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ABSTRACT

In recent years low-thrust propulsion has become an al-
ternative to chemical propulsion for many different ap-
plications. Hence, it becomes necessary to have accurate
and fast methods to improve the uncertainty realism of
the propagated orbits to improve the measurement corre-
lation process and to allow a more accurate estimation of
collision probabilities. To tackle this problem, many dif-
ferent techniques for orbital uncertainty propagation have
been developed in recent years. This work proposes an
analysis of several uncertainty propagation methods be-
longing to different families of methods (i.e., dynamics-
based and probabilistic) leveraging different techniques
(e.g., Differential Algebra, Gaussian Mixture Models,
Kernel Density Estimators, Spherical Radial Cubature,
and Unscented Transform). The results of the application
of the presented methods across a wide spectrum of mis-
sions are presented in this work. The implemented tech-
niques and scenarios have been developed in the frame-
work of the ESA-funded ELECTROCAM contract.
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1. INTRODUCTION

In recent years low-thrust propulsion has become a cred-
ible alternative to standard chemical propulsion for many
different applications, ranging from orbital transfers to
day-to-day operations of small satellites in LEO [1]. In-
deed, this latter case is gaining a growing interest owed to
the advent of mega-constellations endowed with a minia-
turized propulsion system capable of granting control au-
thority to such a class of satellites [2]. Despite the exten-
sive effort that has been put into development of guidance
algorithms relying on low-thrust propulsion, only few
works have focused on the analysis of collision avoidance
for such missions[3, 4]. This task is not only impacted by
the standard uncertainty in the orbital dynamics model,
but also by the stability of thruster performance. Actu-

ally, this aspect must be factored-in when computing state
uncertainties in order to adequately estimate the collision
probability. Besides, the adoption of low-thrust also af-
fects the time needed for corrective actions due to the re-
duced control authority that leads to longer thrusting arcs.
This in turn impacts the achievable risk reduction or the
selection of a suitable threshold in terms of accepted col-
lision probability level [5]. Moreover, the accuracy of the
computed Probability of collision (PoC) strongly impacts
decision making by mitigating collision risk or by avoid-
ing unnecessary Collision Avoidance Maneuvers (CAM)
execution.

In light of these considerations it becomes a pressing is-
sue to accurately quantify state uncertainties under the
effect of low-thrust noise in a timely manner. In partic-
ular, the adoption of continuous thrust for long arcs may
strongly affect the propagation of the statistics with re-
spect to a pure ballistic motion. Hence, it is paramount
to select an uncertainty propagation strategy that can deal
with the actual performance of the thrusters, managing
high-frequency thrust variations, thrust interruptions, and
uncertain command execution times. In fact, these ef-
fects, coupled with the nonlinear dynamics and the orbital
uncertainties mapping, sway the validity of the standard
Gaussianity assumption adopted by state-of-the-art meth-
ods. In order to address the most general and accurate
case of uncertainty propagation, one can solve the prob-
lem that stems from the Itô stochastic differential equa-
tion [6]

dx(t) = f(x, t)dt+G(t)dβ (1)

where x ∈ Rn is the random state vector, β (t) ∈ Rm

is an m-dimensional Brownian motion process with zero
mean and covariance Q(t). The vector function f(x, t)
captures the deterministic part of the dynamics, and G(t)
is an n × m matrix characterizing the diffusion. For
a given dynamical system that satisfies the Itô stochas-
tic differential equation, the probability density function
time evolution can be described by the Fokker–Planck
partial differential equation (FPE) [7]. However, solving
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a FPE in orbital mechanics is a difficult task, due to its
high dimensional state–space and its underlying highly
nonlinear dynamics [8]. Alternatively, to retrieve a com-
plete statistical description, one may carry out compu-
tationally expensive particle-type studies such as Monte
Carlo (MC) simulation [9]. However both methods have
a considerable computational cost, owing to the entire
statistical description of a trajectory. To address this is-
sue, many analytical or semi-analytical techniques for or-
bital uncertainty propagation have been developed in re-
cent years [10].
By assuming Gaussian uncertainties and by further per-
forming a local linearization of the dynamics (LinCov)
[11] or a linearization in an “average” sense (CADET)
[12], linear methods can completely characterize the
propagated distributions. While these formulations are
simple and efficient, their accuracy drops off for highly
nonlinear systems, long-duration uncertainty simula-
tions, or large initial uncertainty.
Several nonlinear techniques have been proposed in lit-
erature to refine the uncertainty realism. Probabilistic
methods infer statistical properties from the propagation
of a deterministically selected (small) number of samples
(e.g., Unscented Transform [13], Cubature methods [14],
Polynomial Chaos expansion [15]). On the other hand,
dynamics-based procedures such as the state transition
tensors (STTs) [16] were designed for motion approxi-
mation through higher order Taylor series expansion [17].
However, this method may require a significant compu-
tational effort to extract the required partials for high-
fidelity dynamic systems. Thanks to automatic differ-
entiation provided by differential algebra (DA) [18], the
disadvantages of STTs methods can be overcome [19].
Indeed, DA provides a flexible tool that can be lever-
aged in many different ways to propagate uncertainties
with lessened computational burden: polynomial evalua-
tions initial distributions (i.e., MC-like), Isserlis’ formula
(i.e., STT-like approach without the computational ef-
fort), linear propagation (i.e., LinCov-like).[19] Nonethe-
less, none of the described strategies can deal with the
high-order uncertainty propagation with low-thrust noise
in a timely manner. This is indeed a particularly daunt-
ing task as the introduction of process noise results in
a massive (in principle infinite) increase in the number
of uncertain variables and the need to assess their effect
along the trajectory with ad-hoc methods [20]. Typically,
thrust noise is accounted for a covariance inflation term
after propagation. However, this approach disregards any
effect of noise on higher order moments of the statistics,
as well as any coupling between uncertainty in the ini-
tial state and in the thrust. In addition, even by assum-
ing perfect propagation of the uncertainty, any nonlin-
ear transformation warps the Gaussian shape of a distri-
bution; hence, it becomes necessary to provide a differ-
ent description of the uncertainty. A possible solution is
to describe the final uncertainty with Gaussian mixture
models (GMM) [21, 22, 23]. The key concept behind
GMM is to separate a large domain into many smaller
subdomains, represented with Gaussian mixture elements
(GMEs), on which the dynamics can be linearized. The
weights combining GMEs can then be determined both
statically [22] as well as dynamically during propagation

[21].

To tackle all of these challenging aspects while provid-
ing a computationally efficient approach, this work in-
vestigated several different methods belonging to both
dynamics based methods, as well as probabilistic based
approaches.

The former methods rely on carefully mixing GMM with
DA, which has been proved effective for uncertainty
quantification as well as for PoC computation for prob-
lems without low-thrust [24, 25, 23] The first technique is
called Adaptive Differential Algebraic Gaussian Mixture
Model (ADAGMM), and the peculiarity of this technique
is that a nonlinearity index is computed during the prop-
agation of each GME, effective to understand whether it
is necessary to adaptively split the element to avoid the
onset of nonlinearity. Besides providing automatic par-
tials (which are useful for nonlinearity and split compu-
tations), DA also provides the state transition maps nec-
essary to include the thrust noise during propagation. The
second proposed method is the Stochastic Taylor Model
(STM): a DA extension that endows the ODE flow ex-
pansion of the final state with an expansion of the em-
bedded covariance inflation linked to the process noise.
After propagating these two polynomial maps the final
distribution of states can be retrieved. A GMM can then
be fit to this distribution and the polynomial map of the
covariance inflation is evaluated at the location of the
GMM’s means to retrieve the covariance correction term.
By combining these two components, the final probabil-
ity distribution is obtained as a GMM.

On the other hand, probabilistic methods consider
stochastic dynamic models that allow us to include the
thrust uncertainty in a seamlessly manner. A time-
dependent uncertainty model for both thrust acceleration
and pointing is proposed. The integration of the resulting
stochastic differential equations is done using a stochas-
tic Runge-Kutta, compatible with the thrust uncertainty
model. The uncertainty propagation, in turn, is performed
using Unscented Transform (UT), cubature schemes such
as the Spherical Radial Cubature (SRC) and Kernel Den-
sity Estimator (KDE) methods.

The next section will be dedicated to a thorough descrip-
tion of the developed methods. Subsequently, a follow-
ing section will be dedicated to the description of the
study cases. Furthermore, this work will present a nu-
merical assessment of the proposed approaches in terms
of both accuracy of the uncertainty propagation as well
as on their usage and effect on PoC computation.

2. DYNAMICS-BASED UNCERTAINTY PROPA-
GATION

This section presents the description of the two
dynamics-based UP advanced methods proposed in this
work. Such methods combine the benefits of automatic
differentiation native to DA techniques with the capa-



bility to deal with simplified linearized models typical
of GMM [26]. Before diving into the specifics of each
method, it is necessary to provide a brief introduction to
DA and its benefits.

2.1. Expansion of ODE flow with DA

DA brings the treatment of functions and the operations
on them to the computer environment in a similar way as
the treatment of real numbers as presented in [18]. The
implementation of DA in a computer allows to compute
the Taylor coefficients of a function up to a specified or-
der k in a fixed amount of effort, and it can be used to
perform composition of functions, to invert them, to solve
nonlinear systems explicitly, to differentiate, and to inte-
grate.
Given a general set of ODEs described by:

ẋ = f(t,x,u) (2)

The main advantage of DA is that, by setting the initial
state as a DA variable and by carrying out all the evalua-
tions in the DA environment, it is possible to retrieve the
arbitrary order expansion of the flow of such set of ODEs
with respect to variations of the initial condition as

[xf ] = xf + T N
xf

(δx0) (3)

After integrating the ODEs, the result of the final step of
integration is a constant coefficient of the nominal propa-
gated state xf plus a N -th order Taylor expansion of the
flow expressed in terms of variation of the initial state
δx0 at the final time tf : T k

xf
(δx0). DA techniques were

developed for the ESA in the C++ DACE library by Di-
namica Srl [27].

2.2. Adaptive Differential Algebraic Gaussian Mix-
ture Model

This approach assumes that a Gaussian distribution re-
mains Gaussian under a linear transformation and that
any regular nonlinear transformation behaves almost lin-
early if the domain of interest is sufficiently small. Sup-
pose to have a Gaussian distribution at an initial time t0,
owing to a non-linear dynamics propagation the covari-
ance is inflated and distorted over time. To overcome
this issue, the ADAGMM method is conceived to split
the original GME into an increasing number of GMMs
as the dynamics are forwardly propagated through a DA
based nonlinearity index. The routine is organized in this
way:

1. Initialization of the GMM at time instant t0, this
case also includes the simple one of a single GME
with weight 1 for the initial distribution, but also al-
lows to propagate GMMs directly.

2. Each GME is added to a list of elements that need to
be propagated until tf and the propagation module
starts to propagate each of them.

3. The propagation of mean and covariance is carried
out both at first and at second order and at each step
a nonlinearity metric is computed to detect the onset
of nonlinearity (i.e., the need to further split uncer-
tainty).

4. If the propagation threshold is not violated, the el-
ement is propagated until the end of the time win-
dow. Otherwise, a univariate splitting library [23] is
applied to split the element in a set of new GMEs
which are added to the list of elements that still need
propagation, and the algorithm goes back to step 2.

When the propagation finishes for all GMEs, the final
GMM can be assembled.
By calling t0 the initial propagation time of a given GME,
it is possible to characterize this distribution through an
initial mean x0, covariance P0, and weight w0. If the
mean state is initialized as a DA variable and if the nu-
merical integration of the ODEs describing the dynamics
are carried out in a DA environment, then the ODE flow
expansion at each time instant can be obtained. More-
over, the maximum order of the polynomial expansion
for this method is set to N = 2. Indeed, this number
should be enough to capture the incipient nonlinearity
during propagation while not being too computationally
demanding. After integration of these equations, a DA
polynomial map for the final state will therefore be avail-
able up to second order. By truncating this polynomial
expansion to first order the state transition matrix up to
a certain time step tk (i.e., Φ(tk)) is retrieved and the
noiseless covariance can be propagated by adopting the
LinCov technique [11] as in Eqs. (4 – 6):

T 1
xk
(δx0) = Φ(tk) (4)

x̂k = Φ(tk)x0 (5)

P̂k = Φ(tk)P0Φ
⊤(tk) (6)

with the superscript 1 indicating the truncation order
of the polynomial map, whereas the accent ˆ has been
used to characterize means and covariances obtained with
a linear propagation. On the other hand, the second-
order propagation [19] leverages the Isserlis’ formula
with maximum order N = 2, and is instead indicated
with the˜accent x̃k and P̃k. The two distributions are
compared at tk according to the Hellinger Distance H
to determine the need to split the current Gaussian dis-
tribution [28], which expresses the distance between the
two distributions and can therefore inform about the onset
of nonlinearity during propagation. Moreover, it has the
interesting property of being bounded between 0 and 1,
which allows setting nonlinearity thresholds that should
hold true for varying test cases.
ADAGMM is further adapted to account for the covari-
ance inflation term owed to the presence of thrust noise.
This is done as a one step correction of the covariance
when the GME reaches its final propagation time. The
computation of this inflation term from the initial time of
the propagation t0 until the final time tf can be obtained



as [12]:

∆P =

∫ tf

t0

Φ(τ)G(τ)QG⊤(τ)Φ⊤(τ)dτ (7)

In this equation the term Q is adopted to describe the
covariance of the process noise w. The state transition
matrix Φ(τ) is retrieved automatically from the DA ex-
pansion of the flow. Similarly, G(τ) is given by the gra-
dient of the dynamics with respect to the input pertur-
bation G evaluated about the nominal trajectory. If the
Hellinger distance threshold is violated, the propagation
of the GME is stopped, the GME is split in a GMM, and
each of the new components is corrected for covariance
inflation from the beginning of their propagation up to
the achieved splitting instant. The direction in which the
GME has to be split is determined thanks to the a state-
of-the-art algorithm presented in [29]. By knowing the
number of desired splits ns, a univariate splitting library
[23] is applied in the desired direction. The outcome of
this sub-routine is a new set of new means, covariances,
and weights at the initial time of the propagation t0 for the
current GME that needed splitting. Thanks to the poly-
nomial map [x∗] (δx0) it is possible to propagate each
of the newly generated GMEs directly up to the splitting
time without having to integrate each one of them numer-
ically. The newly expanded maps can be used with the
Isserlis’ formula to retrieve the propagated means and
covariances. Moreover, these new expansions can also
be exploited in Eq. (7) to compute the covariance infla-
tion terms appropriately for each of the new GMEs going
from t0 to the splitting time. At the end of the split pro-
cedure, the new set of GMEs at their new initial time is
added to the list of GMEs that need to be propagated and
their starting time is set to be t0 for the next propaga-
tion. The total number of GMEs cumulated during the
automatic split procedure will grow exponentially with
the number of splits, hence, the computational effort can
be limited by bounded by tuning the number of GMEs for
each split and the split threshold.

2.3. Stochastic Taylor Model

The second method proposed extends DA to include the
possibility of handling process noise in uncertainty prop-
agation. The key idea of the STM approach is to obtain
a polynomial expansion of the ODE flow for the state
which is endowed with a linearized correction term for
the covariance to account for the thrust noise. The over-
all procedure can be summed up as a sequence of steps:

1. The initial state is set as a DA variable and its ODEs
are propagated to retrieve an higher-order expansion
of the flow with respect to the initial state varia-
tion. This system of ODEs is coupled with addi-
tional equations accounting for the linearized cor-
rection of the covariance. This coupling allows to
retrieve the covariance inflation term as an expan-
sion of the initial condition, therefore it can be used

to re-expand this correction term about any trajec-
tory stemming from an initial condition in the neigh-
borhood of the initial state.

2. After propagating these two polynomial maps a DA
Monte Carlo simulation is performed on the state
map to retrieve the final distribution of states.

3. A GMM is then fit to this point cloud so that a set
of means, weights, and covariances can be used to
describe the final distribution.

4. The initial state that generates each mean of the final
GMM is obtained through a polynomial map inver-
sion of the ODE flow of the state.

5. Then, these initial conditions can be used to evalu-
ate the polynomial map of the covariance inflation.
This term is simply summed to the final covariance
of each GME without modifying its weight.

The initial state of the propagation needs to be set as a DA
variable and the following set of equations is propagated
from the initial conditions [x0] = x0 + δx0 and ∆P0 =
0:

ẋ = f (t,x,u) (8)

∆̇P = F∆P+∆PF⊤ +GQG⊤ (9)

Having adopted the notation G and F to characterize the
partial of the dynamics with respect to the control and
state. Through the dependency from these partials, also
∆P is retrieved as a polynomial expansion about the ini-
tial state. Therefore, at the desired final time of the prop-
agation two polynomial expansions will be available, one
for the state such as in Eq. (3) and one for the covariance
inflation:

[∆Pf ] = ∆Pf + T∆Pf
(δx0) (10)

The reasoning behind this approach is to propagate only
the covariance inflation term owed to the presence of
thrust noise in the region neighbouring the nominal tra-
jectory. By adopting a polynomial expansion of the ODE
flow, it becomes possible to re-expand the covariance in-
flation term about any trajectory sampled from the state
transition map. Eq. (9) can be retrieved according to the
following procedure that relies on propagating covariance
with and without process noise [12]:

Ṗ = FP+PF⊤ +GQG⊤ (11)

Ṗ = FP+PF⊤ (12)

By making the assumptions of local linearization[12], the
presence of thrust noise does not influence the nominal
trajectory. As a consequence F and G will be the same
for both set of ODEs. These assumptions imply that the
bulk of nonlinearity in the uncertainty propagation will
depend on the unperturbed nonlinear motion and will be
captured by the high-order expansion of the flow of ODEs
for the mean. On the other hand, they also entail that
the process noise will be account for a term that can be



obtained via local linearization and that does not signifi-
cantly impact the propagation of the mean state.

The realization of the final state ODE flow expansion al-
lows to exploit the DA Monte Carlo approach to prop-
agate a large number of samples drawn from the initial
distribution and propagated through the polynomial map
[19, 30]:

xn
f = xf + Txf

(xn
0 − x0) (13)

with xn
0 and xn

f being the initial and final state of the n-th
sample.
This procedure produces a point cloud at tf , which can
be fitted with an arbitrary ns number of GME elements.
Each GME has a specific mean xs

f , covariance Ps
f and

weight ws
f . The higher the weight, the more the linked

GME contributes to the Probability Density Function
(PDF) at tf . Up to this point, the GMEs do not take into
account thrust noise covariance. To include this contribu-
tion, the polynomial map is exploited a second time. In
particular, by exploiting polynomial map inversion and
evaluating it for each mean of the final GME

δxs
0 = T −1

xf

(
xs
f − xf

)
(14)

it becomes possible to retrieve the variation from the ini-
tial condition that generated the mean of the current GME
under investigation. This initial variation can be used in
the evaluation of the covariance inflation term for each
mean of the GME by evaluating Eq. (10). Once ∆Ps

f

has been evaluated for every GME, the covariance infla-
tion term is simply summed to the final covariance of the
mixand Ps

f .

3. PROBABILISTIC BASED UNCERTAINTY
PROPAGATION

3.1. Dynamical Stochastic Model of Maneuvering
Objects

Let us consider the dynamics of a manoeuvring space-
craft. The nominal acceleration generated by the thruster
at time t is denoted aT (t) and, if we assume that this
magnitude is deterministic and exact, then the dynamics
of the orbiting spacecraft is given by the ODE

v̇ = −µ
r

r3
+

1

2
ρrvrelBvrel +

∑
l

pJl
+ aT (t)

where
∑

l pJl
is the superposition of perturbations due

to the zonal harmonics. In a practical setup, however, the
thruster acceleration is subject to unknown perturbations.
We model this uncertainty by transforming the ODE
above into the stochastic differential equation (SDE) in
Itô form [31]

dr = vt , dv = f(X, t)dt+G(aT )dW (15)

where X(t) = [r(t)⊤,v(t)⊤]⊤,

f(X, t) = −µ
r

r3
+

1

2
ρrvrelBvrel +

∑
l

pJl
+ aT (t) ,

(16)
is a drift function representing the deterministic part of
the dynamics, W(t) is a standard 3-dimensional Wiener
process (Brownian motion) with diffusion coefficient
G(aT ). The term G(aT )dW is a stochastic diffusion
that accounts for the uncertainty in the acceleration gen-
erated by the thruster. The matrix G(aT ) controls the
power of the acceleration ‘noise’. When G(aT ) de-
pends on the nominal thruster acceleration but not on
the state of the spacecraft, the Itô equation (15) matches
the Stratonovich SDE [31] (see also Chapter 6 of [32]).
Since the state of the spacecraft is the 6-dimensional vec-
tor X(t), we find it more convenient to rewrite (15) in the
more compact form

dX = f̃(X, t)dt+ G̃(aT )dW, (17)

where f̃(X, t) =

[
v(t)

f(X, t)

]
and G̃(aT ) =

[
03x3

G(aT )

]
.

If the last term in is neglected (i.e., we set the covariance
matrix G(aT ) = 0 for all t), the dynamics become deter-
ministic.

Choices for the diffusion coefficient G(aT ) We as-
sume the nominal acceleration aT is known for all t. One
key issue that will be important later for the design of nu-
merical schemes is whether aT depends on X(t) or not.
For the case described below, a physical model for G has
been developed with an explicit dependence on X(t).

Let us denote the true acceleration generated by the
thruster as a∗T = a∗T τ

∗ where aT = ||a∗T || and τ∗ is the
unit vector in the direction of the acceleration. The lat-
ter can be written as a function of the unit vectors i , j ,k
along the spatial directions as:

τ∗(α, β) = cosα cosβi+ sinα sinβj+ sinβk (18)

where the angles α and β hence determine the direction
of the thrust. Then, we may have two physical sources of
uncertainty: the thrust produced by the propulsion system
(a∗T ) and the pointing of the spacecraft (τ∗(α, β)). If we
let aT denote the reference or nominal value magnitude
of the acceleration and also assume known reference val-
ues for the pointing, denoted αr;βr, the difference of the
actual and nominal values can be characterised as Gaus-
sian errors:

∆aT = a∗T − aT ∼ N (m∆,a, σ
2
∆,a) , (19)

∆y = {∆α,∆β}T ∼ N (m∆,y,Σ∆) , (20)

With this notation, we may write the true acceleration aT
as:

a∗T = (aT +∆aT )τ
∗(αr +∆α, βr +∆β) (21)



If we assume ∆α ≪ 1 and ∆β ≪ 1, then cos∆α ∼ 1 ∼
cos∆β, sin∆α ∼ ∆α, sin∆β ∼ ∆β and ∆α∆β ≪ 1.
Thus, we write the direction vector as τ∗ = τr + ∆τ ,
with:

τr = cosαr cosβri+ sinαr sinβrj+ sinβrk ,

∆τ = S∆y ,

and,

S =

[− cosβr sinαr cosαr sinβr

cosαr cosβr − sinαr sinβr

0 cosβr

]
.

Finally, the acceleration generated by the thruster can be
written as

a∗T = aT τr + a
(1)
T + a

(2)
T ,

where a
(1)
T ,a

(2)
T are random, with

a
(1)
T = ∆aT τr ∼ N (m∆,aτr, σ

2
∆aT

τrτ
T
r )

a
(2)
T = aTS∆y ∼ N (aTSm∆,y, a

2
TSΣ∆S

T )

Recalling (16), we can now write the drift function
f(X, t) as

f(X, t) = −µ
r

r3
+

1

2
ρrvrelBvrel +

∑
l

pJl
+ ...

+aT τr +m∆,aτr + aTSm∆,y , (22)

and the diffusion coefficient as G(aT ) =[
σ∆aT

τr aTS
√
Σ∆

]
. This diffusion model implies

that process G(aT )dW has a covariance matrix

R(aT ) = hG(aT )G
⊤(aT ) = hσ2

∆aT
τrτ

⊤
r +ha2TSΣ∆S

⊤

(23)
over intervals of length h ≪ 1.

Numerical Schemes There are variety of numerical
schemes that can be employed to approximate the Itô pro-
cess described by Eq. (15). The numerical schemes im-
plemeted for this work were a 1.0 order stochastic Runge-
Kutta (SRK) method from [33] with strong convergence
[34], and a weak order 3.0 SRK scheme from [35], which
is more complex but enjoys better theoretical properties.

3.2. Uncertainty Propagation Methods

The uncertainty on the state of an orbiting object is typi-
cally represented by an expected or mean value (of both
position and velocity in 3-dimensional space) together
with a covariance matrix that accounts for the expected
error with respect to the mean. As Gaussian distribu-
tions are fully determined by its two first moments, it
is just natural to interpret this uncertainty characteriza-
tion as a normal distribution on the state at time 0, i.e.,

x0 ∼ N (x̄0,C0), where x̄0 and C0 are the mean and
covariance, respectively, at time 0.

Let pn(xn) denote the PDF of the state xn of the orbiting
object at time t = nh. Gaussian methods for UP con-
struct a normal approximation of pn(·) by propagating
the initial mean x̄0 and covariance C0 to time n using the
dynamical equation xn = Φn(xn−1,un). Thus, we ap-
proximate pn(xn) ≈ N (xn|x̄n,Cn), where x̄n and Cn

are the estimated mean and covariance at time n.

There are different ways in which the propagation of the
mean state and its covariance can be implemented. The
most straightforward solution is the linearisation of the
dynamical equation, typically using a first order Taylor
approximation [36, 37, 38, 39] or by statistical linearisa-
tion [40]. These approaches, however, are known to yield
poor results depending on the geometry of the orbit or the
length of the propagation period. Instead of linearising
the dynamics, a more efficient approach is to estimate the
mean and covariance transformed by the nonlinear dy-
namic equation. Here we review few of the most popular
approaches.

Unscented Transform. The UT provides an efficient
procedure to propagate both the mean and the covariance
through a nonlinear function using deterministic samples.
If the mean and covariance before the nonlinear trans-
formation are exact, then the estimates obtained via the
UT are accurate up to the second order of a Taylor ex-
pansion [41]. Algorithms that rely on the UT can be
computationally fast, however they are only useful when
the target probability distribution can be ‘well approxi-
mated by a Gaussian. This precludes multimodal, heavy-
tailed and/or asymmetric distributions. For orbital UP,
the PDF of the state eventually becomes strongly non-
Gaussian (see, e.g., Fig. 2 in [42]). However, the nor-
mal approximation can remain useful and rather accurate
for short-to-midterm UP, depending on the type of orbit
and the relevant perturbations [43]. Other Gaussian UP
methods based on deterministic sampling and integration
can be designed using cubature theory [44, 45] and they
are discussed in next sub-section. Let x̄0 and C0 be the
mean and covariance at time 0. To apply the UT, we se-
lect a set of sigma-points x0(i) band associated weights
w0(i), i = 1, . . . , 2d + 1, where d is the dimension of
x0. There are many ways in which both the x(i)’s and
the w0(i)’s can be computed from x̄0 (see [46] for an ex-
tensive survey) and the number of points, their location
and their weights may vary. For example, if a Gauss-
Hermite quadrature rule is used, a larger number of points
is needed but the approximations are more accurate as
well. In any case, the weighted sigma-points should cap-
ture the mean and covariance of the initial state exactly.
In a second step, the sigma-points are mapped through
the non-linear dynamical equation. Let us assume a de-
terministic scheme xn = Φn(xn−1,0) and denote the
composition of n successive steps as

Φ0:n = Φn ◦ Φn−1 ◦ · · · ◦ Φ1 ,



then, the new sigma-points at times n are

xn(i) = Φ0:n (x0(i)) , i = 1, . . . , 2d+ 1 ,

while the weights remain unchanged, wn(i) =
w0(i). Then the approximate mean at time n is
x̄n =

∑
i wn(i)xn(i) and the covariance is Cn =∑

i wn(i) (xn(i)− x̄n)) (xn(i)− x̄n)
⊤. Let us note that

the UT can be applied without computing any derivatives.
A linearisation of the model is implicit, though (i.e., the
UT can be re-written as a linearisation method under cer-
tain assumptions). UT algorithms are simple to imple-
ment, however their performance may vary depending,
e.g., on the number of sigma-points or the type of non-
linearity.

Unscented Kalman filters. In some scenarios, the
propagation of uncertainty involves the assimilation of
available data. In such cases, the problem is not one of
pure prediction anymore but the estimates of the mean
x̄n and the covariance Cn have to be updated when rele-
vant data are received. Since the early 2000s, the UT has
become a favourite tool for the implementation of (ap-
proximate) nonlinear Kalman filters [41, 47] and there is
currently a broad choice of so-called unscented Kalman
filters (UKFs) tailored to various assumptions [46]. In re-
cent years new versions of the UKF have appeared that
have shown behaviors similar to those of the classic UKF
but with an even lower computational cost than this. The
authors of [48] offer a comparison between different non-
linear filters, including two based on the UKF: single
propagation UKF (SPUKF) and extrapolated single Prop-
agation UKF (ESPUKF). The results with cubeSats show
that the latter reduce the computational cost by almost
half while maintaining the accuracy of the UKF. Filter-
ing methods have also been applied to satellite problems
with orbit modification. Thus, [49] apply UT for the de-
sign of the trajectory of satellites with reduced impulse
(low thrust) in the context of stochastic dynamics. Ap-
plications to the determination or transfer of orbit in low
thrust regime can be found, also in [49, 50, 51, 52].

Cubature Methods. The term “cubature” refers to a
class of methods for the numerical approximation of
high-dimensional integrals, i.e., generalizations of clas-
sical quadrature schemes to multidimensional settings.
The use of cubature methods for uncertainty quantifica-
tion and filtering gained attention in the engineering com-
munity after the publication of [53]. In the framework of
UP, the cubature methods are applied in a way that is very
similar to UT schemes. The key element is the identifica-
tion of a set of reference (or cubature) points in the state
space and their propagation through a nonlinearity in or-
der to approximate integrals of nonlinear transformations
of Gaussian random variables. The key feature of cu-
bature schemes is that they are designed to be exact for
a certain class of nonlinear transformations. The prac-
tical use of cubature schemes for numerical integration
depends on a trade-off between accuracy and computa-

tional cost. From this perspective, spherical-radial cuba-
ture rules are particularly popular [44, 45]. The spherical-
radial cubature rule of the third-degree (SRC3D) [44] is
very similar to the UT. Given an initial mean vector x̄0

and a covariance matrix C0 = S0S
⊤
0 , one computes the

cubature points
x0(i) =

√
dei

,
x0(i+ d) = −

√
dei

. For i = 1, . . . , d and ei a vector of 0’s with a single 1 in
the i-th entry. The weights for these cubature points are
all equal, w0(i) = w0 = 1

2d for i = 1, . . . , 2d. With this
choice of cubature points, one can guarantee the identity∫
g(x)N (x|x̄0,C0)dx =

∑
i g(x0(i))w0 when g(x) is

a polynomial of degree 3 or less. If we want to propagate
the Gaussian distribution of x0 up to time n through a
dynamical equation xn = Φ0:n(x0) we simply project
the cubature points, xn(i) = Φ0:n(x0(i)), i = 1, . . . , 2d,
and keep the uniform weight wn = w0 = 1

2d . Then, for a
test function g(·), we approximate

∫
g(x)pn(xn)dxn ≈∑

i g(xn(i))wn. We note that even if the test function
g(·) is a polynomial of suitable degree (≤ 3) the cubature
estimate is not exactly anymore because pn(xn) is not
Gaussian when Φ0:n is nonlinear. Cubature rules can be
obtained for higher order polynomials; see, e.g., rules for
polynomials of degree 5 in [44] and [45] (with O(d2)
cubature points) and rules for polynomials up to degree 7
in [54] (with O(d3) cubature points).

Kernel Density Estimators. A natural extension of
Gaussian UP methods is to approximate the PDF of the
state pn(xn) as a mixture of N normal distributions [55],
i.e., pn(xn) ≈ p̂Nn (xn)

∑N
i=1 N (xn|x̂i

n, b
2Σ), where the

xi
n’s are the means of the Gaussian kernels, Σ is a co-

variance matrix and b is a bandwidth parameter. While
Gaussian mixture models (GMM) with an adaptive num-
ber of components (N) have become popular (see Section
6.x), here we restrict our attention to GMMs with fixed N.
In this case, the UP process consists in creating an initial
kernel density estimator (KDE),

p0(x0 ≈
N∑
i=1

N (x0|x̂i
0, b

2Σ)

, and then propagating the N mixands over time using
UT or cubature methods. Classical theory on KDEs [56,
57] can be used to prove that, provided the initial means
x̂i
0, i = 1, . . . , N , are iid samples from p0(x0) and some

mild regularity assumptions are met, then the asymptotic
convergence of the mean integrated square error (MISE)
is guaranteed, i.e.,

lim
N→∞

E
[∫ (

pn(x)− p̂Nn (x)
)2

dx

]
= 0

. If pn(·) is Lipschitz, then [58] provides stronger results.
In particular,

sup
x

|pn(x)− p̂Nn (x)| ≤ Vϵ

N
1−ϵ

2(d+1)



, where ϵ > 0 is arbitrarily small, Vϵ is an a.s. finite ran-
dom variable and b = O

(
N

−1
2(d+1)

)
. While these results

provide guarantees for large N , in a practical orbital UP
application the number of mixands N in the GMM should
be at most moderate. In this case, the key to the perfor-
mance of the estimator is the choice of the bandwidth pa-
rameter b. However, p̂Nn (·) often displays artifacts in the
tails of the distribution. Work is usually needed to design
bandwidth selection schemes that avoid this (undesired)
feature.

4. NUMERICAL SIMULATIONS

This section provides a description of the analyzed test
cases. For the proposed methods, the dynamics of the
systems are assumed to be defined by:

ẋ = f(t,x,u+w) =

=

{
ṙ = v
v̇ = − µ

r3 r+
1
2ρ(r)

(
CdA
m

)
v2 + u+w

(24)

The state is here represented by position and velocity
x = [r;v], and it is further assumed that any given con-
trol history can be parametrized with a function of time
u plus additive process noise w. In this work the dynam-
ics is assumed to be constituted by Keplerian acceleration
with gravitational parameter µ, a simplified drag model,
and the thruster acceleration (with its noise). Concerning
the drag model, the ballistic coefficient is given by the ra-
tio of front area A times the drag coefficient Cd and it is
divided by the mass of the object m. To conclude, the at-
mospheric density ρ is assumed to be a function of the al-
titude only. The implemented atmospheric density model
needs to cover altitudes of at least 1300 km to provide
drag values for all envisioned test cases in LEO. The im-
plemented simplified model relies on the Jacchia77 em-
pirical model [59], which provides density profiles up to
2500 km. To simplify this estimate by reducing it to only
a dependence on altitude, the distribution of densities is
averaged at different altitudes levels.

The physical model of the thrust noise covariance has
been described in the previous section (3), and accord-
ingly, it is assumed that this can be modelled as a point-
ing and amplitude error. For the envisioned test cases,
4 different combination of increasing uncertainties are
adopted and their values are reported in Table 1.

Table 1. Summary of noise levels.

Noise Level Amplitude error [%] Angular error [deg]
Accurate 0.5 1.0
Average 1.0 2.0
Low 2.5 5.0
Inaccurate 5.0 10.0

4.1. Test Cases Description

The test cases have been provided with the collabora-
tion of GMV. they include significant scenarios for long-
thrusting (e.g., Orbit Raising) and orbit maintenance.
Among the operational scenarios involving long thrust-
ing, at least the following ones are considered:

• Low-LEO-to-LEO electric orbit raising, as currently
carried out for instance by One-web satellites from
around 500 km to around 1200 km following a
spiral-like trajectory lasting months.

• GTO-to-GEO electric orbit raising, as currently car-
ried out by GEO satellites equipped with low-thrust
devices in order to raise the satellite from GTO orbit
to the final GEO orbit.

• LEO disposal, where a LEO satellite orbit is low-
ered with low-thrust means at its end-of-life in order
to comply with the guideline of 25 years maximum
orbital lifetime.

• LEO Station Keeping (SK), as currently done by
various types of satellites (communications, Earth-
observation, etc.) following different strategies
(ground-track control, constellation control).

• GEO orbit maintenance, where GEO satellites with
electric propulsion carry out daily low-thrust ma-
noeuvres to compensate the orbital disturbances
caused by Sun and Moon and the Earth geopoten-
tial.

For each of these scenarios, a reference orbit is generated,
considering the typical constraints affecting low-thrust
devices (e.g. eclipses, maximum slew rates, etc.). These
reference orbits are then used to simulate an operational-
like situation where measurements are available from the
sensors being used, through the simulation of the obser-
vations and the subsequent orbit determination process,
throughout different phases of the reference orbit. This
allows to generate realistic orbital states and covariances,
at the time of the last observation. The following sensor
networks are considered for the observation simulation
process, together with the expected visibility windows:

• On-board GNSS receivers, both below and above
GNSS altitude, considering the typical size of pri-
mary and secondary lobes of the GNSS signal.

• Ranging stations, used to measure the slant range
of the satellite with respect to a network of stations,
whose number depends on the orbital regime con-
sidered (e.g. two in GEO).

• Space surveillance networks, composed of survey
and tracking radars (typically for LEO) and tele-
scopes (typically for MEO and GEO).



The a-posteriori realistic covariances are then used as in-
put to perform the uncertainty propagation using the dif-
ferent approaches to be compared, including the uncer-
tainty of the low-thrust propulsion system. A summary
of the study cases is reported in Table 2.

Additionally, in order to assess the suitability of the se-
lected approach for characterizing conjunctions, colli-
sions are also simulated as part of this process with the
estimated orbits of the operational satellites (i.e. primary
object) and a background population of space debris ob-
jects. The simulated conjunctions are reported in Table
3.

5. RESULTS

The accuracy of each scenario will be compared against
a Monte Carlo simulation of 50000 samples, the metrics
adopted will be:

• Runtime normalized with respect to benchmark MC
(500 samples)

• L2 norm of final mean position and velocity errors

• L2 norm (i.e., Frobenius norm) of final position and
velocity covariance errors

• Maximum Total Variation Distance (TVD) among
all states

• Maximum Mean Integrated Square Error (MISE)
among all states

These two latter measures have been introduced to ac-
count for the non-Gaussianity of the distribution. First,
the MISE will be evaluated per each dimension and nor-
malized with the distribution obtained for each dimension
by the Monte Carlo analysis. Secondly, also the TVD will
be analysed per each dimension. To conclude, only the
maximum MISE and maximum TVD will be provided.
While these latter metrics should provide some insight
into the description of the non-Gaussianity, they only tell
part of the story. Indeed, by considering each dimen-
sion on its own, all information related to the coupling
between variables is lost. When looking at the computa-
tional time, each of the reported times have been normal-
ized with the runtime of the corresponding Monte Carlo
simulation of 500 samples to reduce the computational
effort.

5.1. Comparison of Uncertainty Propagation Ap-
proaches

All propagation strategies analyzed showed degrading
performances for increasing duration of the propagation
across all metrics. To account for this behaviour, while
also considering the varying level of thruster error in

Table 1, a cumulative index called Process Noise Index
(PNI) is used to compare performances of different sce-
narios and algorithms. This PNI is computed as the ratio
between initial and final sizes of the state covariances ob-
tained from the benchmark MC analysis.

PNI =
det (Pf )

det (P0)
(25)

The results are reported in a series of summary graphs
considering all combination of scenarios (i.e., with dif-
ferent markers) and algorithm (i.e., with different colors)
when propagated at their final time as reported in Table 2.
Each of these combinations will have a 4 different levels
of PNI which are determined by the thruster noise perfor-
mance.
A preliminary look at computational times (e.g., reportd
in Figure 1 for dynamics-based methods) reveals that that
STM is more costly in terms of computational time, being
it on average ∼ 0.7. However, its cost is not dependent
on the PNI. On the contrary, ADAGMM shows a depen-
dency of the computational time with PNI which is par-
ticularly relevant for some scenarios (e.g., LEO to LEO
and LEO DISPOSAL). Despite this, it still is faster with
an average time across all PNI and scenarios of ∼ 0.1.
The increase of time for this method is to be expected for
some challenging cases where the increasing nonlinear-
ity makes the number of GMEs (adaptively determined)
grow very rapidly (i.e., ∼ 1000 GMEs for LEO to LEO).
With regards to probabilistic based methods, it was ob-
served that consistently for all scenarios, UT and SRC3D
methods are below 10% of the reference time for the MC
run, whereas SRC5D is on about 20% and KDE meth-
ods in the 50%. In addition, it was not observed a direct
dependency between PNI and computational time.

Figure 2 shows the effect of PNI on the error of esti-
mation of the mean for dynamics based methods. Both
subfigures shows the same trends, with the estimation
not significantly influenced by an increase of PNI. STM
clearly outperforms ADAGMM in terms of final mean
error. Concerning probabilistic approaches, we observed
that errors for low PNI are in the order of hundreds of me-
ters for UT and SRC, but they grow exponentially with
PNI with UT algorithms showing a steeper slope than
SRC. The maximum mean position error observed for the
SRC algorithms is about 10 km. On the other hand, KDE
algorithms present a performance which is almost inde-
pendent on PNI, with errors in the order of the km.

Since dynamics-based methods are basically unchanged
in terms of position error but they accumulate a grow-
ing error in covariance, also the metrics capturing the
non-Gaussian behaviours reflect similar trends in Figure
3. While STM has static hyperparameters, ADAGMM
can adapt the number of GMEs autonomously even if the
parameters are fixed. This trend is clearly visible in the
LEO to LEO and LEO DISPOSAL scenarios where the
number of GMEs grow but they allow for a better repre-
sentation of the uncertainty. It is also worth mentioning



Table 2. Operational scenarios investigated.

Scenario Orbital Propagation Time NotesRegime [days]

LEO to LEO LEO (500 km) 7 Earth Orbit Raising
with continuous thrust

LEO DISPOSAL Low LEO (Starlink) 7 End of disposal for Starlink-like
satellite with continuous thrust

LEO SK Low LEO (Starlink) 3 Daily along-track short maneuvers

GTO to GEO GTO 15 Beginning of Orbit Raising
(i.e., near GTO) with continuous thrust

GEO SK GEO 15 Daily maneuvers of long duration

Table 3. Analyzed Conjunctions.

Scenario Relative Speed (m/s) Conjunction Angle [deg] Time to Conjunction [days]
LEO to LEO 1000 90 3
LEO DISPOSAL 15000 179 2
LEO SK 5000 40 4
GTO to GEO 16000 178 4
GEO SK 500 70 5

that the LEO SK has very little variation of the PNI be-
cause it has the shorter propagation but also very short
and few maneuvers. In this case as well as the GEO ones
there is substantially no difference between the two ap-
proaches. When looking at probabilistic based methods,
the results show that the behaviour of the algorithms has
a consistent dependence on the PNI. UT algorithms (i.e.,
see Figure 4) show small values of maximum TVD for
low PNI, but the performance degrades fast with PNI.
In addition, reduced UT always outperforms the standard
UT. Meanwhile, SRC algorithms (i.e., see Figure 5 per-
form better with low PNI, but the performance is stable
with large values of PNI, and below 0.15. Finally, KDE
algorithms (i.e., see Fig. 6) show the best performance
for large PNI, but they present a worse behaviour than
the other two families at low PNIs. The maximum TVD
for low PNIs are in the range 0.1 – 0.2, whereas it goes to
around 0.05 for large PNI values in some scenarios (e.g.,
LEO orbit raising or GEO to GEO). Their behaviour out-
performs the other methods in terms of uncertainty real-
ism for large effects of the process noise. However, on
the other end, the maximum TVD is around 0.15 for the
LEO SK case (where UT methods have a maximum TVD
below 0.02). In addition, “coarse” bandwidth KDE (0.7)
presents, in general, a better performance than the “fine”
bandwidth. This behaviour seems to change for large PNI
values.

5.2. Conjunction Analysis

Five conjunction scenarios described Table 3 have been
analysed with the proposed uncertainty propagation
methods. Each of the approaches produces two final
GMMs to represent the final distributions at the estimated
Time of Closest Approach (TCA) for primary and sec-

ondary objects. When both GMMs are available, the fol-
lowing method is adopted to compute the PoC[23]:

• Selecting a combination of a GME from the pri-
mary’s GMM and a GME from the secondary’s
GMM.

• Searching for the correct TCA of the combination.

• Propagating locally the mean and covariance of both
GMEs to the real TCA.

• Computing the PoC of the combination with a short-
term encounter model such as Chan’s model [60].

• Summing all contributions from all possible combi-
nations of GMEs .

The summary of results is reported in Table 4.

The number of splits for STM and KDE has been se-
lected after a trade-off analysis carried out on all sce-
narios which lead to the selection of 15 and 20 splits
respectively. In addition, the reference linear propaga-
tion, UT, RUT, and SRC have always 1 GME for both
primary and secondary by definition. On the other hand,
ADAGMM determines this number automatically during
propagation.
In the GEO SK scenarios nonlinearities are so small that
no splits were determined by ADAGMM so that the same
results as a local linearization are retrieved. For the same
reason, also STM retrieved very small variations of PoC
for varying number of GMEs. As Table 2 demonstrates,
the PoC obtained with dynamics-based methods is always
close to the value obtained through a linear propagation.
This behaviour is expected as all the methods presented
treat process noise with local linearizations built upon



Figure 1. Normalized computational time for all combinations of scenario, method, and thruster uncertainty for dynamics
based approaches.

Figure 2. Error in the final mean position (left) and velocity (right) for all combinations of scenario, method, and thruster
uncertainty for the dynamics based methods.

higher order information extracted from the flow of the
dynamics.
On the contrary, probabilistic-based methods relied on
a stochastic propagation which modified the conjunc-
tion geometry. As a consequence, the PoC was close
to the one obtained by linear propagation for small PNI,
whereas it was diluted (even to 0) for higher values of
PNI. To validate the approaches, a MC analysis was also
carried out for the two bounding cases: GTO to GEO,
and GEO SK. For the first case, the number of samples
was selected with Dagum’s formula [61] in order to have
a 95% confidence interval and a 10% relative error. The
MC clearly shows that the linear propagation is under-
estimating the real probability whereas dynamics-based
methods are overestimating it. For the second case, the
number of samples was determined to have a 95% confi-
dence with a 5% relative error. The results show a PoC
that substantially matches that obtained via linear propa-
gation.

6. CONCLUSIONS

Both dynamics-based and probabilistic-based methods
retrieve consistent results. For intrusive methods, differ-
ent ways of including a covariance correction term based
on local linearization output similar results. Despite be-
ing much faster than a MC analysis, the accuracy of these

methods is not always excellent. One hypothesis is that
this behavior is to be imputed to the process noise mod-
elling. Indeed, the presented methods seem to miss the
effect of the coupling between initial state uncertainty
and thruster noise, resulting in an underestimation of the
covariance when compared to the results of the MC anal-
ysis. Moreover, the mono-dimensional comparison met-
rics selected (i.e., MISE and TVD) may be penalizing
dynamics-based methods that retrieve a full PDF descrip-
tion even considering coupling terms, whose contribution
is completely discarded by these criteria.
Concerning probabilistic-based methods, a suite of al-
gorithms has been tested for uncertainty propagation in
different orbital and manoeuvre scenarios with different
thrust noise levels.
The computational cost, when compared to a MC algo-
rithm used as benchmark, is almost constant and inde-
pendent on the scenario or the thrust noise level. UT
algorithms have the minimum cost (below 10%), SRC
show an intermediate performance, while KDE runtime
is more than half of the corresponding MC. In terms of
computational time DAGMM offer the best performance
(on average) in line with UT methods. SRC approaches
provide a good middle ground, while KDEs and STM
methods seem to be the most computationally expensive
techniques.
When comparing accuracy of these approaches in terms
of uncertainty realism, one can observe how differ-
ent families of probabilistic approaches show consis-



Figure 3. MISE (left) and TVD (right) for all combinations of scenario, method, and thruster uncertainty for dynamics
based methods.

Figure 4. TVD for all combinations of scenario and process noise with UT and reduced UT methods.

tent trends: i.e., UT methods work best for low PNI
while KDEs are better suited for propagations where
higher uncertainties are involved, whereas SRC meth-
ods provide a middle ground between the two. On the
contrary, dynamics-based methods show similar perfor-
mance degradation. Their trend is closer to that of UT,
which they also match in terms of the other performance
metrics. In addition, discrepancies between dynamics-
based methods are mostly related to the different scenario
of propagation rather than the level of noise involved.
The maximum TVD provides with the information of the
ability of a given algorithm to match the reference prob-
ability density function of the spacecraft state. However,
due to the uncertainty growth, even low values of the
TVD could be high for conjunction assessment. This fact
can be seen in the mean position error provided by each
probabilistic-based method with respect to the bench-
mark. Only SRC and UT in a less extent provide mean
position errors in the orders of tens of meters in the sce-
narios with lowest PNI. Although KDE algorithms are
able to cope with scenarios with large PNI, the mean po-
sition error is in the order of hundreds of meters or kilo-
metre which ends up diluting the PoC computed. On the
contrary, dynamics-based methods proved to be effective
in capturing the conjunction scenario and the results were
always consistent to the reference PoC computed with
linearly propagated uncertainties.
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