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ABSTRACT

Space Surveillance and Tracking (SST) is a progressively
crucial research field due to the exponential growth of
space debris. Along this paper several space environ-
ments will be reproduced while a space surveillance and
tracking system is operating at LEO. Nowadays, there ex-
ist several ways of tracking & cataloguing space items,
however, its exponential growth together with the bias
and variance introduced by the surveillance systems, sup-
pose a challenge in Orbit Determination and cataloguing
of new objects.

In this work, state of art filtering and associating algo-
rithms are implemented, optimized and compared in dif-
ferent space environments. To do so, debris, surveillance
stations and the space medium are statistically modelled
to generate synthetic data which, reliably represent LEO
environment producing a highly-sampled analysis of the
algorithms.

Finally, Multi-Target-Tracker (MTT) system is compared
with classical error metrics such as Mean Square Er-
ror or Average Normalized-Estimation Error Squared and
tracking-oriented metrics such as Optimal Sub-Pattern
Assignment .

Keywords: LEO; Joint Probabilistic Data Associa-
tion; Kalman; Filter; Track-Oriented Multi Hypothe-
sis Tracker; Optimal Sub-Pattern Assignment; General
Nearest Neighbour; Multi Target Tracker.

1. INTRODUCTION

Space Surveillance & Tracking is the field of study which
detects, tracks, monitors and catalogues objects such as
active/inactive satellites, spent rocket bodies, or fragmen-
tation debris. However, the amount of them, its size and
the distance to the tracking units block the detection of
every human-made item in space. Attending to this, an
SST MTT can be splitted into three main parts (Figure 2):
initial orbit determination, statistical orbit determination
and correlation. Each of them contains different algo-

rithms with its hyper-parameters that defines the perfor-
mance of the system and so will be optimized with syn-
thetic data created for different LEO scenarios.

1.1. Initial Orbit Determination (IOD)

IOD, as its noun refers, is the first calculation of the or-
bital parameters of a body moving in space. Since the
first astronomers, IOD has been studied, as this fist object
state is fundamental for every astrodynamic problem as a
state vector. Nonetheless, even for high-accuracy modern
sensors it is a complex task due to the size and distance of
space debris. During this work, as the measurement in-
struments modelled are basic mono-static radar sensors,
they will only record position measurements in ECEF co-
ordinates and time. Due to this restriction, the used IOD
method for the system will depend on its mathematical
nature. Gibbs, Herrick-Gibbs and Gauss will be preferred
depending on the track length as per [21].

1.2. Statistical Orbit Determination (SOD)

Nowadays, space problems require of the highest possi-
ble precision to perform in line with the intrinsic uncer-
tainties of space environment. This thought comes to cor-
rect the IOD of a body to actually determine its precise
orbit, in which is known as Statistical Orbit Determina-
tion. Although it can be done with different approxima-
tions to the problem, state of the art [41], [37], [38] usu-
ally perform differential corrections of the orbital state
using an estimation filter. In this framework, as one of
the main parts affecting the tracker performance, most
extended-used non-linear filters i.e. Extended Kalman
Filter (EKF), Unscented Kalman Filter (UKF) and Par-
ticle Filter (PF), will be implemented as an tunable pa-
rameter of the MTT.

1.3. Correlation

A space surveillance system not only detects and predicts
the orbital state of a space debris but also must be able to

Proc. 2nd NEO and Debris Detection Conference, Darmstadt, Germany, 24-26 January 2023, published by the ESA Space Safety Programme Office

Ed. T. Flohrer, R. Moissl, F. Schmitz (http://conference.sdo.esoc.esa.int, February 2023)

https://orcid.org/0000-0002-7916-8126
https://orcid.org/0000-0002-2903-8745


Table 1. Space Surveillance Stations Location

Location
St-1 10º N 180º E
St-2 0º N 20º W
St-3 65º N 20º W
St-4 90º S 0º E
St-5 35º N 136º E
St-6 51º N 7º E
St-7 30º S 71º W
St-8 70º N 20º E
St-9 30º N 86º W

St-10 7º S 72º E

create, delete and update a space object catalogue. The
main issue of correlating comes due to the limited num-
ber of radars and telescopes allowing only shots measure-
ments (tracklets) as they cannot state a precise orbital
state and so may be compared with objects in the cata-
logue, with other measurements or by IOD create a new
object. This step, may seem straight forward, however
due to the computational cost of the algorithms and the
continuously growing object list is the most challenging
topic in this field. Among SST, several algorithms and
methods are used to match observations with tracklets
exist, but they all could be classified in: Track-to-Orbit
Correlation [31]& [12], Track-to-Track Correlation [39]
& [19] and Orbit-to-Orbit Correlation [32]. The main
part of this paper will be dedicated to these assignment
algorithms in between three of them are remarked Global
Nearest Neighbour (GNN), Joint Probabilistic Data As-
sociation (JPDA) & Multi-Hypothesis Tracker (MHT).

2. STATISTICAL SPACE MODELLING OF LEO

In order to test the performance of each algorithm, syn-
thetic data should be created to faithfully represent the
space environment. That implies creating a model to each
one of the parts involved in the scenario: the sensor (sta-
tions), the mean (atmosphere and vacuum) and the target
(debris). All these items are created in a virtual environ-
ment based on statistics.

2.1. Space Surveillance Stations

Space surveillance stations are complex facilities de-
signed to increase the precisions of its devices measure-
ments. However, in this paper, they will be simply mod-
elled as an mono-static radar mounted on a 5 m platform
and oriented to zenith as it can me seen on Figure 1. The
location of these platforms are selected from real ESA-
friendly stations [42] and resumed in Table 1.

Figure 1. Ground Reference Frame

Mono-static Radar A mono-static radar sensor is sta-
tistically modelled trough an algorithm to in each time
step:

• Detects all targets within the Field of View (FoV):
returns only emissions which fall within the re-
ceiver’s bandwidth and where the receiver falls
within the transmitter’s FoV;

• Compute the Signal-to-Noise Ratio (SNR) for each
target as:

SNR“ RadarLoopGain`RCS´40log10prq (1)

where,

RadarLoopGain“
GtArσ

p4πq2r4 (2)

• Add losses from interfering emissions: Radar detec-
tion error is a random variable Xi: ΩÑR with E[Xi]
“ µ ă8 and var[Xi]“ σ2 ă8. A reduced variable
is defined as :X̂ “ 1

n
řn

i“1 Xi. By Center Limit The-
orem (CLT), as nÑ8, X̂ Ñ Npµ,σ2{nq;

This study is focused on objects situated in LEO ranges,
and so [13] recommend the parameter physical properties
for a radar depicted in Table 2, which results on a statis-
tical model with properties showed in Table 3

Table 2. Radar Parameters

FoV [deg] El Res. [deg] Range Res. [m] Az Res. [deg]

[120 30] 0.01 100 0.01

2.2. Atmosphere & Vacuum

The radar algorithms introduce losses as stated in 2.1 in
range and elevation due to the propagation of a wave



Table 3. Radar Model

Ref. Range [m] False Alarm Prob. PFA Detection Prob. PD

2000000 1e-6 0.9

through the troposphere using a single exponential model
[11].These phenomena is even more pronounced as the
atmosphere is thicker, i.e. when the line-of-sight path be-
tween the radar and target lies at lower altitudes as per
[10].

2.3. Debris

To model space debris motion, accounting for any kind
of orbital state that lies in LEO a random orbit genera-
tor has been designed. A simplified perturbations model
(SGP4) has been chosen to propagate the items in scenar-
ios, assuming the Earth as a point mass body and negligi-
ble mass items. So in ECEF frame for a LEO:

~a“
µ

r3~r´2Ωˆ
d
dt
~r´ΩˆpΩˆ~rq`~aLEO, (3)

with,

~aLEO “~a@`~aK`~aSRP`~aDrag`~aNonSpherical , (4)

In order to introduce biases in the simulations, each one
of the starting OE for each individual debris is random-
ized following Table 4.

Table 4. Randomized Debris Experiment

Orbital Element Formula
Semi Major Axis (a) [m] 7e6 + 1e5 ¨ Pa

Eccentricity (e) [-] 0.015 + 0.005 ¨ Pe

Inclination (i) [deg] 80 + 10 ¨ Pi

Long. of Ascending Node (Ω) [deg] 360 ¨ PΩ

Argument of Periapsis (ω) [deg] 360 ¨ Pω

True Anomaly (ν) [deg] 360 ¨ Pν

where Pn is a randomized number between 0 and 1. Be-
sides, each scenario is run 100 times and cross-validated
[1] not to overhit the hyper-parameter optimization re-
sults.

2.4. Track Determination and Association

As any kind of autonomous system , tracking is an essen-
tial part for SST. A simple tracking system estimates the
states of the target and their number based on kinematic
observations and measurements along time and there is
no need of association. However, real environments in-
cludes cluttering, biases, errors, etc, so that the received

measurements may not arise from a real object, and so
Multiple Target Trackers are needed.

As it can be seen in 2, a MTT can be splitted into several
systems: maintenance, filtering, gating and assignment.

2.4.1. Maintenance

As was mentioned before, this kind of systems shall
maintain a list of tracks generated to reduce the computa-
tional and memory cost of the system providing the filter
with optimal tracks. Once a MTT is served with a track-
let it chooses whether initialise, confirm or delete tracks
from the catalogue; that choice is made based on Track
Logic. There exist two main philosophies in current liter-
ature:

• History-Based: in this logic, a thresholds is fixed
as M-out-of-N ([M N]) then the algorithm polls the
amount of measurements assigned to a track within
several updates. If the number of detections is
grater/lower than the established threshold, the track
is confirmed/deleted.

• Score-Based [2]: in this case, the log-likelihood for
each track to be a real target is calculated and con-
firmed or deleted based on a preset choice probabil-
ity.

This part of the system acts as link between the catalogue
and the surveillance stations, however, logics do not ac-
tuate in case of no already similar track maintained; in
which the algorithm creates a new one; or no detections
are assigned to a track, in which it coasted the track until
next detection.

2.4.2. Gating

In order to follow the multiple tracks created, a crucial
part is whether to assign detections (x in Figure 3) to
targets (Tn in Figure 3) or maintained tracks in order to
amend them. As part of a large population this algorithm
gets sophisticated with amount of detections, sensors res-
olution, probability of detection ans false alarm rates.
As the computational performance is a need for large
populations, gating is merged to the system in order to
reduce the number of associations computed by the MTT,
pruning the measurements that lands outside of the region
defined by these gates. Due to the nature of the problem,
elliptical gating will be used [40] based on a modified
Mahalanobis-norm:

dm “ ∆pS∆pT ` logp|S|q, (5)

In which the fist term attends for the distance between
a point and a distribution and a second term is added to



Figure 2. MTT Architecture

harm highly uncertain distribution. So the probability to
accept correct measurement in the gate becomes:

PG “

ż

γg

0
χ

2pγ,3qdγ, (6)

in which the gate γg is the squares’ sum of n N(0,ST ) dis-
tributed variables is a χ2pnq distributed with n degrees of
freedom.

Figure 3. Gating Example [18]

Applying the mathematical methods explained above in
the system will accept detections with a probability of 0.9
(matching 2.1) would be selected, creating a gate with γg
ST u 10 km.

2.4.3. Filtering

Kalman filters are extensively used in tracking environ-
ments to estimate the state of an object in movement
while measuring it [35],[16],[6]. These filters are re-
cursive methods in which both the process and measure-
ments have additive noises and that improve the predic-
tion of target’s state with each measurement. Also in this
work an alternative to Kalman filters is studied: the par-
ticle filter (PF).

Extended Kalman Filter (EKF) Simplifying it if a
noisy observation xk, a recursive estimation for yk can be
expressed as [24]:

ŷk “ prediction o f yk`Kk ¨ rxk´pprediction o f xkqs,
(7)

returning the optimal MSE for xk assuming its previous
step xk´1 and the observation yk are Gaussian random
variables [43].

An EKF is based on the following process: if a random
variable x has mean x̂ and covariance Qx and a nonlin-
ear function of it y “ gpxq has covariance Ry, the EKF is
initialized as:

x̂0 “ Erx0s, (8)

P0 “ Erpx0´ x̂0qpx0´ x̂0q
T s, (9)

then foreseen dynamic state of x at a given time k given
the measurements up to k´1 and its covariance is:

x̂k|k´1 “ f px̂k´1|k´1,ukq, (10)

Pk|k´1 “ FkPx,k´1|k´1FT
k `Qx, (11)

Fk “
B f
Bx
|x̂k´1|k´1,uk , (12)

So, the measurement updated equations are given by:

ŷk “ yk´hpx̂k|kq, (13)

Py,k “ HkPk|k´1HT
k `Ryx̂k|k “ x̂k|k´1`Pk|k´1HT

k P´1
y,k ŷk, (14)

Pk|k “ pI´Pk|k´1HT
k P´1

y,k HkqPk|k´1, (15)

Hk “
Bg
Bx
|x̂k|k´1,uk , (16)

Even though this is explained for a first order EKF, the
complexity of the filter gets higher by retaining more
terms at the Taylor series expansion, which will be used
for large noise detections (based on the SNR) as in [15].

Particle Filter (PF) The essential characteristic of
these filters is to use a batch of particles around the cur-
rent state to represent the posterior distribution of some
random process. Due to its essence the assessment these
filters are flexible and computationally expensive, under-
performing in highly dimensional spaces [7] [9] [8].

Just as most filters, the most common applications of PF
is system tracking [28] [22] [26] to sequentially estimate
the future density of the state vector with Monte Carlo
principles and Approximate Bayesian Computation tech-
niques. Due to the complexity of the method, the algo-
rithms is not presented but it can be found at [14].



Unscented Kalman Filter (UKF) Due to the estima-
tion problems that other nonlinear KF had the UKF
emerges coasting the dynamic state through a Gaussian
random variable propagated by an unscented transforma-
tion such as in[20]; allowing a transformation of the state
and its covariance that avoids first order linearisation of a
nonlinear system.

The basis of this conversion is to estimate the mean
state and its covariance spreading weighted sigma points
around the mean state [43]. Although it can be seen as
Monte Carlo method, UKFs perform significantly better
than the rest of sampling methods offering even better ac-
curacy [25].

Assuming that a random variable x has mean x̂ and co-
variance Px:

x̂0 “ Erx0s, (17)

P0 “ Erpx0´ x̂0qpx0´ x̂0q
T s, (18)

x̂a
0 “ Erxa

0s “ rx̂
T
0 0 0sT , (19)

Pa
0 “ Erpxa

0´ x̂a
0qpx

a
0´ x̂a

0q
T s, (20)

where the superscript a denotes for the original measure-
ments and the sigma points for k P [1,...,8] are calculated
as:

Xa
k´1 “ rx̂

a
k´1x̂a

k´1˘

b

pL`λ qPa
k´1s, (21)

being λ a composite scaling parameter and L the dimen-
sion of augmented state, with each time update:

Xx
k|k´1 “ FrXx

k´1,X
v
k´1s, (22)

x̂´k “
2L
ÿ

i“0

W p

i mqXx
i,k|k´1, (23)

P´k “
2L
ÿ

i“0

W p

i cqrXx
i,k|k´1´ x̂´k srX

x
i,k|k´1´ x̂´k s

T , (24)

Y x
k|k´1 “ HrXx

k|k´1,X
n
k´1s, (25)

ŷ´k “
2L
ÿ

i“0

W p

i mqY x
i,k|k´1, (26)

(27)

where Wi is the weight of each sigma point. So, the mea-
surement updated equations are:

Pyy “

2L
ÿ

i“0

W p

i cqrYi,k|k´1´ ŷ´k srYi,k|k´1´ ŷ´k s
T , (28)

Pxy “

2L
ÿ

i“0

W p

i cqrXi,k|k´1´ x̂´k srXi,k|k´1´ x̂´k s
T , (29)

K “ PxyP´1
yy , (30)

x̂k “ x̂´k `Kpyk´ ŷ´k q, (31)

Pk “ P´k ´KPyyKT , (32)

2.4.4. Assignment

System efficiency is the most relevant parameter for space
surveillance meaning that the selection of best assign-
ment algorithm is a key parameter to built a MTT. In this
paper three of the most relevant ones will be compared
[27].

Global Nearest Neighbour (GNN) The main idea of
GNN algorithms is identify the best association for a
detection-track couple to prune all other options. By do-
ing so, the exact next density probability is approached by
the chance of optimal association pk|kpXkq “ p

hopt,k
k|k pXkq.

Due to its simplicity, GNN algorithms ensure high com-
putational efficiency while underperform in densely dis-
tributed spaces [23].

GNN is a data association approach which attempts to
discover and propagate the most feasible candidates’
tracks. The estimation of all tracks is accomplished by
the likelihood theory, reducing a chosen metric. In this
project the Mahalanobis distances to the measurement
was chosen, however, GNN methods can also consider
other metrics as shape, size, velocity or a combination of
them.

Joint Probabilistic Data Association (JPDA) Track-
ers based on Joint Probabilistic Data Association (JDPA)
assess the error covariance matrix and its state vector as-
sociated for each one of the items in catalogue. To do
so. the algorithm apply a soft allocation when multiple
measurements commit to each track. Although it can be
based on different logics, the employed JPDA performs
the weight sum (probabilistically determined) of all mea-
surements in the gate, averaging over detections with re-
lated probabilities.

The main goal of JPDA is merging all marginal poste-
rior densities to calculate the marginal correlation prob-
abilities for all targets [17]. The evaluation of each joint
likelihood at a given time is [3]:

phk
k|kpxkq “

m
ź

j“1

gi jPD ¨

m
ź

j“1

p1´PDq ¨

m
ź

j“1

β , (33)

where PD is the detection likelihood, gi j is the probability
of observe j given the track i and β is the false alarm odds.
The first term represents the chance of assigning the track
i to the measurement j, the second indicates tracks as-
signed to no match while the last accounts for unassigned
observations. Then, the probability of observation i to be
assigned to the track j is:

pi j “

N
ÿ

h“1

phk
k|kpxkq, (34)



Figure 4. PF, EKF and UKF Principles [29]

Track-Oriented Multiple Hypothesis Tracker
(TOMHT) Multiple Hypothesis algorithms evalu-
ates the probability of all the association hypotheses
considering the association of measurements’ sequences.
As in JDPA, TOMHT calculates the probability of each
association as in (33) but in this case it would expand
each scenario independently, increasing the association
accuracy.

Its basic idea [34] is, in each update, to find the best as-
signments and prune all others, reducing them such that a
maximum number of hypotheses are included in the pos-
terior density. A primitive TOMHT is parametrized by
global hypotheses Hk, log-weights lhk , which are the nat-
ural logarithm of the probability from hypothesis hk; and
the local hypotheses from each object pi,hk

k|k px
i
kq.

TOMHT is designed to delay difficult data association to
future data income. Besides the complexity of these ap-
proaches require a challenging system of tracking main-
tenance, filtering and mitigation strategies. TOMHT
shows better performances than JPDA or GNN via higher
computational cost and a complex implementation.

2.5. Tracking Metrics

SOD predict the states for targets, which continuously
appear, move and disappear. The necessity of compar-
ing and analysing the performance of these algorithms
requires the usage of a new metric to compute the affinity
betwixt truth state of the estimated tracks and synthetic
data.

Contributions of [36] Optimal SubPattern Assignment
and [33] Generalized Optimal SubPattern Assignment

would not only evaluate the performance of the orbit de-
termination part but also analyse the efficiency of the cor-
relation algorithms.

Optimal SubPattern Assignment (OSPA) OSPA can
be define as:

OSPApX ,Y q“
1
|Y |
pmin

|X |
ÿ

i“1

dcpxi,yπpiqq
p`cpp|Y |´|X |qq

1
p ,

(35)

in which several errors are considered:

• Localisation error is measured as the distance be-
tween x and y vectors,using the Mahalanobis modi-
fied distance [5].

• Assignment error chosen is the Auction proposed
by [4] although, as with localisation, this function
is customizable.

Generalized Optimal SubPattern Assignment
(GOSPA) OSPA metric allows the tracker to have as
false or missed detections as it wants, so the creation
of a different penalisation for accurate, misplaced and
erroneous detections lead to GOSPA. Similarly to its
precursor:

GOSPApX ,Y q “ pmin
|X |
ÿ

i“1

dcpxi,yπpiqq
p`

cp

α
p|Y |´|X |qq

1
p ,

(36)



where α illustrates the Gaussian distribution similarity.
GOSPA differs from OSPA in the α parameter and is not
normalized.

This metric encourage the system to improve their as-
signment performance over its state’s precision so ei-
ther OSPA or GOSPA could be chosen according to the
tracker goals. In this case, at each step the metric aims as-
signment based on both the previous and current assign-
ment metrics allowing the metric to easily record track
events.

3. RESULTS

Table 5. IOD Method Errors

posRMSE [m] velRMSE [m/s]
Gibbs - 67.7089
Gauss - 69.28
Herrick-Gibbs - 73.93

The simulation generating synthetic data is executed for
a sidereal day in three different scenarios:

• 1st scenario is consisting the simplest case with just
four stations and simplified debris dynamics and
population (100). This scenario is used in order to
quickly configure the best approach for the filter se-
lection and the main hyper-parameters of the algo-
rithms involved.

• 2nd scenario is build in a realistic LEO environment
(as explained in previous sections) increasing the
coverage and the complexity of the dynamics. In
this scenario a fine hyper-parameter tuning [30] is
perform to observe the dependence of this calibra-
tion on the scenarios.

• 3rd scenario increases the number of object to be
tracked up to 10000 particles to be detected and cat-
alogued. In this case, the 2nd scenario calibration is
used.

Results and trade-off analyses converge to a common
MTT configuration showed in Table 6.

Table 6. MTT System Optimal Configuration

Gating Maintenance Filter Tracker
1e2 km [7 10] & [2 3] UKF JPDA

The 2nd scenario optimal parameters are shown in Ta-
bles 7 and 8 while the results of the experiments are re-
sumed in Tables 9 10, 11 and 12.

Table 7. Filters’ Parameters

EKF PF KF
σnpos [m] 0.4 0.4 0.4
σnvel [m/s] 0.4 0.4 0.4
σ0pos [m] 1e3 1e3 1e3
σ0vel [m/s] 1e4 1e4 1e4
State Estimation Method - Max Weight -
Number of Particles - 1e4 -

Table 8. Tracker Parameters

GNN JPDA TOMHT
Confirmation Threshold [7 10] [7 10] 70
Deletion Threshold [2 3] [2 3] -7
β [1/m3s] 5e-3 - 5e-3
Bin Volume [m3] 1.2337e+13 1.2337e+13 1.2337e+13
Clutter Density [1/m3] - 8.1e-20 -

4. DISCUSSION

From results shown in previous section, several conclu-
sions could be extracted:

• Probabilistic data association (JPDA & TOMHT)
performs better overall, and this performance is
maintained as the scenarios get complex, maintain-
ing good accuracy and robustness metrics. Besides,
JPDA maintain minimum impact on computing load
compared to TOMHT, although in simple cases is
really powerful, it underperforms in highly dimen-
sional problems.

• UKF emerge as the best performing algorithm for
filtering in the studied cases. However, PF perfor-
mance could be more flexible as it is highly depen-
dant on its hyper-parameters.

• The necessity of stating new metrics such as OSPA
or GOSPA to include gating, maintaining and as-
signment algorithms on the SST system perfor-
mance analysis. This is driven by the ambiguous
relation of accuracy metrics and the non filter algo-
rithms and the exponential growth of debris popula-
tion.

• Optimizing MTT hyper-parameters enable large im-
provements on all its parts even for simple adjust-
ments, reducing also the computational load on the
system. Besides, using real sensor and surveillance
data could greatly benefit this optimization pro-
cesses continuously improving an already deployed
surveillance station.



• Statistical simulation of the SST scenario could be
extensively useful in design phases of the system, as
it enables an estimation of the final accuracy results
in early-phases of the project, allowing to optimize
the system as a whole prior to its implementation.

As a conclusion, it could be seen how SST systems per-
formance is a complex and high dimensional system,
which is sensible to a wide range of parameters. System
optimization enhances the possibilities of surveillance,
however metrics to do so need to be carefully chosen, to
not only include accuracy of the prediction but also con-
sidering the sensitivity, specificity and precision.
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Guijarro-López, N., Quiles-Ibernón, P., and Nomen-
Torres, J. (2017). Cataloguing space objects from
observations: Corto cataloguing system. In 7th
European Conference on Space Debris.

13. Donath, T., Michal, T., Vanwijck, X., Dugrosprez,
B., Menelle, M., Flohrer, T., Schildknecht, T., Martinot,
V., Leveau, J., Ameline, P., et al. (2005). Detailed as-
sessment of a european space surveillance system. Fi-
nal report to ESA study, 18574(04).

14. Doucet, A. and Johansen, A. M. (2009). A tutorial
on particle filtering and smoothing: Fifteen years later.
Handbook of nonlinear filtering, 12(656-704):3.

15. Einicke, G. A. (2019). Smoothing, filtering and pre-
diction: Estimating the past, present and future second
edition.

16. Farahi, F. and Yazdi, H. S. (2020). Probabilistic
kalman filter for moving object tracking. Signal Pro-
cessing: Image Communication, 82:115751.

17. Fortmann, T., Bar-Shalom, Y., and Scheffe, M.
(1983). Sonar tracking of multiple targets using joint
probabilistic data association. IEEE journal of Oceanic
Engineering, 8(3):173–184.

18. Hendeby, G. and Karlsson, G. (2019). Target track-
ing.

19. Hill, K., Sabol, C., and Alfriend, K. T. (2012).
Comparison of covariance based track association ap-
proaches using simulated radar data. The Journal of the
Astronautical Sciences, 59(1-2):281–300.

20. Julier, S. J. and Uhlmann, J. K. (1997). New ex-
tension of the kalman filter to nonlinear systems. In
Signal processing, sensor fusion, and target recognition
VI, volume 3068, pages 182–193. International Society
for Optics and Photonics.

21. Kaushik, A. S. (2016). A Statistical Comparison Be-
tween Gibbs and Herrick-Gibbs Orbit Determination
Methods. PhD thesis, Texas A & M University.

22. Khan, Z., Balch, T., and Dellaert, F. (2005). Mcmc-
based particle filtering for tracking a variable number of
interacting targets. IEEE transactions on pattern anal-
ysis and machine intelligence, 27(11):1805–1819.

23. Konstantinova, P., Udvarev, A., and Semerdjiev, T.
(2003). A study of a target tracking algorithm using
global nearest neighbor approach. In Proceedings of
the International Conference on Computer Systems and
Technologies (CompSysTech’03), pages 290–295.

24. Lewis, F. L. (1986). Optimal estimation, a wiley-
interscience publication.

25. Manish, R. (2014). Linear and non-linear estimation
techniques: Theory and comparison. arXiv preprint
arXiv:1406.5556.

26. Mashiku, A., Garrison, J., and Carpenter, J. R.
(2012). Statistical orbit determination using the particle
filter for incorporating non-gaussian uncertainties. In
AIAA/AAS Astrodynamics Specialist Conference, page
5063.



27. McMillan, J. C. and Lim, S. S. (1990). Data associ-
ation algorithms for multiple target tracking. Technical
report, DEFENCE RESEARCH ESTABLISHMENT
OTTAWA (ONTARIO).

28. Okuma, K., Taleghani, A., De Freitas, N., Little, J. J.,
and Lowe, D. G. (2004). A boosted particle filter: Mul-
titarget detection and tracking. In European conference
on computer vision, pages 28–39. Springer.

29. Olivier, A. and Smyth, A. W. (2017). Review of
nonlinear filtering for shm with an exploration of novel
higher-order kalman filtering algorithms for uncertainty
quantification. Journal of Engineering Mechanics,
143(11):04017128.

30. Ozaki, Y., Tanigaki, Y., Watanabe, S., and Onishi, M.
(2020). Multiobjective tree-structured parzen estimator
for computationally expensive optimization problems.
In Proceedings of the 2020 genetic and evolutionary
computation conference, pages 533–541.

31. Pastor, A., Escobar, D., Sanjurjo, M., and Águeda, A.
(2019). Data processing methods for catalogue build-
up and maintenance. In 1st NEO and Debris Detection
Conference.

32. Pastor-Rodrı́guez, A., Escobar, D., Sanjurjo-Rivo,
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Table 9. Tracker Results 1stScenario

JPDA GNN TOMHT
µ σ µ σ µ σ

posRMSE [m] 1519.0551 575.79394 203385.4468 332114.832 20653.5197 72153.1144
velRMSE [m/s] 2.5156 0.666 382.0123 598.4253 110.2248 653.4519
posANEES [-] 3.5746 6.5206 53497.428984 1664481.2314 1.0091 1.9903
velANEES [-] 0.69903 1.0341 8847.60577 21674.1117 0.31866 0.58786
OSPA [-] 2.4702 1.2965 8.8321 1.5266 1.4415 1.0077
GOSPA [-] 95.2694 60.7968 1.1267e+06 3.7174e+07 64.0749 18.4566
Time [s] 10369.9707 6979.8365 6705.0962

Table 10. Filter Results 1stScenario

EKF PF UKF
µ σ µ σ µ σ

posRMSE [m] 4601.3034 1778.1254 1828.2889 678.60118 1519.0551 575.79394
velRMSE [m/s] 7.6973 1.9103 3.6761 9.3951 2.5156 0.666
posANEES [-] 7.5984 5.63 2.6179 5.1537 3.5746 6.5206
velANEES [-] 4.032 8.2594 0.94851 4.7608 0.69903 1.0341
OSPA [-] 5.1457 1.6035 2.4985 1.0221 2.4702 1.2965
GOSPA [-] 116.4202 48.62607 83.0267 134.4164 95.2694 60.7968
Time [s] 12234.908 11992.7309 10369.9707

Table 11. Tracker Results 2stScenario

JPDA GNN TOMHT
µ σ µ σ µ σ

posRMSE [m] 1737.3771 665.6931 2399.6865 914.94592 2438.8459 1116.8946
velRMSE [m/s] 2.9205 0.71529 4.3666 1.5296 4.9623 3.9535
posANEES [-] 2.1991 3.4179 3.1995 3.2784 2.4403 2.0419
velANEES [-] 0.62031 0.81893 1.3362 1.9018 0.88658 0.73338
OSPA [-] 2.3488 1.0911 3.1238 1.0632 3.1733 1.0689
GOSPA [-] 74.6093 27.516 81.3418 33.1463 70.6277 13.5744
Time [s] 11589.8886 14719.626 14177.4883

Table 12. Tracker Results 3rdScenario

JPDA GNN TOMHT

µ σ µ σ µ σ

posRMSE [m] 2275.7237 768.99155 501525.3396 269378.9326 2530.8173 645.14598
velRMSE [m/s] 3.9362 2.835 2409.5426 992.97517 5.6651 8.3928
posANEES [-] 2.7548 2.461 4296972.33765 23752417.4743 5.98014 36.9169
velANEES [-] 1.0465 1.9614 167448.3139 96803.20746 2.31667 16.086
OSPA [-] 2.9865 1.0613 11.0177 0.553821 3.0536 0.75267
GOSPA [-] 280.2572 97.79284 7.3992e+08 4.0809e+09 657.4534 5313.3976
Time [s] 193296.2189 163898.5788 173270.8203
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