all the produced CDMs, and each operator can
only access those pertaining to its operated objects. For
this reason, we have developed Kessler: an open-source
package for satellite conjunction analysis. The software,
not only allows one to parse, analyze, and plot CDMs in
their original format, but it also has a simulator that can
emulate the entire CDM generation process. In this way,
we can pass a certain LEO population to the software, and
study what is the number of collision warnings that would
be generated, and their characteristics. The simulator is
a complete ”white” box, and the user can inspect every
variable involved in the conjunction. Moreover, it is also
a probabilistic simulator, which means that one can com-
bine the simulator with observational data (e.g. tracking
data, TLEs, CDMs, or else) and use Bayesian inference
to quantify and update the uncertainties of model param-
eters given the available observations (i.e., posterior dis-
tribution).

In this work, we show how to use our probabilistic model
for two case studies. First, we study the impact of
planned megaconstellations in the current LEO environ-
ment. Then, we investigate the influence of observation
accuracies in satellite conjunction analysis. The paper is
organized as follows: Section 2 introduces some previ-
ous work concerning spacecraft collision avoidance and
megaconstellations impact. In Section 3 we outline the
characteristics of Kessler software, by first discussing its
functionalities, and by then describing the probabilistic
model of conjunctions. Then, in Section 4 we discuss the
two conducted case studies: the first one about observa-
tion accuracies, the second one about megaconstellation
impact. Finally, in Section 5, we discuss the conclusions
and implications of our work.

2. BACKGROUND

2.1. Spacecraft Collision Avoidance

Nowadays, although active debris removal is progressing
fast, with the first missions being launched, it is, how-
ever, not fully implemented yet so that it can remediate
collisions between space objects. Instead, to reduce the
collision risk, operators still rely on CSpOC data (de-
rived from constant monitoring and prediction of space
objects’ trajectories), and collision avoidance maneuvers
(if one of the two objects can be maneuvered). While
each space agency has its own software and strategy to
deal with satellite collision avoidance, there are, how-
ever, common denominators among all agencies. First of
all, almost all the agencies interact with CSpOC, which
is the main source of CDM data worldwide. Secondly,
they all integrate this external information with their own
tracking (e.g. using GPS) and orbital propagation (e.g.
high fidelity orbital propagators internally maintained by
the agency) tools. Thirdly, they all propagate the ob-
jects’ position and uncertainties until the time of clos-

est approach, and they assess the probability of colli-
sion resulting from the event. If that probability exceeds
a defined threshold, maneuvers might be performed to
reduce the collision risk. For each space agency, there
might be differences in the techniques used to propagate
the objects and their uncertainties, the algorithms imple-
mented to assess the collision risk, the decision to per-
form a maneuver or not, and how to perform it. Sev-
eral previous works have discussed in great detail the
differences in the collision avoidance strategies between
space agencies (i.e., CNES, DLR, ESA, NASA, JAXA,
CSA) [29, 21, 11, 3, 23, 18, 15, 10].

2.2. Megaconstellations

Several private companies are currently launching or
planning to launch satellite megaconstellations. These
are groups of satellites (typically in the order of hun-
dreds or thousands) launched to provide worldwide in-
ternet coverage or other services in space. Some exam-
ples include SpaceX Starlink, OneWeb, Amazon Kuiper,
Guowang, and many others. As of September 2020
(when less than 1,000 Starlink satellites were launched),
Starlink already amounted to 90% daily CDMs produced
by the 18th Space Control Squadron, which corresponded
to 180,000 daily messages [14]. As of November 2022,
there are more than 3,000 active Starlink satellites in or-
bit1, which is more than 50% of the active satellite pop-
ulation and about 10% of the overall population of space
objects above 10 cm in LEO. With the recent trends, this
number is expected to increase: soon, megaconstellation
satellites might reach or even pass the total number of ac-
tive and inactive satellites. This raised concerns across
different communities. In particular, three are the main
discussed aspects regarding megaconstellations:

1. the increase in the number of satellite conjunctions,
especially high-risk ones, which eventually leads
to more satellite collisions. Such collisions would
increase the number of space debris and, conse-
quently, the possibility of triggering a Kessler syn-
drome (that is, a cascade of collisions that would
make space hardly accessible) [16]. Several studies
have investigated the impact of megaconstellations
in the current LEO environment, in terms of colli-
sion risk [27, 28, 30, 8, 35]. Most of these studies,
when they are not based on observational data (i.e.,
GPS data or CDMs), they are either long-term simu-
lations of the space population (i.e., for 100 years or
more) using debris flux assumptions (e.g. employ-
ing molecular gas dynamics assumptions), or they
are limited to qualitative analysis [31, 26, 24]. In this
work, our objective is to show how Kessler software
can be used to analyze and quantify the short-term
impact of megaconstellations in terms of the burden
on space operators and collisions;

1https://www.space.com/spacex-starlink-satellites.
html
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2. another concern is related to the impact of these
satellites on ground-based astronomical observa-
tions. Indeed, this high number of satellites in
LEO can generate light pollution, which hinders as-
tronomers’ capability of observing the sky [13, 20];

3. finally, these megaconstellations can also impact
communication and navigation systems, due to in-
terferences [9].

While the challenges of megaconstellations are apparent,
there is currently no open-source tool that allows study-
ing the impact of megaconstellations on a given space en-
vironment, by simulating the short-term collision risk be-
tween satellites and by producing statistical reports (e.g.
detailing the expected increase of high-risk events, the
satellites that are most in danger, etc.). Such a tool could
be very powerful in quantitatively assessing megaconstel-
lation impact and could also be used in the design of these
constellations. This could, for instance, aid in trying to
alleviate the burden on operators, the number of maneu-
vers, and the risk of collision, when designing a constel-
lation. One of the objectives of this paper is to show how
Kessler software can be used to bridge this gap.

3. COLLISION AVOIDANCE ANALYSIS WITH
KESSLER SOFTWARE

3.1. Functionalities

Kessler23 is a Python package for simulation-based infer-
ence and satellite conjunction analysis. It was initially
created in 2020 by some of the authors in collaboration
with the ESA European Space Operations Center during
an 8-week research sprint enabled by Frontier Develop-
ment Laboratory4. The main functionalities of the tool
can be divided into three categories:

1. CDM parsing and analysis: this concerns the set of
utilities offered to import, export, plot, group, and
analyze conjunction data messages in their origi-
nal format. This tool can be useful for those who
have a set of real or synthetically generated CDMs
and want to investigate their characteristics or ex-
port them into different formats (e.g. csv). Each set
of CDMs belonging to a conjunction event is rep-
resented with a Python class, whose attributes and
methods allow users to intuitively and quickly out-
put and/or visualize the needed information of the
conjunction event.

2. Deep learning module: this refers to the set of func-
tionalities to train, save and load long-short term
memory (LSTM) networks to be used on a given
set of CDM data. With a few lines of code, Kessler

2https://kessler.readthedocs.io/en/latest
3https://github.com/kesslerlib/kessler
4https://fdleurope.org/about-fdl

enables the user to load an LSTM and train it on a
dataset of CDMs, by just specifying the neural net-
work hyperparameters and the features to be used
for training.

3. Probabilistic programming module: this provides a
simulator that can generate conjunction events and
their corresponding CDMs. This module offers sim-
ulation functionalities to generate many synthetic
conjunction events, as well as the probabilistic infer-
ence framework to update our beliefs about the prob-
ability density functions of latent variables, given
our current knowledge, as new observations become
available. Due to the central role of this module in
the presented experiments, we devote the next sec-
tion to its description.

3.2. Probabilistic Program for Satellite Conjunc-
tions

One of the key modules in the Kessler software is its
probabilistic programming module [1, 2]: this term refers
to a paradigm that allows defining a simulator (i.e., gen-
erative model) that can be used for either generating data
(i.e., through forward run of the simulator) or for per-
forming Bayesian inference on latent variables condi-
tioned on observed data (i.e., solving the inverse prob-
lem) [34, 6]. Before delving into the simulator properties,
it is first important to clarify three fundamental ingredi-
ents of any Bayesian model. Given a vector of latent pa-
rameters (i.e., the inputs xxx) and a set of sample data (i.e.,
the outputs yyy), which arise as observations, we identify
the following three probability density functions:

1. prior distribution p(xxx): this is the probability density
function (pdf) that models the initial belief about the
latent parameters of the model, before taking into
account observations. In the context of satellite con-
junction analysis, this it describes the initial state of
the target and chaser objects;

2. likelihood p(yyy|xxx): this represents the probability of
the observations given the model’s latent parame-
ters. For instance, it could be the probability of ob-
serving a certain position and velocity of the satel-
lites, given their ground truth position and velocity,
and the measurement noise;

3. posterior distribution p(xxx|yyy): this is the updated be-
lief about the latent variables of the model, after tak-
ing into account the new observations/data. The pos-
terior describes how we quantify the chances of the
true value of the latent parameters belonging in dif-
ferent parts of the parameter space (i.e., Ω), depend-
ing on the observed data: this process is known as
Bayesian inference, and it involves the use of Bayes’
theorem to find the posterior distribution:

p(xxx|yyy) = p(yyy|xxx)p(xxx)∫
Ω
p(yyy|xxx)p(xxx)

https://kessler.readthedocs.io/en/latest
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Typically, the complexity of the problem and the
size of the latent space do not allow finding the pos-
terior distribution in a closed form. For this reason,
sampling and approximation techniques are usually
needed [5].

The simulator requires the definition of the above three
probability density functions. Once these are specified,
the model can either run forward, in which case the joint
probability density function of the model parameters and
simulated observations (i.e., p(xxx,yyy)) can be extracted. Or
it can also run backward, via Bayesian inference: if exter-
nal observations of the real process (i.e., CDMs or track-
ing data or else) are available, then Bayesian inference
(e.g. through Markov chain Monte Carlo or importance
sampling or other techniques) can be performed and the
model parameters and their uncertainty distribution can
be updated and calibrated to real observations.

But how do we exactly construct the simulator and lever-
age the probabilistic programming framework, in the
context of satellite conjunction analysis? The first step
is to define the generative model, this is a simulator that
emulates the real process through which CDMs are gen-
erated, from the simulation of space objects in orbit to the
detection of conjunction, the forecast of the closest ap-
proach, and the associated collision probability, as well
as the observation schedule and the CDMs generated for
each conjunction event. Usually, a conjunction is de-
tected whenever the predicted distance between any pair
of objects (i.e., target and chaser) in space goes below a
certain conjunction threshold. If that is the case, a time of
closest approach (TCA) is identified, and CDMs that con-
tain information on the propagated covariance and state at
TCA, as well as other information involving the propaga-
tion, are released, roughly every 8 hours (if new observa-
tions about either object are made available). A diagram
summarizing the simulator and the forward and inference
processes is shown in Figure 1. In summary, its steps can
be condensed as follows:

1. target and chaser trajectories are generated for a 7
days period after sampling prior distributions;

2. if the two objects reach a minimum distance be-
low a certain threshold (i.e., the conjunction thresh-
old), which defines the distance at which a conjunc-
tion event is considered potentially dangerous and is
therefore observed, then the CDM generation pro-
cess is triggered;

3. for generating the CDMs, the TCA (and the cor-
responding distance) are identified, and the objects
are observed according to a pre-defined observation
strategy (e.g., in terms of measurement noise and
frequency of the observations);

4. for each observation, each object and its uncertain-
ties are propagated up to the TCA, where the prob-
ability of collision is computed and recorded, to-
gether with all the other CDM information (e.g. the

covariances of both objects at TCA, their relative
distance and speed, etc.);

5. once all the CDMs are generated, the process is ter-
minated and an object containing all the CDMs, to-
gether with the latent variables, the sample data, and
any other variable involved in the process, is re-
turned;

In the above, three aspects are particularly crucial and
worth further discussion: how to generate observations of
the object and assign them a certain measurement noise,
how to propagate the uncertainties at TCA, and how to
compute the probability of collision.

Observations: at discrete times (depending on the ob-
servation strategy) observations of the target and chaser
objects are taken. Currently, we model these as TLEs.
Roughly, every 8 hours, if the object has to be observed,
a TLE and its associated measurement noise are gener-
ated corresponding to that object. For doing this, the user
has to only specify the measurement noise in terms of
the covariance matrix in the RTN-frame. In this way, we
model plausible observations (and associated uncertain-
ties) made on the target and/or chaser objects. The un-
certainty in the observations is induced by measurement
errors and depends on the state of the object when it is
observed (i.e., depending on the state of the object, an ob-
ject observed with the same instrument generates differ-
ent uncertainties). Therefore, the observation uncertainty
represents the likelihood function: p(yyy|xxx).

Uncertainty propagation: for this, a sample-based
Monte Carlo approach is used. Many samples are gen-
erated at the observation times using the observed mean
and covariance, and the objects are then propagated at
TCA. Then, at TCA, the mean and covariance matrix are
extracted and stored within the CDMs. This is repeated
for each observation time.

Probability of collision: once the probability density
functions of both objects at TCA are found, we have to
assess the probability of collision. This involves solving
the following integral:

Pc =

∫
Ωr

pt(rrrt)pc(rrrc)I(|rrrt − rrrc|), (1)

where pt and pc are the probability density functions of
the positions of target and chaser at TCA, and I is the
indicator function that is 1 if the two objects are within
a certain collision distance, which is known as hard body
radius, and 0 otherwise:

I =

{
1 if |rrrt − rrrc| < r̄

0 otherwise
,



1 Figure 1: .

where r̄ is the hard body radius. The integral ex-
pressed in Equation (1) cannot be solved in a closed form
and requires an approximation. In our model, we use
a sampling-based technique. Both probability density
functions are sampled at TCA, and the distance between
each pair of samples is computed. Then the number of the
pairs below the hard body distance is divided by the to-
tal number of samples, which returns an estimation of the
collision probability: this method would return the exact
probability of collision for infinite samples. In general,
the higher the samples, the better the ability to detect low
probabilities.

4. EXPERIMENTS

We divide the experiments into two categories: megacon-
stellations impact experiments and observations accuracy
experiments. In the former, we simulate the presence
of 5 different megaconstellations (i.e., SpaceX Starlink,
OneWeb, Amazon Kuiper, GuoWang, and SatRevolu-
tion) and we quantify their impact in the satellite conjunc-
tion analysis process, by evaluating the high-risk events,
the number of increased CDMs and the number of in-
creased conjunctions. Then, we perform experiments in-
vestigating the importance of observation accuracy in ac-
curately describing conjunctions between satellites and
their associated risk. For this purpose, we run the same
conjunctions with 5 different observations accuracies (for
both chaser and target), and we quantify the impacts on
satellite conjunctions assessment. All the experiments are
run by setting a hard body radius distance of 70 meters,
and by computing the collision probability using 10 bil-
lion pairs, and ignoring any Pc values lower than 10−8.
The experiments have the objective to show two use cases
in which Kessler effectively helps in assessing conjunc-
tions between satellites. In all cases, the baseline LEO
population used in all experiments is derived as of March
2022 from public TLE files, downloaded from Space-
Track5.

5https://www.space-track.org/

4.1. Megaconstellations Impact

We simulate 5 different scenarios where we add 5 mega-
constellations to the LEO population, whose parameters
are derived from the files published by the Federal Com-
munications Commission (FCC). The following constel-
lations have been simulated:

1. SpaceX Starlink6 Generation 1 fleet of 4,408 satel-
lites. This comprises 5 groups of satellites, with al-
titudes: 550 km, 570 km, 560 km, 540 km, 560 km;
inclinations: 53◦, 70◦, 97.6◦, 53.2◦, 97.6◦; number
of planes: 72, 36, 6, 72, 4; satellites per plane: 22,
20, 58, 22, 43.

2. OneWeb7 (from its 2020 filings) fleet of 48,564
satellites. This comprises 4 groups of satellites,
all with altitudes of 1,200 km; inclinations: 87.9◦,
87.9◦, 40◦, 55◦; number of planes: 18, 36, 32, 32;
satellites per plane: 720, 1764, 23,040, 23,040.

3. Amazon Kuiper8 fleet of 3,452 satellites. This com-
prises 3 groups of satellites, with altitudes: 590 km,
610 km, 630 km; inclinations: 33◦, 33◦, 33◦; num-
ber of planes: 28, 42, 34; satellites per plane: 28, 36,
34.

4. Guo Wang910 (both GW-A59 and GW-2) fleet of
12,992 satellites. This comprises a total of 7 groups
of satellites, with altitudes: 590 km, 600 km, 508
km, 1,145 km, 1,145 km, 1,145 km, 1,145 km; num-
ber of planes: 16, 40, 60, 48, 48, 48, 48; satellites
per plane: 30, 50, 60, 36, 36, 36.

6https://docs.fcc.gov/public/attachments/
FCC-22-91A1.pdf

7https://fcc.report/IBFS/
SAT-MPL-20200526-00062/2379706.pdf

8https://docs.fcc.gov/public/attachments/
FCC-20-102A1.pdf

9https://www.itu.int/ITU-R/space/asreceived/
Publication/DisplayPublication/23708

10https://www.itu.int/ITU-R/space/asreceived/
Publication/DisplayPublication/23706
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5. SatRevolution11 fleet of 1,024 satellites. This com-
prises 2 groups of satellites, both with altitudes
around 520 km; inclinations: 97.5◦, 60◦; number
of planes: 1, 1; satellites per plane: 512, 512.

For all simulated scenarios, we exclude possible con-
junctions between objects belonging to the same mega-
constellation. Moreover, for the case of Starlink and
OneWeb, due to the fact that some of them have already
been launched and are operative as of March 2022, we
simulate both the case in which they are fully deployed,
and also when none of them is in orbit, in order to quan-
tify their influence on satellites’ conjunctions. In Fig-
ure 2, we display the distribution of the semi-major axis
and inclinations of objects in LEO for the cases in which
the constellations are fully deployed, as well as their val-
ues as of March 2022 (referred to as Base in the figure).
As we would expect, the probability density functions
tend to peak for the inclination and semi-major axis val-
ues at which these constellations are deployed: this is ac-
centuated for OneWeb since it is the constellation with
most objects.

We ran these different LEO populations in Kessler until
1,000 conjunctions below 5 km were found. In practice,
this means that the program keeps sampling the prior un-
til that number of conjunctions is found. Each conjunc-
tion generates a series of CDMs, which can go from 1
(the event is only detected 8 hours before TCA) to 20
(the event is detected 7 days before TCA). In total, we
synthetically generated more than 70,000 CDMs, which
are then used, together with the ground truth information
of the target and chaser trajectories and characteristics, to
inspect the conjunction parameters. In Figure 3 and 4,
we show different groups for the probability of collision
and the ground truth distance at TCA, respectively, as a
function of their occurrences in the simulated 1,000 con-
junctions (e.g. 30% implies that 300 conjunctions were
found with those characteristics). The first figure does
not contain the events that have resulted in probabilities
below 10−8, which amounted to roughly 60% of all con-
junctions, for all simulations. As we can observe, more
than 90% of the conjunction events display probabilities
of collision below 10−4, while no events were found with
probabilities above 10−2. This shows how rare these
events can be (considering that we are already filtering
for only cases below 5 km). In particular, the second plot
can be used to understand how frequent a given conjunc-
tion event is as a function of the distance at TCA. By
fitting the dTCA distribution, we can gain useful infor-
mation about the portion of events that we expect to have
below a certain minimum TCA distance. We, therefore,
fitted an exponential function to the given data. In partic-
ular, we first removed all the events below 1,200 m (since
we could only find very few from the generated data, and
we deemed them not representative of the behavior of the
distance). Then, we fitted an exponential function of the
form:

y = aebx + c,
11https://www.itu.int/ITU-R/space/asreceived/

Publication/DisplayPublication/28529

where a,b,c are the coefficients to fit, while x is the dTCA

and y is the occurrence. In Figure 5, we show the re-
sulting exponential fit together with the data. This can
be used to inform operators and agencies on the expected
number of CDMs for a given distance threshold. For in-
stance, if the 18th Space Control Squadron manages (e.g.
thanks to improvements in the observation sensors) to re-
duce the threshold at which a CDM is generated to about
1.2 km, then our model predicts that only about 0.01% of
the currently released CDMs would be generated. This
would greatly alleviate the burden on space operators.

As we can observe from Figure 3 and 4, there seem
to be no significant differences in terms of probability
of collision and minimum distance distributions between
the different megaconstellation cases, and also between
those cases and the ones without any constellation. This
seems to suggest that none of these constellations dis-
plays a particular orbital geometry that results in higher
risk events, compared to the current scenario. Neverthe-
less, when looking at the increased frequency of these
conjunction events due to the presence of megaconstella-
tions, the situation changes considerably. By looking at
the objects involved in the conjunction events, we can de-
rive how many of the simulated conjunctions were due to
the megaconstellations: these are about 70% for Starlink,
96% for OneWeb, 38% for Kuiper, 55% for Guo Wang
and 26% for SatRevolution. This means that when these
constellations are deployed, events below 5 km are pro-
duced at a much faster pace. Starlink would cause a 3.3×
increase in number of conjunctions below 5 km, while
OneWeb an astonishing 250× increase, Kuiper a 1.6×
increase, Guo Wang a 2.2× increase, and SatRevolution
a 1.35× increase.

Finally, the generated CDMs can also be used to under-
stand what are the most dangerous objects in the stud-
ied scenarios. Excluding the constellation objects (which
are always the most frequent), the most found dangerous
objects for the studied scenarios and their correspond-
ing frequency of occurrence are shown in Table 1. As
we can observe, the debris generated by either previ-
ous collisions (e.g. COSMOS 2251) or ASAT tests (e.g.
COSMOS 1408, FENGYUN 1C) are those that pose the
higher collision risk to the current satellites. This corrob-
orates the importance to put a stop to anti-satellite tests
in space, and to have laws that regulate the use and safe-
guarding of space. Furthermore, we can also see that the
case with OneWeb fully deployed is the only one in which
the most encountered object in the conjunctions is SL-14
and not COSMOS 1408. The reason is attributed to the
fact that nearly 96% of the conjunctions for the OneWeb
case are due to OneWeb satellites, which happen to fly at
a much higher altitude than the other megaconstellation
(i.e., 1,200 km altitude) and are, therefore, more subject
to the risks posed by the higher altitude SL-14 debris than
the COSMOS 1408 ones.

https://www.itu.int/ITU-R/space/asreceived/Publication/DisplayPublication/28529
https://www.itu.int/ITU-R/space/asreceived/Publication/DisplayPublication/28529
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Table 1: A table illustrating the objects that are more involved in collisions on the performed experiments: megaconstel-
lations are excluded and treated separately. Each cell contains the name of the satellite name and the percentage at which
that satellite appeared in the simulated conjunctions.

Experiments Object 1 Object 2 Object 3 Object 4

Starlink COSMOS 1408 DEB, 14.75% FENGYUN 1C DEB, 9.53% COSMOS 2251 DEB, 5.32% TBA - TO BE ASSIGNED, 4.66%

w/o Starlink COSMOS 1408 DEB, 10.70% FENGYUN 1C DEB, 4.96% COSMOS 2251 DEB, 3.03% TBA - TO BE ASSIGNED, 2.51%

OneWeb SL-14 DEB, 18.96% FENGYUN 1C DEB, 5.57% TBA - TO BE ASSIGNED, 5.27% DELTA 1 DEB, 3.41%

w/o OneWeb COSMOS 1408 DEB, 12.75% FENGYUN 1C DEB, 7.84% TBA - TO BE ASSIGNED, 3.75% COSMOS 2251 DEB, 3.59%

Kuiper COSMOS 1408 DEB, 9.95% FENGYUN 1C DEB, 4.85% RESURS O1 DEB, 4.15% COSMOS 2251 DEB, 3.75%

Guowang COSMOS 1408 DEB, 9.65% FENGYUN 1C DEB, 3.75% TBA - TO BE ASSIGNED, 2.50% COSMOS 2251 DEB, 2.10%

SatRevolution COSMOS 1408 DEB, 14.55% FENGYUN 1C DEB, 5.80% COSMOS 2251 DEB, 3.05% TBA - TO BE ASSIGNED, 2.00%
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Figure 5: Histogram of the TCA distance for all the ex-
periments, together with its exponential fit, shown in red.

4.2. Observations Accuracy

In the second case study, we investigated how different
observation strategies can affect CDMs and the collision
avoidance process in general. In particular, we modeled
the measurement noise using 5 different RTN-covariance
matrices for chaser and target. For all experiments, we
assumed a diagonal RTN-covariance matrix for the mea-
surement uncertainty. The strategies were defined as fol-
lows [12]:

1. Strategy 1: the target is observed extremely accu-
rately, the diagonal terms of the covariance matrix
are CovRTN,t=[0.82 m, 1.5 m, 0.5 m, 0.0001 m/s,
0.0001 m/s, 0.0001 m/s]2, while for the chaser one:
CovRTN,c=[120/3 m, 600/3 m, 120/3 m, 0.0001
m/s, 0.0001 m/s, 0.0001 m/s]2;

2. Strategy 2: in this case, the target covariance was
chosen as CovRTN,t=[120/3 m, 600/3 m, 120/3
m, 0.0001 m/s, 0.0001 m/s, 0.0001 m/s]2, and
CovRTN,c=[120 m, 600 m, 120 m, 0.0001 m/s,
0.0001 m/s, 0.0001 m/s]2;

3. Strategy 3: in this case, the target covariance is
the same as Strategy 2, and the chaser one is

CovRTN,c=[240 m, 1,200 m, 240 m, 0.0001 m/s,
0.0001 m/s, 0.0001 m/s]2;

4. Strategy 4: also in this case, the target covariance
is the same as Strategy 2, while the chaser one is
CovRTN,c=[480 m, 2,400 m, 480 m, 0.0001 m/s,
0.0001 m/s, 0.0001 m/s]2

5. Strategy 5: this case also has the same target
covariance as Strategy 2, but the chaser one is
CovRTN,c=[960 m, 4,800 m, 960 m, 0.0001 m/s,
0.0001 m/s, 0.0001 m/s]2

Using these strategies, we simulate about 30 conjunction
events below 5 km with 20 CDMs each and test each of
the strategies on the same conjunctions. Each conjunc-
tion is observed for a period of 7 days: the first CDM (i.e.
CDM 1) is received about 7 days before the TCA, while
the last (i.e., CDM 20) is received about 8 hours before,
and they are updated every 8 hours. Our objective is to
assess how the state and the covariance matrix at TCA are
affected by different observation accuracies. In Figure 6,
we show how the covariance matrices diagonal terms at
TCA vary for one of the simulated events, as a function of
the received CDMs (in general, the covariances at TCA
become non-diagonal, but we here only show the diago-
nal terms to reduce the number of images). The closer
the CDM is to TCA, the lower the covariance values tend
to be, due to the fact that the initial covariance is prop-
agated for shorter time horizons. Moreover, we observe
that some of the covariances of the target overlap: the
reason is due to the fact that the same target covariance
is used for 4 experiments. To better appreciate the fact
that the covariance volume tends to shrink as the CDMs
approach TCA, we compute the determinant of the co-
variance matrices at TCA: this can be seen as a general-
ized variance, which measures the dispersion around the
mean [33]. We average these values across all simulated
conjunction events, and we display the results as a func-
tion of the CDMs in Figure 7. As one would expect, the
more the observation strategy is accurate, the lower the
determinant is. Furthermore, it is also confirmed that the
closer we get to the TCA, the lower the determinant be-
comes.
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Figure 6: Diagonal terms of the covariance matrix at TCA as a function of the received CDMs (from the first received 7
days earlier, to the 20th one, 8 hours before TCA) for the five different tested observation strategies.
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Figure 7: Determinant of the covariance matrices at TCA
as a function of the received CDMs for the five different
observation strategies.

What are the implications of these covariance values on
the estimated distance and risk of collision at TCA? In
Figure 8, we show how the estimated miss distance and
probability of collision vary as a function of the time to
TCA, for the five different observation strategies. It is
clear that the least accurate strategies can lead to big er-
rors in the estimation of the miss distance between the
two objects, while more accurate ones (e.g. Strategy 1
and 2) manage quite successfully to estimate the true miss
distance, even several days before the TCA (as it can be
confirmed by comparing their values to the black dotted
line, which represents the ground truth distance at TCA).
In order to assess how the estimation of the miss distances
changes as a function of the different observation strate-
gies, we compute the mean absolute percentage error be-
tween the estimated miss distance, and the ground truth
one. The results are displayed in Figure 9, as a func-
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Figure 8: Estimated miss distance and probability of col-
lision as a function of time to TCA, using 5 different ob-
servation strategies, for one of the simulated events. In
the miss distance figure, we show as a black dotted line
the ground truth distance between the chaser and target at
TCA.

tion of the received CDMs. Again, it is possible to con-
firm that the closer we are to TCA, the lower the error
in the evaluation of the miss distance. However, the dif-
ference can be considerable, depending on the accuracy
of the observations. As it can be observed, Strategy one
reaches an error of less than 10% in MAPE for the last
CDM, while the other strategies are all above 90%. This
shows how crucial measurement accuracy is in the col-
lision avoidance process, and how improvements in this
area can bring massive advantages in terms of reduction
of the collision risk.

When looking at the probability of collision plot on the
right side of Figure 8, we also observe how large co-
variances lead to the well know probability dilution prob-
lem [4, 17]. That is when the covariances of both objects
are extremely large (e.g. big measurement errors) then
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Figure 9: Mean absolute percentage error between the estimated miss distances and the ground truth distance at TCA, as
a function of the received CDMs, with the first CDM received about 7 days before TCA, and the last about 8 hours before
(and regularly space at about 8 hours intervals).

the probability of having the two objects at a distance be-
low the hard body radius tends to zero, which causes their
probability of collision to go to zero: however, this is only
driven by the fact that the orbits of the two objects are
poorly known. There is therefore the paradox in which
little certainty on the objects’ states leads to a vanishing
probability of collision. This can be clearly seen on the
right side of figure 8. The situation, in the displayed case,
is even more worrying because the event, for the most
accurate observation scenario (strategy 1) shows a high
probability of collision (more than 1 out of 1,000) and
with an increasing behavior as a function of time to TCA:
such events are typically those who typically require an
operational maneuver, whenever possible.

5. CONCLUSIONS

In this paper, we discussed the use of Kessler software,
an open-source Python package for collision avoidance,
for two case studies. At first, we used the software to
synthetically generate several thousands of conjunction
events (below 5 km), by modifying the LEO population
by adding five different megaconstellations (SpaceX Star-
link, OneWeb, Amazon Kuiper, Guo Wang, and SatRev-
olution). Then, the effects of these megaconstellations
on the generated conjunctions have been analyzed. It
was pointed out how these new objects are going to not
only increase the risk of having a collision but will also
blow up the number of conjunction data messages. Fur-
thermore, in a separate case study, we have also shown
how different observations strategy (with different mea-
surement accuracies) can have a significant impact on the
quantities that are crucial for conjunction screening, such
as the probability of collision and the miss distance. In
summary, we can recap the main highlights of the work
as follows:

• Kessler (in particular its probabilistic simulator

module) can be used to generate conjunctions (and
their associated CDMs) with different LEO popula-
tions and observations strategy, therefore allowing
to experiment with various possible scenarios. This
makes the tool not only useful for analyzing and pre-
dicting CDMs but also for being incorporated as a
tool to design or approve future missions, constel-
lations, and/or observation strategies. Furthermore,
it can also be used to assess the current LEO envi-
ronment and the key regions and objects in terms of
collision risk;

• none of the tested megaconstellations seem to have
a peculiar orbital geometry that would increase the
collision risk of their close encounters with other
resident space objects. Nonetheless, the increased
number of close encounters due to the presence of
megaconstellations causes the risk of having a colli-
sion in a given timeframe to considerably increase;

• once fully deployed, megaconstellations will mas-
sively increase the number of conjunction events be-
low 5 km, with severe consequences both in terms
of risk of collision and also the number of CDMs
generated. It is estimated that Starlink would cause
a 3.3× increase, while OneWeb a 250× increase,
Amazon Kuiper a 1.6× increase, Guo Wang a 2.2×,
increase and SatRevolution a 1.35× increase;

• we found that the number of conjunctions as a func-
tion of the distance at TCA can be represented us-
ing an empirical law (based on an exponential fit-
ting function). With this, we find that by reducing
the conjunction threshold at 1.2 km, the number of
CDMs would be reduced by a factor of 10,000;

• we show how Kessler can also be used to find the
most frequent objects that are encountered in con-
junctions and to quantify their occurrences. In the
analyzed cases, ASAT tests debris and collisions de-
bris have been demonstrated to be the most frequent
ones. This emphasizes the importance of avoiding



ASAT tests, as their generated cloud of debris poses
a serious and lasting threat to space objects;

• we showed how large observation errors can cause
the dilution of collision probability phenomenon, as
well as a miscalculation of the miss distance;

• both experiments seem to suggest that improving the
measurement errors of our sensor, through which
we observe space objects, can be crucial in both
performing more accurate conjunction analysis and
avoiding over/under-estimation of collision risk, as
well as massively reducing the number of CDMs,
and therefore the burden on operators, by reducing
the conjunction threshold.
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