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ABSTRACT 

In the modern world, the space safety is of growing 

concern for all of the spacefaring nations. This is mainly 

due to two major factors: accelerated increasing number 

of artificial space objects formed from break-up events as 

well as the rapidly growing mega-constellations and 

launch rates which significantly increase the artificial 

objects population around Earth. Within ESA’s Space 

Safety Programme, a cornerstone has been created 

focusing on automated collision avoidance to reduce 

operational costs, late commanding paths and operations 

concepts as well as means for coordination of operators 

and catalogue providers. 

GMV is currently upgrading the Autonomous Collision 

Avoidance System (AUTOCA) developed under ARTES 

contract, within the scope of ESA’s CREAM activity 

S2P-S1-CR-01 “Automated avoidance manoeuvre 

decisions and design“. This system aims at its use for 

large fleets (e.g. large operators in GEO and future mega-

constellations in LEO and MEO) and also orbit raising 

scenarios with full-electric satellites (e.g. orbit transfer 

from LEO to Upper-LEO or from LEO/GTO to GEO). It 

is important to mention that within the scope of this 

activity, additional prototypes will be integrated in the 

system. Within this paper the focus is placed on three 

prototypes related to the measurements and catalogue 

data: Data Fusion, Orbit Propagation and Artificial 

Intelligence/Machine Learning (AI/ML) techniques for 

Covariance Matrix and State Vector predictions. 

1 DATA FUSION 

Nowadays, it is quite common for satellite operators to 

receive CDMs from several sources, due to the increment 

in the amount of SSA providers. As a consequence, the 

following problems may arise: 

 Lack of consistency in the states vectors and 

covariance matrices from different sources due 

to biases in one or several of the SSA providers. 

 Lack of covariance realism between different 

sources due to problems in the covariance 

computation of one or several of the SSA 

providers 

Some of these issues are better resolved on the SSA 

provide side (e.g., biases), whereas the other could be 

solved on the operator side (e.g., issues related to 

covariance realism). 

Once these issues are solved, the problem of finding a 

common solution based on the form information from 

different sources still remains. One way to tackle this 

problem is to generate a combined solution for each 

object independently, in particular, of the chaser, as the 

target is most likely an object for which operational 

ephemerides have been provided to the SSA providers. In 

order to reach this combined solution, it is necessary to 

first synchronise the states of the object coming from 

different sources at the same epoch. Then, a new 

combined orbit should be generated together with its 

covariance at the synchronised epoch. With this 

information it is possible to re-evaluate the TCA of the 

conjunction event and obtain the new states and 

covariance of both objects at the new TCA. 

Since the data provided in CDMs is assumed to be 
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Gaussian, a common approach for data fusion in 

Gaussian cases, such as the Covariance Intersection (CI) 

Method (see [1]), is analysed. This method is very useful 

when the cross-correlation of the data is unknown, which 

is the case here (see [2]). It is based on obtaining a convex 

combination of 𝑛 estimates (�⃗⃗� 𝒊, 𝑪𝒊) 
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where the non-negative weighting coefficients �̃�𝑖 are 

added in order to take into account the cross-correlation 

between the estimates, which is assumed unknown. 

These weighting coefficients also verify that 
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These coefficients are usually chosen to minimize either 

the trace or the determinant of 𝑪. Taking into account the 

conclusions achieved in [3], [4] and [5], the determinant 

minimization criterion is used hereafter. 

In order to avoid the numerical implementation effort 

required to solve the previous highly non-linear 

optimization problem, the approach followed in this 

analysis is the one proposed in [5], based on an 

improvement of the Fast Covariance Method (fast 

approximate solution of the previous optimization 

problem) proposed in [6]. In [5], it is proved that the loss 

of accuracy of the approximate solution with respect to 

the optimal solution would be marginal for high degrees 

of cross-correlation. In addition, the improved version of 

the Fast Covariance Intersection Method proposed in [5] 

aims to solve the insensitivity of the original method with 

respect to the relative orientation of the individual 

covariance matrix estimates 𝑪𝒊 when computing the 

weighting coefficients �̃�𝑖, which leads to a significant 

performance improvement. 

According to [5], the weighting coefficients �̃�𝑖 can be 

computed based on the individual information matrix 

estimates 𝑰𝒊 (𝑰𝒊 = 𝑪𝒊
−1)  

�̃�𝑖 =
det(𝑲) − det (𝑲 − 𝑰𝒊) + det (𝑰𝒊)

𝑛 det(𝑲) + ∑ [det(𝑰𝒋) − det (𝑲 − 𝑰𝒋)]
𝑛
𝑗=1

 (4) 

with  
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The suitability of this approach will be analysed using 

several states and covariance matrices estimates (�⃗⃗� 𝒊, 𝑪𝒊) 

for the same conjunction event included in CDMs 

coming from different SSA providers (e.g., CSpOC, 

CARA, etc…). 

2 ENHANCED STATE TRANSITION 

MATRIX (STM) PROPAGATION 

If the effect of the manoeuvre were to be numerically 

integrated, the computational cost of the optimisation 

process would rise dramatically. Therefore, the effect of 

the manoeuvre on the orbit of the spacecraft is evaluated 

through an enhanced propagation that combines the well-

known STM and an analytical Keplerian propagation. 

The motivation behind this approach is to reduce the 

computational time required by a full numerical 

propagation, while also obtaining a higher precision than 

a linear STM propagation of the orbit. This model is still 

accurate for longer-time propagations and larger 

manoeuvres, where the STM approach fails, at a fraction 

of the computational cost of the full numerical 

propagation. 

The enhanced propagation process has two different 

steps. The first one, consisting of a Keplerian propagation 

of the Collision Avoidance Manoeuvre (CAM) effect, is 

illustrated in Figure 1. The different orbits of the satellite 

of interest are presented, each obtained through a 

different propagation.  

 

Figure 1- Graphic depiction of the orbit propagations. 

The green curve labelled by A represents the original 

orbit obtained from the operator of the satellite. As the 

dynamical model may differ from the one used by the 

operator, if the state vector at the CAM epoch is selected 

and propagated with no CAM effect, a different orbit will 

be obtained, even if a high-fidelity dynamic model is 

used. In the enhanced propagation method, a Keplerian 

propagation is done analytically, which avoids numerical 

integration. This is represented by the orange curve 

labelled as B. Next, the state vector at the CAM epoch 

with the CAM effect is propagated with the same 

analytical Keplerian propagator, thus obtaining the blue 

curve labelled as C. The difference between B and C is 
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the effect of the CAM – the correction labelled by E – 

assuming Keplerian dynamics and including linear and 

non-linear effects. This correction could be applied to the 

original orbit A, thus resulting in a new orbit D. This new 

orbit (black curve labelled as D) employs the operator’s 

dynamical model but also takes into account the CAM 

effect through the Keplerian dynamics. In reality, the real 

effect of the CAM which is the difference between a true 

orbit D (using the same dynamical model as the operator 

to propagate the state vector with the CAM effect) and 

orbit A will result in a correction F, which is slightly 

different from E. However, this error is small for typical 

CAM manoeuvre sizes and propagation times needed. 

The second step in the simplified propagation consists of 

propagation through an STM, in which the STM is 

computed based on the original ephemeris (set fixed) and 

a high-fidelity dynamic model. This STM hence captures 

with great accuracy the linear effect of the CAM 

considering the most relevant orbital perturbations 

(geopotential, 3rd body, drag). The STM is computed only 

once for each epoch in the ephemeris and then reused in 

each CAM computation, which leads to a small 

computational cost.  

The Keplerian propagation of the CAM effect captures 

linear and non-linear effects of the central gravity, while 

the STM propagation captures all linear effects from 

central gravity and orbital perturbations. In order to retain 

an appropriate balance between computational cost and 

accuracy, the CAM effect can be computed as follows 

combining both approaches: 

𝒙𝑫(𝑡)
=  𝒙𝐴(𝑡) + Φ(𝑡, 𝑡𝑀) ⋅ 𝒖
+ 𝑅𝑇𝑁𝑊

𝑇 𝑅𝑇𝑁𝑊,𝐾[𝒙𝐵,𝐾(𝑡, 𝑡𝑀, 𝒖) − 𝒙𝐴,𝐾(𝑡, 𝑡𝑀)

− Φ𝐾,𝒙𝒗(𝑡, 𝑡𝑀) ⋅  𝒖] 

(6) 

which adds to the original orbit 𝒙𝐴, in the TNW frame, a 

correction is constructed as: 

 [𝒙𝐵,𝐾 − 𝒙𝐴,𝐾](𝑡, 𝑡𝑀, 𝒖): the difference between 

a keplerian propagation of the initial state of 

orbit with (𝒙𝐵,𝐾) and without (𝒙𝐴,𝐾) manoeuvre. 

That is two independent propagations. As it is 

done analytically, it does not introduce a 

significant computational cost. This correction 

contains all linear and non-linear effects of the 

CAM propagation accounting for the central 

gravity. 

 [𝛷(𝑡, 𝑡𝑀) − 𝛷𝐾(𝑡, 𝑡𝑀)]𝒙𝒗 ⋅ 𝒖: the effect of the 

manoeuvre is propagated through an STM, in 

which to the effect of the full perturbations 

linearized STM 𝛷(𝑡, 𝑡𝑀), the effect of an STM 

considering only Keplerian motion 𝛷𝐾(𝑡, 𝑡𝑀) is 

subtracted because it was already accounted for 

by the keplerian propagation. This correction 

contains all linear effects of the CAM 

propagation accounting for the orbital 

perturbations considered in the high-fidelity 

dynamic model. 

To account for any misalignment between the Keplerian 

correction (propagations with and without manoeuvre 

and Keplerian STM) and the nominal no-CAM trajectory 

in Earth-centred frame, these corrections are applied in 

the local TNW frame of the original no-CAM trajectory, 

accounted for by the terms 𝑅𝑇𝑁𝑊
𝑇 𝑅𝑇𝑁𝑊,𝐾. 

The results in Figure 2 illustrate the error commited 

against a full numerical propagation. If one considers an 

in-track burn of 0.1 m/s, and propagates the effect of such 

a manoeuvre for up to 4 days, it is possible to compare 

the performance of the enhanced STM propagation with 

respect to other algorithms: 

 DM0: propagation through classical STM 

(which includes Keplerian and perturbations). 

 DM1: enhanced propagation, without 

applying the corrections in the local TNW 

frame. 

 DM2: enhanced propagation. 

 DM3: considering only full Keplerian 

dynamics, without perturbations. 

 

Figure 2- Test for propagation accuracy of the dynamical 

models (RMSE, in-track manoeuvre) 

As it can be observed, DM2 outperforms all the other 

models, setting to a maximum error in the order of meters 

in position and 10-2 millimetres per second in velocity. 

All the other models (DM0, DM1 DM2 and DM3) reach 

errors over 100 m in position and 0.1 m/s in velocity. 

3 AI/ML TECHNIQUES 

Having a reliable prediction of the criticality of an event 

allows the human operator to make decisions in a more 

informed manner and can help with navigating 

operational constraints and lead to less costly 

manoeuvres. There are multiple approaches that can be 

employed in order to predict the criticality. An important 
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aspect related to the available data is that conjunction 

events are described by updates (in the form of 

Conjunction Data Messages – CDMs) in a sequential 

manner. In such a setting, models specifically tailored for 

sequential data can be employed. 

3.1 Data Preparation 

In order to train any machine learning model, a large 

dataset is needed. In this context, the dataset is 

represented by historical CDMs based on which the 

machine learning models will infer the general patterns, 

from the data, during the model training process in order 

to be able to accurately predict unseen data.  

Once the input dataset is parsed, it will be stored within 

the internal database of the software and when the 

machine learning models are being trained, the data will 

be fetched and pre-processed in an attempt to offer 

relevant information to the models that will be trained. 

The raw dataset consists of 219585 events and 2586718 

JSPOC CDMs that are between two time intervals such 

as December 2014-November 2019 and November 2021-

June 2022. The pre-processed dataset consists of a total 

of 151844 events and 910882 CDMs.  

3.2 Data pre-processing 

One of the most relevant steps of the machine learning 

training is represented by the data pre-processing step. 

In this step, large datasets are being retrieved from the 

internal dataset, additional fields are computed and the 

dataset is filtered in order to remove duplicate data and 

outliers. Lastly, the model features are being scaled. 

3.2.1 Computation of additional fields and 

dataset filtering 

After assuring unified datatypes for each set of data and 

initial cleaning of missing values or misspelled entries, 

fields of the dataset are renamed and normalized to allow 

easier data handling. Additional useful fields are 

calculated, e.g. time to TCA for each CDM (based on 

CDM creation date) or time since last observation used 

for the Orbital Determination (OD) process. State vectors 

and covariance matrix elements for primary and 

secondary objects, as well as relative state vector may be 

registered in different references frames, thus all the 

relevant values are transformed to common inertial 

system EME2000, allowing proper and consistent 

computations. For a portion of CDMs the information of 

the probability of collision is missing, thus for 

consistency it is recalculated for all CDMs according to 

[7].  

In order to identify the actual updates of orbital 

information of the secondary object, a set of filters are 

defined to discard the updates in which the secondary 

object information has not been updated, based on the 

information provided in the CDM. Therefore, events with 

a single update, covariance outliers, updates that have last 

observations start and end equal to the previous, updates 

with observation used or available equal to the previous 

CDM and updates with state vector distances within 10−6 

compared to the previous CDMs are discarded. 

In order to train the Machine Learning model, the dataset 

is divided in the following way: 80% for training, 10% 

for testing and 10% for validation. 

3.2.2 Scaling the data 

The range of feature values varies widely, thus a 

transformation is applied aiming proper scaling of data 

used as input for machine learning algorithm.  

Quantile Transformer is used in order to transform 

features according to quantile information [8]. Its default 

behaviour is to map the original values to a uniform 

distribution; however, it is possible to obtain a normal 

distribution as well. The mapping is done by using the 

cumulative distribution function 𝐹 of the feature and the 

quantile function of the desired distribution 𝐺 as such:  

 

 

𝐺−1(𝐹(𝑋)) (7) 

The formula is based on the fact that the cumulative 

distribution function of a random variable 𝑋 is uniformly 

distributed on [0, 1], and that 𝐺−1(𝑈) has distribution 𝐺, 

where 𝑈 is a random variable uniformly distributed in the 

range [0, 1] as well. According to the documentation, the 

quantile transform, by performing a rank transform, 

smooths out “unusual” distributions and is more robust to 

outliers than regular scaling methods. Correlations and 

distances within/across features are, however, affected 

(distorted). 

3.3 Machine Learning for Covariance 

prediction 

Prediction of the covariance elements of the secondary 

satellite by means of machine learning techniques 

represents one of the main goals of the study. These fields 

are further used to in order to compute the Probability of 

Collision (PoC), on which the CAM decisions are based. 

The covariance prediction as part of the conjunction 

assessment analysis is a key feature that allows satellites’ 

operators to anticipate the expected collision risk, 

avoiding the planning of CAM strategies that are not 

really needed or with a lower cost in terms of delta V 

when they are really needed. 

The three main diagonal positional elements (Along-

Track, Cross-Track and Radial) of the covariance matrix 

in RTN reference frame, from the secondary object, are 

selected for the prediction. Within the system, it is 

possible to train a machine learning model in order to 

predict data at four different time steps, such as: 
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 24 hours after the last available update. 

 48 hours after the last available update. 

 72 hours before the time of closest approach. 

 At the time of closest approach. 

The machine learning models are composed of a Long 

Short Term Memory (LSTM), an Attention Mechanism 

and a fully connected layer. 

The machine learning models take as input numerous 

features from all CDMs within an event in order to 

perform a prediction. 

 

Figure 3 – Event Aggregation Setup 

Long Short Term Memory 

Recurrent Neural Networks (RNN) such as LSTM allow 

both training and making inferences using sequences of 

arbitrary length. In the case of conjunction events, the 

input can be represented by the sequence of available 

CDMs. The basic unit of training is represented by an 

event (a sequence of data from the corresponding 

CDMs). Therefore, even though the events are analysed 

individually, the model learns to generalise, as it is 

exposed to a training set containing multiple events. 

Attention Mechanism 

In order to increase the performance given by the LSTM 

model, an attention mechanism was proposed. The core 

idea behind the attention mechanism is that it allows the 

LSTM model to selectively focus on valuable parts of the 

evolution of an event and, therefore, learn the association 

between them. 

Given the implied task of forecasting values based on 

several timeframes, an attention mechanism was 

proposed for testing to assess its performance impact on 

the several types of predictions. The mechanism has been 

proposed due its ability to solve the biggest problem in 

sequence to sequence tasks, which consists in decoding a 

variable length sequence based on a single context vector. 

It enables the utilisation of all hidden time steps of the 

input sequence during the decoding process. 

There are two types of attention mechanisms proposed to 

be tested in the current section. The first one is proposed 

in [9] which is formally called additive attention, the 

second being an attention mechanism proposed in [10]. 

The main difference between them is how they score 

similarities between the current decoder input and 

encoder outputs. 

Within the current study it was opted to make use of the 

Bahdanau attention mechanism. 

3.4 Machine Learning for State Vector 

Prediction 

The approach through which the machine learning model 

is developed is similar to the one proposed in [11] in the 

sense that it does not predict directly the State Vector 

(SV), but rather the error between an already existing 

propagation at TCA and the true SV, at the same 

considered time. The error predicted by the model is then 

added to the initial propagation, therefore obtaining the 

improved SV prediction.  

In contrast to the approach used within the covariance 

prediction models, the SV prediction model takes as input 

features data from (and related to) only one individual 

CDM at a time in order to make a prediction. This 

approach is advantageous because the model can be 

operated from the early stages of an event, only needing 

data from individual CDMs to obtain the desired SV 

prediction. This means that it is not required to wait for a 

certain amount of CDMs to be received or for a certain 

time threshold (2 days before TCA, for example) to pass, 

but rather the model can operate with minimal data, at 

any stage in the event. 

The model architecture used for the SV prediction is a 

Deep Neural Network (DNN), consisting of multiple 

hidden layers of artificial neurons, of different sizes. One 

important aspect is the fact that the model improves when 

trying to predict one component of the SV propagation 

error at a time, which is due to the fact that different 

model architectures work better for the different 

components of the SV. Therefore, three different 

machine learning models are implemented, one for each 

position component of the SV (X, Y and Z) of the 

secondary object. 

A machine learning model based on artificial neural 

networks, like the DNN, learns from the training dataset 

through the backpropagation algorithm. In short, the 

algorithm starts by feeding through the neural network a 

sample of the training set and calculates, in turn, the 

output from each neuron of each layer. Then, the 

algorithm calculates the error between the output of the 

network and the target value (or values) it is trying to 

predict and calculates the contribution of each neuron on 

the last layer to the error obtained. The next step is to 

calculate how much of these error contributions are due 

to each neuron in the layer immediately preceding the last 

layer, and so on, until the algorithm arrives at the input 

values. The gradient of the function defining the error is 

calculated for each neuron in the network, thus 

determining the "direction" in which the weights of each 

artificial neuron need to be changed. As part of an 

optimization algorithm, the size of the step taken in this 

proper “direction” is called the learning rate and it is a 

configurable hyperparameter. 

In regards to what the model is actually predicting, which 

is the difference between the propagated SV in the 
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current CDM at TCA and the true SV at TCA, it is 

important to note how the true value is computed. Since 

in the dataset there is no indication of what the true SV at 

TCA actually is, the final CDM in every event has been 

considered to be the true SV at TCA. However, in almost 

all cases, the TCA in the final CDM of an event does not 

coincide with the TCA in the other CDMs in the event 

and it varies slightly. For this matter, a “synchronisation” 

process has been performed, through which the SV in the 

final CDM is propagated to the TCA of each of the CDMs 

in the event. After this process, the difference in the SV 

components between the newly propagated SV (from the 

last CDM in the event) and the SV in the current CDM is 

calculated, giving the target parameters of the model. A 

description of the synchronisation process is given in the 

below image 

 

Figure 4 – State Vector Target Synchronization Process 

3.5 Configurable parameters 

In order to perform the training of a machine learning 

model, there are some parameters that need to be 

configured first. Within this study, the following 

hyperparameters were studied: “batch size”, “learning 

rate”, “number of hidden layers”, “number of artificial 

neurons in each layer”. In order to obtain the 

hyperparameter values, a “random search” technique was 

used which consists in providing multiple options or an 

interval range of values for each hyperparameter. The 

next step would be to train a configurable amount of n 

models. Once the training has been completed, the model 

that obtained the highest performance will be stored, 

along with the hyperparameter values. 

For the other parameters such as the optimizer and the 

loss function, the ADAM optimizer [12] was selected and 

the MSE loss function was used for covariance prediction 

and the L1 loss function was used for the state vector 

prediction. 

3.6 PRELIMINARY ANALYSIS RESULTS 

Within this chapter the preliminary results are presented 

for the covariance prediction and for the state vector 

prediction models. Furthermore, details of the metrics 

used in order to evaluate the performance of the models 

are described as well. 

3.6.1 Metric used for Covariance Prediction 

FoM 

For evaluating model results, a metric called Figure of 

Merit (FoM) was defined, which is designed to represent 

objectively the model performance on a given validation 

dataset. 

 

 

𝐹𝑜𝑀 = 1 − 𝑎𝑣𝑔 (
𝑚𝑒𝑑(𝑟𝑒𝑙𝑒𝑟𝑟𝑡1

),𝑚𝑒𝑑(𝑟𝑒𝑙𝑒𝑟𝑟𝑡2
),

… ,𝑚𝑒𝑑(𝑟𝑒𝑙_𝑒𝑟𝑟𝑡𝑛)
) (8) 

The range of some values even after filtering outliers is 

large. The logic behind this metric is that a robust metric 

that would provide representative information with 

respect to the model performance is needed, while 

weighting the outliers less. 

For each target label that the model is trained to predict, 

the relative error of the predicted value with respect to the 

target value is computed. The median is selected from the 

distribution formed by the relative errors for a specific 

target throughout all the events. The median was chosen 

instead of the average because the median represents the 

middle score for a set of data arranged in order of 

magnitude, thus being less affected by outliers or skewed 

data. The medians are averaged, which gives us an 

average “median” relative error. 

Finally, the result value is subtracted from 1 in order to 

normalize the results. This step ensures a value that is 

human readable. The upper bound value is 1, which 

indicates no error within the model prediction. 

3.6.2 Covariance Prediction Results 

In order to find the Machine Learning models with the 

highest performance, large empirical tests were 

performed on the LSTM with attention mechanism 

architecture. 

The tables and figures presented in this section illustrate 

the results in terms of FoM for all covariance prediction 

cases: 

- 24 hours after the last available update 

- 48 hours after the last available update 

- 72 hours to the time of closest approach 

- Time of closest approach. 

24 hours after the last available update.  

 LSTM LSTM with Attention 

FoM score 0.826 0.828 

Table 1 - 24h after last CDM covariance evolution model 
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Figure 5 – Prediction of covariance at 24h LSTM vs 

attention model 

From the error spread figure, a mild improvement can be 

seen in the spread of the relative error for the T element, 

which represents the hardest element to predict, as well 

as mild improvements in the R and N elements.  

48 hours after the last available update. 

 LSTM LSTM with Attention 

FoM score 0.805 0.806 

Table 2 - 48h after last CDM covariance evolution model 

 

Figure 6 – Prediction of covariance at 48h LSTM vs 

attention model 

In this prediction case, the spread of the T element 

relative error in the Bahdanau attention is higher but the 

median is lower. The same pattern can be observed for 

the R and N element’s relative error. 

This is visible in the table of results, where the Badhanau 

attention obtained a slightly higher FoM. 

72 hours to the time of closest approach. 

 LSTM LSTM with Attention 

FoM score 0.852 0.861 

Table 3 - 72h before TCA covariance model 

 

Figure 7 – Prediction of covariance 72h before TCA 

LSTM vs attention model 

In the 72 hours to TCA case, both the spread and median 

of the relative error for all elements offer an 

improvement. 

This is visible in the table of results, where the Badhanau 

attention obtained a slightly higher FoM. 

Time of closest approach 

 LSTM LSTM with Attention 

FoM score 0.513 0.702 

Table 4 - Covariance at TCA model 

 

Figure 8 – Prediction of covariance at TCA LSTM vs 

Attention model 

It is expected that the attention mechanism to achieve the 

highest performance increase when predicting at a far 

point in time such as predicting the covariance elements 

at the time of the closest approach. 

From both the figure and the results table, the attention 

model outperformed the simple LSTM model by a 

considerable margin. 

From the error spread figure, a significant difference in 

the spread of the relative error can be seen. Furthermore, 

one can notice a substantial difference in the median of 

the relative errors, especially in the hardest element to 

predict, the T element.  
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3.7 Metrics used for State Vector prediction 

The mean squared error (MSE) estimates how close a 

regression model fits the data. It measures the average of 

the squares of the errors. That is, the average squared 

distance between the estimated, �̂�, and the real values, y. 

As it derives from the square of the Euclidean distance, it 

has always a positive value and the smaller the error, the 

better the predictive model is. The MSE incorporates the 

variance of the estimator (how widely spread the 

predictions are from one data sample to another) and its 

bias (how far off the average estimated values are from 

the actual values): 

𝑀𝑆𝐸(�̂�) = 𝐸𝑦 [(�̂� − 𝐸𝑦[�̂�])
2
] + (𝐸𝑦[�̂�] − �̂�)

2
 (9) 

For an unbiased estimator, this metric represents the 

variance of the estimator. Assuming a vector y with n 

predictors the MSE is given:  

 

 

𝑀𝑆𝐸 =
1

𝑛
∑|�̂�𝑖 − 𝑦𝑖|

2

𝑛

𝑖=1

 (10) 

Taking the square root of the MSE yields the RMSE. This 

measure is always non-negative, and a zero value 

indicates a perfect fit to the data. For an unbiased 

estimator, the RMSE is the square root of the variance, 

also known as standard error. The error value is easier to 

interpret since it can be read with the same units as y. 

 

 
𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √

1

𝑛
∑|�̂�𝑖 − 𝑦𝑖|

2

𝑛

𝑖=1

 (11) 

The Mean Absolute Error (MAE) is an arithmetic 

average of the absolute errors between the predictions 

and the true values: 

 

 

𝑀𝐴𝐸 =
1

𝑛
∑|�̂�𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (12) 

This metric uses the same scale as the data being 

measured and, therefore, cannot be used to make 

comparisons between variables with different measuring 

units. 

The metrics used for estimating the performance of the 

SV machine learning models are the MAE and the 

RMSE. 

3.8 State Vector prediction results 

In order to determine the performance of the model, a 

baseline model is also implemented, for comparison 

purposes. Since the ML model is predicting the 

difference between the SV in any given CDM and the real 

SV at TCA, the baseline is considered to predict the same 

difference, always outputting a value of 0. The improved 

SV of the baseline is therefore the propagation given in 

the original CDM. In this case, if the ML model performs 

better than the baseline, consequently it represents an 

improvement with respect to the propagation given in the 

original CDM, which is the final goal of implementing 

the model.  

Id. State 

Vector 

MAE [km] RMSE [km] 

DNN Baseline DNN Baseline 

1 X comp 0.754 1.113 3.022 3.951 

2 Y comp 0.797 1.091 3.189 3.650 

3 Z comp 0.462 0.718 2.097 3.114 

 

From the above table it can be observed that the machine 

learning models are able to improve the SV position 

components in all cases by a relatively significant 

margin. 
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