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ABSTRACT

The near-Earth environment is rapidly changing. The as-
sociated requirements to preserve its safety and achieve
automation of collision avoidance procedures require a
search for alternative approaches to improve the current
state-of-the-art. In-orbit collisions are considered rare
events, as they are seldom observed. The accurate com-
putation of rare event probabilities has been a matter of
extensive research in statistics and fields as varied as cli-
matology, road-traffic management and radio communi-
cations, as these events are often those with the direst
consequences.
We propose a novel method for the computation of the
in-orbit probability of collision (PoC), based on the com-
bination of rare event importance sampling and an ap-
proximate dynamical model which exploits the ease of
computation of collision scenarios using Keplerian or-
bital dynamics. This approach enables us to maximise
the accuracy of the resulting estimator of the PoC for a
given computational budget.

Keywords: SSA, SST, Space Debris, Collision Probabil-
ity, Rare Event Sampling, Conjunction Analysis.

1. INTRODUCTION

Rare events, as the name implies, are infrequent. How-
ever, oftentimes, it is these events which have the highest
impact on their surroundings, so accurate ways to model
and predict them is crucial in many fields. A prime ex-
ample of a high impact event is an in-orbit collision be-
tween space objects. The near-Earth space environment
is experiencing a rapid increase in resident space objects
(RSOs), both operational and inoperative. This change is
due to the improvement of launch capabilities, the reduc-
tion in cost of space missions themselves, the expansion
of internet provision infrastructure carried out by Star-
link and OneWeb and the advent of nano-satellite tech-
nologies, allowing for the simultaneous deployment of
multiple, inexpensive satellites. As of 2022, an estimated
36,000 objects currently orbit the Earth, out of which just
over 7000 are operational spacecraft, the remainder in-
cluding long de-serviced satellites and space debris [1].

To worsen the panorama, events such as the 2009 Iridium
33-Cosmos 2251 collision, as well as several guided anti-
satellite missile tests, carried out by some of the world’s
superpowers, have expelled thousands of new fragments
into Earth orbit, each of which represents a deadly threat
in itself. In addition, due to their size, most are almost
impossible to accurately track.

Space situational awareness (SSA) is the framework
which houses the combination of reconnaissance, envi-
ronmental monitoring, and space surveillance activities
[2]. Its aim is to ease space traffic management (STM),
or the process of coordinated response to newly identified
threats to safety, as well as maintaining safety guidelines
to prevent catastrophe. Space surveillance and track-
ing (SST) and collision avoidance (CA) procedures have
been shown to suffice for current RSO population safety
needs but may soon become insufficient [2]. To pre-
vent the NEO environment from becoming inoperable,
improved collision risk computation techniques are re-
quired.

Contributions. In this work, we expand on the work
started in [3], in which a new orbit conjunction metric
is proposed. We begin by further validating the approxi-
mate model in LEO and GEO scenarios. Then we delve
into the application of rare event sampling, by introduc-
ing an adaptive importance sampling approach, achieving
a more accurate PoC calculation and a fair representation
of the domain of attraction of the extreme event. We pro-
pose and apply an adaptive framework, which can be it-
erated based on the predictability of the method. Finally
the the algorithmic efficiency of the entire procedure is
enhanced by parallelizing the dynamical propagation of
the method, bringing computation run-time down consid-
erably.

Organization of the paper. The rest of the paper is or-
ganized as follows: Section 2 reviews the state of the
art regarding probability of collision computation and ex-
treme value theory applications. Section 3 provides a de-
scription of the problem state space, as well as defining
the cited metric, and the extreme event bounds. Section 4
discusses the different rare-event methodologies imple-
mented and the proposed framework. Section 5.1 and
Section 5.2 show the results for a LEO and a GEO colli-
sion respectively, ending with the conclusions in Section
6.
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2. STATE OF THE ART

2.1. Probability of collision computation

Current collision probability methods can be somewhat
restrictive, and their assumptions may or may not hold
true in general. They focus on the objects’ covariance
matrices and modelling their states as Gaussian distribu-
tions. Methods like Foster’s, Chan’s, Patera’s and Al-
fano’s are all analytical or numerical methods employ-
ing transformations of the relevant pdfs and assumptions
such as rectilinear motion, spherical shapes, Gaussian po-
sitional errors, and a relative velocity that is large enough
that its covariance can be deemed static. See [4, 5] for
an in-depth review of these methods. These assumptions,
although currently necessary for an estimation of in-orbit
probabilities, limit the applicability of such methods on
a wider range of cases such as those with non-Gaussian
uncertainty.

A standard method to compute the probability of collision
between space objects is the crude Monte Carlo (CMC)
simulation. This method entails simulating N indepen-
dent and identically distributed (i.i.d.) samples from a
starting distribution and applying some transformation,
over which the extreme event set is defined based on a
threshold of exceedance [6]. The CMC provides an un-
biased estimate of the probability, and makes no prior as-
sumptions, making it a suitable benchmark method with
which to compare results. The drawback is that if the
event in question is rare, the number of samples required
to obtain even just one successful event is extraordinarily
large, which makes this kind of method infeasible for rare
event computations. However, it is in principle, possible
to represent this target distribution in ways that allow for
the study of rare events with more ease. This is possible
with the help of extreme value theory (EVT) and rare-
event sampling techniques (REST).

2.2. Extreme Value Theory

One way to study the behaviour of the tails of a proba-
bility density function (pdf) is to extrapolate beyond the
available data and determine the characteristics of the ex-
treme event, making use of methods such as block max-
ima [7], peak-over-threshold or large deviation theory. A
thorough introductory review of EVT can be found in [8],
and an extensive explanation of different rare-event sim-
ulation approaches can be found in [9].

2.3. Rare Event Sampling Techniques

Rare event sampling relies on a numerical model that is
enticed to generate more realizations of a rare event than
it would normally, provided the conditions for the rare
event are known to an extent. The prime examples of
this methodology include importance splitting and impor-
tance sampling (both static and dynamical) algorithms.

Importance splitting. Importance splitting is a method
by which one generates more realizations of a rare event
by resampling promising trajectories [10]. Splitting
methods compute small tail probabilities p′ as a product
of not-so-small conditional probabilities [11]. However
these methods are more suitable for sequential processes,
instead of static ones which will be the focus of this work,
as will be explained shortly.

Importance sampling. Importance sampling involves
sampling regions of the state space which are more likely
to lead to the event in question, with the aim of reducing
estimate variance and computational cost [12, 6, 13, 9],
which, with CMC, it is rather large for even just one
successful realization. There are various flavours of IS,
which depend on the problem at hand. Static IS refers
to using a fixed change of measure throughout the sim-
ulation (generating one proposal), whilst adaptive IS in-
volves updating and learning an improved change of mea-
sure based on the samples which have been simulated [6].
A change of measure is introduced by means of an alter-
native probability measure, such that the likelihood ra-
tio, the Radon-Nykodyn derivative, between the nominal
probability measure (the one associated to the rare event
we are trying to estimate) and our proposal is well de-
fined on the rare event of interest [13]. This reduces the
computational cost of producing more realizations of the
rare event.

Works which apply the EVT and REST to safety and
collision avoidance endeavours in other fields include
[15, 14]. Splitting techniques are applied to the satel-
lite conjunction assessment problem in [11], where they
use an adaptive splitting technique to analyse the Iridium-
Cosmos collision. In 2006, [16] used a sequential Monte
Carlo (SMC) method to estimate the collision risk of air-
craft in a given Air Traffic Area, whilst [17, 18] employed
an SMC2 on the satellite conjunction problem, by nesting
an SMC inside another, for parameter estimation at time
of closest approach.

All of these approaches deal with distance as the target
metric on which to impose the threshold of exceedance.
While this approach may be suitable for problems in
which distance is a smooth function, in orbital dynam-
ics, velocities and distances at key time-intervals in which
collisions typically occur (which are extremely short),
may fluctuate enormously, making it less suitable for ap-
plication.

3. APPROXIMATE DYNAMICAL MODEL

In this section, a dimensionality reduction and conjunc-
tion mapping method introduced in [3] is described. The
mapping represents two space objects’ states in terms of
a simpler metric in R2 with which we study collision
events.



3.1. State Space Definition

The state of each of these two RSOs is represented by a 6-
dimensional vector composed of the position and veloc-
ity vectors in earth-centred-inertial (ECI) reference frame
coordinates. Let xi,t=0 = [r⊤i,t=0 v⊤

i,t=0]
⊤, the initial

state vector of object i = 1, 2, each of which may be rep-
resented by probability distribution πi,t=0(xi,t=0). For
simplicity, take xi,0 to be equivalent to xi,t=0. The two
R6 vectors are then concatenated into a single R12 vec-
tor composed of both objects’ initial states. This way,
X0 = [x⊤

1,0 x⊤
2,0]

⊤ ∈ R12 is their joint state vector,
and π0(X0), the joint initial pdf. Both objects are sub-
ject to their corresponding orbital regimes’ dynamics, so
care must be taken when propagating their orbits, possi-
bly separately. A deterministic dynamical model for the
propagation of both objects’ orbits, which may be high
fidelity (HF) or low-fidelity (LF), can be denoted by the
map

Φ : R12 → R12 (1)

X0 → Xt

3.2. 2D Mapping

During propagation, at some finite timestamp tc after t0,
objects 1 and 2 may come into close range of one another.
A metric of distance, dmin is usually used to quantify this
proximity, and an associated threshold, Rth is defined
to classify a possible collision. A collision occurs when
R2,tc–R1,tc ≤ Rth at tc. Complex models for accurate
determination of Rth may be employed which account
for the geometry of the object, though in our case, Rth

is fixed and equal to the sum of the radii of the spheres
which contain each object, for simplicity.
Determining the probability of collision between space
objects, with distance as a lone metric may be sub-
optimal, since velocities of space objects in, say, a stan-
dard LEO orbit exceed the 7 km/s mark, so collisions
occur at very small timescales over which the distance
between the objects fluctuates enormously. Numerical
methods may fail to capture collisions due to the lack of
smoothness in the distance function. A collision metric is
therefore used to define an alternative geometrical space,
less sensitive to the inherent magnitudes of orbital dy-
namics and can in principle capture events in a smoother
fashion. The central idea exploits the fact that a colli-
sion must occur at the intersection node of the two orbital
planes. By studying the angular momentum, given by
hi = ri,0 × vi,0 for one object, this collision node is
given by

nc = ± h1 × h2

|h1 × h2|
(2)

The mentioned 2D collision vector is defined as ξ =
[Γ ∆]⊤ and composed of two variables defined below
(see Fig. 1 for an illustration). The quantities expressed
in the metric arise due to two conditions which must be
fulfilled for a collision to occur, in the case where one
assumes Keplerian dynamics alone (no perturbations):

• The radii of the orbits along nc should be equal. This
leads to the ratio of radii Γ at collision node, given
by

Γ = 1− r2,c
r1,c

(3)

where ri,c = (h2
i /µ)/(1 + ei cos νi,c), µ is the

gravitational constant of the Earth, ei, the eccen-
tricity of the orbit of object i = 1, 2 (ei, the ec-
centricity vector of the orbit of object i = 1, 2) and
cos(νi,c) = n⊤

c · ei/ |ei|.

• The angular position of both objects within their or-
bits should be along nc at the same time. Their an-
gular distance ∆ is given by

∆ = ν2(tc,m)− ν2,c (4)

where tc,m corresponds to the time at which object
1 is along the collision direction, and the angular
velocity can be computed from Kepler’s equations.

Figure 1. Illustration of the two variables, Γ and ∆, for
the collision metric used to define the dimensionality re-
duction mapping. The line of nodes of satellites 1 and 2
is also shown. It is easy to see that if Γ and ∆ are both
zero, the objects are at the same point in space.

3.3. Approximate Model

Keplerian dynamics alone, however, rarely result in ac-
ceptable levels of accuracy, especially in LEO, where
drag deviates the line of nodes significantly from the Ke-
plerian estimate. This implies that perturbations must
be considered, increasing the computational cost signif-
icantly. By generating several samples from the initial
distribution of states and propagating them according to
the HF model in eq. 1, the nodes between the two objects
can be recorded at finite time-steps by using a stop func-
tion in the propagation. The Xt states at the crossings are
then mapped into the 2D conjunction space.



With infinite computational power, we would compute
the 2D mapping in HF for every case. With realistic
computational capabilities, however, the process is ex-
pensive. Reasonable results, however can be obtained by
employing a first-order linear approximation of the HF
estimate, for which we must evaluate the following ex-
pansion around the initial condition or that with the min-
imum ξc, which reads

Ξc,i = Ξc,m + Jc (Xi,0 −Xc,m,0) . (5)

The full linear approximation can then be denoted by

Ψc = ξLF
i + Ξc,m + Jc (Xi,0 −Xc,m,0) . (6)

We find Ξc,m = ξHF
c − ξLF

c by simply saving the 2D
HF value of the sample closest to [0,0], obtaining ξHF

c ,
whilst at the same time, saving the lowest values in the
Keplerian propagation, obtaining ξLF

c . The caveat is this
approximation probably does not apply in LEO past 7
days or so. Also, to be able to perform the correction,
we must necessarily first propagate using the HF model
to obtain the required correction terms.

Next, the full approximate model draws a very large num-
ber of samples from the initial distribution, and maps
them onto the 2D plane via Keplerian dynamics, obtain-
ing ξLF in eq. 6. Jc is defined as Jc = ∂Ξc/∂X0,
i.e., the partial derivative of the Ξ values over the par-
tial derivative of the initial state X0. Finite differences
may be applied, giving Jc = ∆Ξc/∆X0.

One can now linearly correct the estimate of the LF model
for the large pool of samples to enhance accuracy, via the
mapping above in eq. 6, defined as

Υ(Xc,m,0) : R12 → R2

X0 → Ψc (7)

3.4. Extreme event definition

At this point we have obtained possible collision event
samples given an initial state. Now we must compute
their probability of occurrence. Traditionally, methods to
compute this collision probability (PoC) study the likeli-
hood of two objects coming into a distance lower than a
certain distance threshold. By transforming this thresh-
old into a collision condition in the conjunction plane,
we can represent the extreme domain as a circle of radius
||ξ|| ≤ Rth/r1,c around [0,0]. The collision circle in a
typical LEO scenario is seen in Fig. 2.

Figure 2. Illustration of the extreme event threshold in the
conjunction space for a typical LEO scenario. The cen-
tral cross represents certain collision (0,0), the red dot is
inside the collision circle bounded by the threshold, and
the cyan samples are points further away, and therefore
non-colliding samples.

According to theory, the extreme event set E(fe) is the
set of samples which fulfil the extreme event condition
above. The proposed method aims to compute the PoC,
and determine a well-defined domain of attraction (DoA).
The DoA is described as the set of all initial states which
lead to an observable transformation below the thresh-
old defined in section 3.2. Regardless of the method em-
ployed, PoC will be the probability that the joint state
vector defined in sec. 3.1 belongs to the DoA, provided
the latter has been adequately defined (which is a chal-
lenge in itself).

3.5. Probability of Collision

There are several ways of computing the PoC. With
the approximate model described above, using a very
large (but inexpensive) number of samples centered
on the point the linearization was performed, the PoC
may be computed as the Monte Carlo sum of the gen-
erated samples which exist in the domain of attrac-
tion set, i.e., those whose L2 norm in R2 is equal or
lower than a specified threshold. More formally, we
define the domain of attraction as Dχ(Rth/r1,c) ={
X ∈ R12 ∩Υ(X0) ≤ Rth/r1,c

}
, implying that the the-

oretical probability of collision translates to

Pπ(Dχ) =

∫
IDχ(X0)π(X0)dX0 , (8)

where IDχ
(X) = 1 if X ∈ Dχ and IDχ

(X) = 0 if X /∈
Dχ. Hence by using the N particles generated, the prob-
ability is approximated as

Pπ(Dχ) ≈
1

n
Σn

i IDχ
(Xi

0) Xi
0 ∼ π(X0) . (9)



Applying the above to the computation of a rare event,
estimate variance will be high and efficiency, low.

4. PROPOSED METHODOLOGY

4.1. Importance Sampling

The rare-event sampling method of choice in this commu-
nication is importance sampling, which will be described
in more depth in these pages. In order to study the occur-
rence of extreme events, we turn to these strategies to ease
and optimize computations. More specifically, we begin
by explaining the methodology behind importance sam-
pling (IS), as applied to our problem. In the extreme case
where we are able to generate enough particles to “fill”
the collision area in R2 (see Fig. 2) down to infinitesi-
mal levels, we should in principle be able to completely
characterize the domain of attraction.

The first step of the general approach is to build the ap-
proximate model following the previous sections, to ob-
tain suitable values for the Jacobian and Ψc. The follow-
ing are thorough descriptions of the fundamentals of the
approaches followed:

4.1.1. Approach 1: standard IS

One must construct a proposal function µ(X0) which will
generate more rare event instances, thereby reducing es-
timate variance, compared to the crude MC approach. If
the proposal used was zero variance, it would generate
exactly and only collision events. Clearly this requires
prior information on the collision event, which is impos-
sible a-priori, but by performing a cheap simulation of
the afore-mentioned approximate process, one can close
in on said knowledge. Our proposal function is chosen
to be a Gaussian distribution, based on a mean value and
an associated covariance. The more information one has,
the more varied and complex the distribution type can be.
In our case it was defined on the initial samples in R12.

• Obtaining the mean value
A secant root-finding method is used on the linear
approximation function to determine the X0 which
leads to the lowest Ψ. The algorithm requires two
guesses, out of which at least one must be suffi-
ciently good. Once the tolerance criterion is ad-
justed to output the desired accuracy, the resulting
X0 is selected as the proposal distribution mean
X0,min.

• Obtaining the covariance C0

A trial run of a very large number of inexpensive ap-
proximate model samples is performed with a distri-
bution built around X0,min, with a sufficiently large
covariance. Samples on the outer edge of the col-
lision area are identified, and a covariance matrix

is built based on the difference between them and
X0,min, in R12. This is the proposal distribution co-
variance C0.

In the standard IS implementation, the algorithm is run
once, and the number of samples drawn from the pro-
posal is considerably smaller compared to the approxi-
mate model implementation. These are then mapped onto
the conjunction plane as before. In this case, assuming
the proposal µ(X0) now exists, the probability of colli-
sion can be computed as

Pπ(Dχ) ≈
n∑
i

IDχ(X
i
0)w

i Xi
0 ∼ µ(X0) , (10)

where
wi = π(Xi

0)/µ(X
i
0) (11)

Eq. 11 implies that the weights of the samples are a mea-
sure of how well the proposal distribution ”matches” the
initial distribution.

4.1.2. Approach 2: adaptive IS

Alternatively, an iterative version of the above, AIS, can
be applied, which employs a static form of the sequen-
tial Monte Carlo algorithm. The initialization follows the
same lines as described in the standard version, though
the probability of collision computation employing the
quotient of the two distributions (see eq. 11) does not
occur until the end of the algorithm, once sufficient iter-
ations have occurred. Fictitious measurements Zj ∈ R2

are then generated, with a covariance spanning several
orders of magnitude less than the extreme event thresh-
old and centred around ΨZ,c = [0 0]⊤. The R2 particles
are given temporary weights according to the likelihood
of the Ψi=1:N samples relative to the measurements Zj ,
i.e., these weights reflect how well samples match the fic-
titious collision measurements, and form the basis of the
resampling step. Resampling means those with higher
weights are duplicated, and those with lower weights re-
moved, so the following iteration draws samples from a
reduced set and concentrates more samples around the
collision area. At the end of each iteration, a new pro-
posal function is created with a new mean and covariance,
for its use in the next iteration. After a certain number
of iterations, the probability of collision is computed as
shown in equation 10 above.

4.2. Proposed Method

Algorithm 1 describes the procedure for implementing
the proposed framework based on iterative AIS. For
optimality, we present an all-encompassing framework
which draws on the convenience of the approximate
model’s computation of the conjunction metric and rare
event sampling’s ability to reduce estimate variance and



achieve a more efficient computation of the PoC. We be-
gin by processing the initial state and covariance of the
two satellites and obtain the ξ0 and ξkep

0 at collision, as
well as the Jacobian, enabling us to build the lineariza-
tion in equation 6. The method then applies AIS, by ob-
taining a suitable proposal with a mean value centred on
the collision domain in space, and a covariance that con-
tains the DoA a.s. Once a satisfactory coverage of the
extreme event area is achieved, we measure predictabil-
ity, or our ability to predict collisions with accuracy, by
HF-propagating the state samples with the highest value
in R2 (those at the frontiers of the collision zone) to de-
termine how many are correctly identified.

Following a successful run of this algorithm, the collision
zone may be adapted to provide a more realistic thresh-
old area for the rare-event zone by selecting the samples
which lie closest to the threshold boundary (but lie out-
side), and propagating them in HF. We can then study
whether we have miss-classified potential collision events
as safe, which is less admissible than identifying risk-free
events as collision events. The procedure can be con-
cisely seen in Algorithm 1 below.

Algorithm 1 Proposed Method

1. Obtain initial state vector and covariance, giving
prior distribution π(X0).

2. Propagate with full-fidelity dynamics, saving the
nodes of intersection. Compute the Jacobian and
save the ξLF

c,m and ξHF
c,m to construct the approximate

model using eq. 6.
3. Construct and sample from the initial proposal

µ(X0) by finding the mean X0,min and reduced co-
variance C0, as seen in Sec. 4.1.1.

4. Begin AIS in Sec. 4.1.2 by approximating the col-
lision zone iteratively based on likelihood weights.
These are associated to similarity between our sam-
ples in R2 and fictitious samples Zj around (0,0).

5. Compute final probability of collision following eq.
10.

6. Propagate outer boundary collision samples in HF,
and compute predictability.

7. If predictability is low, perform a second iteration by
setting X0 = X0,min and perform steps 2) to 6).

5. TEST CASES: RESULTS

In this section, technical information about the configura-
tions of the two case studies investigated here is included.
The two cases correspond to a LEO encounter and a GEO
encounter, and the results obtained for the algorithms out-
lined above are shown after a brief description of each.

5.1. LEO Case

This case study constitutes the famous collision which
occurred on February 10, 2009 between operational com-
munications satellite Iridium-33 and the defunct USSR
satellite Cosmos-2251. The time of closest approach
(TCA) of the two satellites was tc = Feb 10, 2009,
16:55:59 UTC, obtained from the observed conjunction
geometry [2]. The states of both spacecraft at TCA con-
taining the position and velocity expressed in ECI coor-
dinates (km and km/s respectively), were the following:

x1 = [-1457.77 1589.34 6814.11 -7.00 -2.44 -0.93]⊤

x2 = [-1457.77 1589.36 6814.19 3.58 -6.17 2.20]⊤

The position and velocity uncertainties for the covariance
matrix of the initial state were extracted from the Con-
sultative Committee for Space Data Systems historical
archives. It is assumed equal for both objects and ex-
pressed in the cross-track, along-track, and out-of-plane
(RTN) coordinate system, which must be converted to
ECI coordinates to match the coordinate system of both
states.

PRTN
0 = diag[41.42, 2533, 70.98, 5.7e-3, 1.1e-5, 1e-6]⊤

To obtain the initial states, these conjunction conditions
were HF-propagated backwards in time to find suitable
initial conditions for the collision probability methods.
This simulation is expected to be very computationally
costly, due to its high-fidelity propagation in LEO, where
calls to atmospheric models for drag computation are nu-
merous and expensive. Note that in a typical LEO sce-
nario, the collision threshold is assumed to be Rξcoll =
1× 10−6.

5.1.1. Performance Comparison

In this section, the performance of the algorithms is
compared for the LEO case, based on probability of
collision and run-time. Initially, the computational cost
of the algorithm for this LEO scenario was relatively
high, reaching past the 10h mark. Though not an
unacceptable run-time for a method which predicts
collisions in the distant future, it is a method which can
be parallelized in the time-consuming stages of the code,
namely, the HF Jacobian computation. By observing
the data structure presented throughout the code, it
was parallelized to achieve a lower run-time, reaching
the 3h mark. The results for this orbital configuration
are summarized in table 1. The proposed algorithm
benefits from this reduction in run-time as it involves a
potential double computation of the Jacobian. In light
of the extremely low probability value inferred from
the HF Monte Carlo simulation, we can assume the
lowest of the predicted probabilities is the most accurate,
given the initial state and associated uncertainty. In
this case, the proposed method achieves the desired
accuracy, with a sufficiently low simulation time.



Figure 3. Conjunction mapping showing the defined 2D metric samples for the approximate model in LEO.

Figure 4. Conjunction mapping showing the defined 2D
metric for the proposed model samples in LEO. Note the
difference in scales of the axis, compared to the previous
Fig.

Probability Run-time
of Collision (s)*

MC. High-Fidelity < 1 · 10−5 1814400
MC. Approximate Model 1.1 · 10−5 68.17

Importance Sampling 9.2 · 10−6 64.21
Proposed Method 6.1 · 10−6 74.12/150

Table 1: LEO Performance comparison showing results
of probability of collision and run-time for each algo-
rithm.
* The computational run-time is quoted for each algo-

rithm (except for the MC High Fidelity), non-inclusive of
the computation of the Jacobian (both in the standard run
and in the parallelized run). The standard computation of
the Jacobian for this LEO scenario takes 42,065 seconds,
and 14,110 seconds in the parallelized case, and these
must be added to the quoted run-times above in each
case.

5.1.2. The collision zone

Figures 3 and 4 show the collision zone in R2 for the
LEO case, for the approximate model and the proposed
method, respectively. The red dots represent collision
samples predicted by the respective method, while the
cyan dots are non-collision samples in this space.

From the first plot in Fig. 3, we can readily observe that
the variance is significant, showing a spread of several
orders of magnitude around the initial state. By zoom-
ing into the centre (second plot of the same Fig.), we
see that there are very few particles inside the collision
zone, more precisely, 11. By crude Monte Carlo, the ap-
proximate model’s probability of collision with 1 million
samples is low, as seen in table 1 above. This has the gen-
eral explanation of relatively poor knowledge of the state
at time t = 0 resulting in a low probability of collision,
due to the magnitude of the covariance matrix. Either
way, it shows sufficient accuracy given the level of un-
certainty. When plotting the proposed method samples
in Fig. 4, a clear reduction in variance is observed, with a
substantially larger proportion of particles residing inside
the event zone: 972. The simulation was run with 30,000
samples. This illustrates the point that in an ideal sce-



Figure 5. HF mapping showing the approximate model collision samples in the conjunction space as they evolve through
each node up to conjunction. Seeing how many are correctly identified as collision samples gives an estimate of pre-
dictability.

Figure 6. HF mapping showing the outer collision samples of the proposed model in the conjunction space and seeing
how many are correctly identified as collision samples.

nario, a zero-variance IS estimator would generate only
points within the collision zone, i.e., one would be able
to fully characterize the extreme event set, as well as the
domain of attraction, as N approached infinity. In any
case, by employing equation 10 in section 4.1.1 above,
the probability of collision can be seen as a more accu-
rate approximation of the probability of collision given
our initial degree of uncertainty.

5.1.3. Predictability graphs

A necessary test for our methods is whether the parti-
cles which lead to collision with our proposals based on
the linear approximation actually lead to collision when
propagated in high fidelity. Hence, we can test for pre-
dictability and validity of our method (a test inherently



Figure 7. a) shows an illustration of the distribution of object 1 samples generated by the approximate model both in
position and velocity, where each subfigure represents a pair of dimensions. b) shows the same for object 2.

Figure 8. a) shows an illustration of the distribution of object 1 samples generated by the proposed method both in position
and velocity, where each subfigure represents a pair of dimensions. b) shows the same for object 2.

present in the proposed method).

Approximate Model. The HF mapping for the approx-
imate model samples is shown in Fig. 5, spanning all or-
bital nodes (in blue) up until collision node (red dot on the
larger plot). When zooming into the collision area for the
relevant X0 samples drawn, we see that all the collision
samples identified in Fig. 3 are correctly characterized as
collision samples in HF. This may be due to the low num-
ber of collision samples, i.e., they may just happen to be
within the collision zone in HF, so predictability of 100%
cannot be claimed yet. A larger subset of samples should
be compared in the HF to determine how well we are pre-
dicting the risk of collision. This subset may be defined

by the circle corresponding to a radius of 2× 10−6. This
is left for a future study.

Proposed Method. The HF comparison for the pro-
posed method samples is shown on Fig. 6. The entire
collision sample set (essentially Fig. 4) is depicted on
the left of the figure, with the outermost 15 samples se-
lected for HF propagation shown in black. The same sam-
ples shown after HF propagation are shown on the on the
right of said figure. We see successful prediction, taking
into consideration that the location is roughly the same in
the HF map, indicating continuity in the mapping. How-
ever half of them lie just outside the boundaries, though
these are indeed the outermost samples, so it may be as-



sumed that samples which are not at the limits on the left
will be correctly classified. A study of the predicted non-
collision particles in the surrounding space as suggested
above would be ideal, to see whether they lead to colli-
sion in HF, in the hopes of determining possible under-
estimation of risk. This leads to the conclusion that for
the vast majority of samples, our methods are reliable, as
seen by their high predictability.

5.1.4. Space Domain graphs

In this section, we plot all the proposal initial state X0

samples (in cyan), as well as the collision samples (in red)
for the algorithms above, with the aim of determining a
possible domain of attraction in R12 (i.e., the set which
will end up colliding in the future). For each method, 4
subplots are shown for each of the two objects, showing
the space distribution in the X − Y and X − Z axis, and
the velocity distribution in the vX−vY and vX−vZ axis,
respectively. As seen in Figs. 7 and 8, generally samples
lie in the center of the sample cloud in space and veloc-
ity for both objects. By plotting the approximate model
samples which we know lead to collision (in black) as
verified in the previous section, we can add to the answer
to the question of whether we are underpredicting risk by
observing where these points lie relative to the proposed
algorithm’s collision points. Generally good agreement is
observed, with the black dots being mostly contained in
the collision cloud, though outlier detection analysis can
be performed here. In the limit of N approaching infinity,
these dots would be completely covered inside a red ho-
mogeneous collision cloud. Upon closer inspection, one
may question the continuity properties of the mapping,
since there seem to be non-collision samples in the mid-
dle of an apparently exclusive collision area. However,
by observing these points on a case by case basis to de-
termine which may be outliers, it can be shown that this
is an illusion produced by the high-dimensionality of the
problem, and the inability to fully represent the domain of
attraction of a 12 dimensional problem in just two dimen-
sions. See next section 5.1.5 for a spatial depth analysis
of these potential outliers.

5.1.5. Spatial Depth

Spatial depth analysis is performed to study whether there
is a continuity issue in the domain of attraction computa-
tion. We select a few samples which seem to lie within
the DoA for the approximate model and for the proposed
method. The Mahalanobis distance (MD) is computed
from the centre of the distribution to determine their dis-
tance and find possible ”outlyingness” [20]. Note that for
the plots, we decided to represent the 12D state samples
by way of a variable K which holds no physical mean-
ing, it is devised merely to represent the state samples in
1D clearly and the MD associated to them. It is defined
as K = |r0| + |v0|∆t where both |r0| and |v0| represent
the euclidean norm of all position vectors and all veloc-

ity vectors of both objects, respectively, and ∆t = 1. In-
deed, Figs. 9 and 10 below show that this subset of points
seems to lie at MD values further than the cloud of colli-
sion points, from the centre of the distribution, meaning
that there should apparently be no issues regarding es-
timate continuity. Note that while the MD values may
be potentially very high, they need not be; most non-
collision samples should be outside or bordering a thresh-
old. For example, the lowest non-collision sample in Fig.
10 is roughly a distance of 4 MDs from the red cloud.

Figure 9. Figure showing the difference in Mahalanobis
distance between points which lie within the domain of
attraction of the approximate model when observing the
space domain figures in two dimensions. Due to the
scales, collision samples appear close to zero, but they
are in fact in the MD = 3 - 5 vicinity.

Figure 10. Figure showing the difference in Mahalanobis
distance between points which lie within the domain of
attraction of the proposed method when observing the
space domain figures in two dimensions.



5.2. GEO Case

This case study constitutes a simulated collision in geo-
stationary orbit between two satellites. The time of clos-
est approach (TCA) of the two satellites was tc = Nov 17,
2016, 08:25:43 UTC, obtained from the observed con-
junction geometry. The states of both spacecraft at TCA
containing the position and velocity expressed in ECI co-
ordinates (km and km/s respectively), were the following:

x1 = [42094.92 -1113.11 2170.41 0.08 3.07 -0.02]⊤

x2 = [42094.92 -1113.10 2170.41 0.15 3.04 -0.39]⊤

The position and velocity uncertainties for the covariance
matrix of the initial state have the same source as the LEO
case, but are of lower magnitude to ensure collision is ap-
preciable with the presented methods. Its RTN coordi-
nates must be converted to ECI coordinates to match the
coordinate system of both states.

PRTN
0 = diag[41, 2533, 0.71, 5.7e-5, 1.1e-7, 1e-8]⊤

These conjunction conditions were propagated back-
wards in time 15 days by means of the high-fidelity prop-
agation to find suitable initial conditions for the collision
probability methods. Note that in a typical GEO sce-
nario, the collision threshold is assumed to be Rξcoll =
1× 10−7.

5.2.1. Performance Comparison

The computational cost for the high fidelity propagation
of a GEO configuration does not pose a problem as it in-
volves no drag calculations, (as opposed to LEO). The
algorithm runs in a fraction of the time of the LEO case,
because the calls to the atmospheric model do not involve
atmospheric density computations. In addition, due to a
larger orbital semi-major axis, the number of passes is
lower, so the calculation of the Jacobian is significantly
more efficient. So much so, that we forgo the need for
parallelization schemes, as in practice, they were found
to add no significant speedup improvements. The re-
sults are summarised in table 2 below. In light of the
probability value inferred from the HF Monte Carlo sim-
ulation, we can assume the highest of the predicted prob-
abilities is the most accurate, given the initial state and
associated uncertainty. In this case, the proposed method
achieves the desired accuracy, with sufficiently low sim-
ulation time.

Probability Run-time
of Collision (s)*

MC. High-Fidelity 3.14 · 10−4 604800
MC. Approximate Model 7.6 · 10−5 64.45

Importance Sampling 8.1 · 10−5 66.28
Proposed Method 1.19 · 10−4 67.46/-

Table 2: GEO Performance comparison showing results
of probability of collision and run-time for each algo-
rithm

* The computational run-time is quoted for each algo-
rithm (except for the MC High Fidelity), non-inclusive
of the computation of the Jacobian. The standard compu-
tation of the Jacobian for this GEO scenario takes 134.6
seconds and this must be added to the quoted run-times
above in each case.

5.2.2. The collision zone: a comparison

Figures 11 and 12 show the collision zone in R2 for
the approximate model and the proposed method, respec-
tively, for the GEO case. The red dots represent the col-
lision samples predicted by the respective method, while
the cyan dots are non-collision samples in this space.

From the first plot in Fig. 11, it can be observed that the
variance is significant, showing a spread of several orders
of magnitude around the initial state. By zooming into
the centre (second plot of the same Fig, we see a non-
negligible number of particles inside the collision zone,
76. By crude Monte Carlo, the approximate model’s
probability of collision with 1 million samples is lower
than desired, as seen in table 2 above. This has the same
explanation as in the LEO case, and it is due to the magni-
tude of the covariance matrix. Either way, it is an accept-
able value, with this level of uncertainty. When plotting
the proposed method samples (Fig. 12) a clear reduction
in variance is observed, with a significantly larger pro-
portion of particles residing inside the event zone: 4258.
The simulation was run with 20,000 samples, and a more
accurate probability of collision is achieved (see table 2).

5.2.3. Predictability graphs

The same test as performed for LEO is repeated here to
see whether the particles which are predicted to lead to
collision with the proposals based on the linear approxi-
mation actually lead to collision when propagated in high
fidelity. This way, one can test for predictability and va-
lidity of the method.
Fig. 13 shows the approximate model’s HF mapping of
all nodes into the conjunction space, with a zoom on the
collision circle for the relevant X0 samples drawn. It can
be seen that all samples are predicted to be in the vicinity
of the collision circle, though not all of them are inside.
A larger subset of samples should also be compared in
the HF to determine if we are indeed overpredicting the
risk of collision. This subset may be defined by the circle
corresponding to a radius of 2× 10−7.
In Fig. 14, bearing in mind that over 4000 samples are
predicted to collide, due to computational costs, even in
GEO, not all are propagated in HF. The outermost 200
samples are propagated, and we see a very large propor-
tion of these are correctly classified. Again, not all lie
strictly within the collision zone, but at a small distance.
indicating continuity in the mapping. We can study sur-
rounding non-collision particles to see whether they lead



Figure 11. Conjunction mapping showing the defined 2D metric for the approximate model samples in GEO.

Figure 12. Conjunction mapping showing the defined 2D
metric for the proposed model samples in GEO.

to collision in HF, in the hopes of determining possible
underestimation of risk. These results lead to the conclu-
sion that for the vast majority of samples, our methods
are reliable, as seen by their high predictability.

5.2.4. Space Domain graphs

In Figs. 15 and 16, we plot all the proposal initial state
X0 samples (cyan), as well as the collision samples (in
red) for the algorithms above, with the aim of determin-
ing a possible domain of attraction (i.e., the set which will

end up colliding in the future). For each algorithm the po-
sition and velocity axis are plotted. In Fig. 16, black dots
represent the collision samples predicted by the approxi-
mate model (though bear in mind that this time, not all of
them represent a 100% certain collision). As seen in Figs.
15 and 16, generally samples lie in the center of the sam-
ple cloud in space and velocity for both objects, though a
more distinguishable collision area can be observed when
compared to these figures’ LEO counterparts. This fact,
along with the conjunction plots, lead us to believe that
the proposal methods work better in GEO. By observing
the black benchmark points, we can add to the answer
to the question of whether we are underpredicting risk
by observing where these points lie relative to the pro-
posed algorithm’s collision points. Good agreement is
observed, with the black dots being entirely contained in
the collision clouds.

Continuity properties of the mapping can be examined
again, since there seem to be non-collision samples in the
middle of an apparently exclusive collision area (not en-
tirely obvious in the IS methods but easy to see in the first
approximate model figures). We observe these points on
a case by case basis to determine which may be outliers.
Again this seems to be an illusion produced by the high-
dimensionality of the problem, and the inability to fully
represent the domain of attraction of a 12 dimensional
problem in 2D.

5.2.5. Spatial Depth

As mentioned, spatial depth analysis is performed to
study whether there is a continuity issue in the domain of



Figure 13. HF mapping showing the approximate model collision samples in the conjunction space as they evolve through
each node up to conjunction. Seeing how many are correctly identified as collision samples gives an estimate of pre-
dictability.

Figure 14. Conjunction mapping showing the defined 2D
metric evaluated in high fidelity to examine which of the
outermost 200 proposed model samples really lie within
the collision zone, i.e., estimating predictability.

attraction computation. We select a small subset of sam-
ples which seem to lie within the DoA for the approx-
imate model and for the proposed method. The Maha-
lanobis distance (MD) is computed from the centre of the
distribution to determine their distance and find ”outly-
ingness”. Here, again we represent the 12D state samples
by way of variable K defined in 5.1.5 to clearly represent
the state samples in 1D and the MD. The approximate
model and the proposed method spatial depth analysis
can be seen in Figs. 17 and 18. Indeed, these figures
show that these points lie at a Mahalanobis distance fur-
ther than the cloud of collision points, from the centre of

the distribution, meaning that there should be apparently
no issues regarding estimate continuity. Note that due to
the magnitude ranges in the MD of the non-collision sam-
ples, the collision set MD appears close to zero, but it lies
in the range MD = 1 - 4.

6. CONCLUSION

The method proposed in this communication builds upon
a recently developed collision risk metric for orbital ob-
jects, with the aim of reliably computing their probabil-
ity of collision. This could satisfy the need to provide
reliable safety guidelines to satellite operators to prevent
collisions, as well as unnecessary collision avoidance ma-
neuvers. The method proposed draws on the principles of
rare event sampling to devise a way to characterize as ac-
curately as possible, the possible initial states which may
end up in collision at TCA. Two cases are studied in this
communication, the Iridium-Cosmos collision of 2009 in
LEO, and a simulated collision in GEO, with synthetic
data. The proposed method is based heavily on adaptive
importance sampling. It is validated in terms of accu-
racy, reaching probabilities which are limited only by our
knowledge of the state of the satellite, but also in terms of
computational cost, which, in stark contrast to the costly
CMC, takes only a few hours to run. The predictability
of our method was shown to remain consistently high in
both cases which ensures reliability of the principles em-
ployed, and a domain of attraction can be somewhat char-
acterized in all dimensions. Further work may involve a
more complete characterization of the domain of attrac-
tion by studying the particles surrounding the circle of



Figure 15. a) shows an illustration of the distribution of object 1 samples generated by the approximate model both in
position and velocity, where each subfigure represents a pair of dimensions. b) shows the same for object 2.

Figure 16. a) shows an illustration of the distribution of object 1 samples generated by the proposed method both in
position and velocity, where each subfigure represents a pair of dimensions. b) shows the same for object 2.

collision and their HF mapping, to determine, as N goes
to ∞, the correct shape of the extreme event set area in
R2, assumed here to be circular and constant. Higher or-
der approximations can be implemented, such as a second
order approximation instead of first order, which would
involve the calculation of the Hessian matrix to further
increase the accuracy and predictability of the proposed
method. The limits of the method can be studied in dif-
ferent cases where the initial state estimate is worse, or
the uncertainty is significantly higher, and cases where
a collision has definitely not occurred, to see if we can
determine an extremely low probability of collision ac-
curately.

In addition, the algorithm could be re-formulated as a se-
quential method, which deals with measurements as they
are received, and adapts the proposal function based on
each new measurement. In any case, further work on the
proper development of extreme value theory applied to
the satellite conjunction case is a promising line of work,
and one which has not been exploited thus far. This work
is a first step in said direction.



Figure 17. Figure showing the difference in MD between
points which seem to lie within the domain of attraction
when observing the approximate model space domain fig-
ures in two or three dimensions.
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