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ABSTRACT

Before being able to track objects in space, a radar
system first needs to operate in search mode in order
to find objects of interest. A traditional search mode
directs designated beams according to a predefined
pattern by, for example, scanning the search volume
from its upper left to its lower right corner. It does
not, however, exploit possible acquired knowledge
about tracks and object positions and hence might
waste resources on areas that do not include any ob-
jects. In this paper, we propose modelling the search
mode as a Multi-Armed Bandit (MAB) problem to
allocate beams in the search volume while leverag-
ing acquired knowledge. To achieve this, the single
transmitter of a radar network is interpreted as the
player of a MAB and the possible search beams as the
arms of the slot machines that the player can choose
from. The goal is to maximise the overall collected
sum of rewards based on a predefined reward func-
tion, which represents the search effectiveness. We
compare the performance of two standard MAB algo-
rithms, namely the Epsilon-greedy and the Epsilon-
decay algorithm, with the optimal decisions (in the
sense of best in foresight) and the performance of a
classic systematic search fence. We discuss to which
extent the MAB approach is suitable for radar search
applications and point out its chances and limita-
tions.

Keywords: Multi-Armed Bandits; Space observa-
tion; Search Strategies.

1. INTRODUCTION

The purpose of optimizing a radar network oper-
ating in search mode is to detect as many objects
as possible with sufficient precision to be able to
track them. At the same time, the search function
shall be executed efficiently, such that the radar has
enough resources left to serve other functions like
tracking. The unavoidable trade-off between differ-
ent radar modes can be optimized using radar re-

source management techniques to make the alloca-
tion of resources as efficient as possible. Efficient al-
location of sensor resources could mean that highly
populated areas in a defined search space are covered
more frequently, whereas fewer resources are spent
for searching in sparsely populated areas. Some ar-
eas in the field of view of radar networks are more
densely populated than others due to the fact that
the tracks of satellite and debris objects orbiting the
earth are often correlated [1]. Therefore, detected
objects at a certain beam steering angle can be used
to form knowledge on beam steering positions that
are potentially more rewarding for searching. In
other words, a radar operating in search mode gains
situational knowledge with every measurement. Tra-
ditional search schemes of radar networks, however,
do not directly exploit this knowledge. These search
schemes scan the field of view systematically, e.g.
from upper left to lower right positions in a prede-
fined order, independent of the detections that are
made over time.

This paper investigates a machine learning approach
to exploit situational knowledge in order to adapt the
search strategy and enable a more efficient allocation
of resources. Concretely, we model the search mode
as a Multi-Armed Bandit (MAB) problem. MAB
problems address the dilemma of exploration ver-
sus exploitation: Exploration means that new sit-
uational information is gathered, while exploitation
refers to taking advantage of the already acquired
knowledge. In our case of a radar in search mode,
we model the steering to unknown space areas as
exploration, while the activation of beam positions
that have previously led to detections can be seen as
exploitation of the accumulated information. We im-
plement and compare two different MAB algorithms,
which provide decision policies in this exploration-vs-
exploitation dilemma: the Epsilon-greedy and the
Epsilon-decay algorithm. Our MAB model acts in
an exemplary setting of a radar network consisting of
one transmitter station and three receiver stations at
fixed positions. For the implemented Single-Player
MAB problem, it is important that only one Tx is
considered, whereas the number of Rx stations can
be arbitrary. The MAB algorithms can choose from
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a set of beam positions covering the search volume
of interest. The evaluation of the MAB algorithms
includes the comparison of their performance of with
the optimal arm selection (in the sense of best in fore-
sight) and the performance of a classic search fence,
in which the search volume is scanned in a predefined
regular order. In contrast to classic MAB problems,
the rewards in some radar search scenarios can be
heavily time-dependent. That is, highly rewarding
arms appear when the game has already progressed,
which can be hazardous for simple MAB algorithms.
Therefore, we discuss to which extent the MAB ap-
proach is suitable for radar search applications and
suggest possible modifications.

This paper is organized as follows. Section 2 pro-
vides the theoretical background of MAB theory and
the adaptation of MAB algorithms to radar search.
Also, we present the constellation and assumptions
of the exemplary search scenario we set up for our
simulations. Main simulation results are discussed
in Section 3. Section 4 contains concluding remarks
and an outlook to consecutive work.

2. MULTI-ARMED BANDITS: BACKGROUND
AND IMPLEMENTATION

2.1. Multi-Armed Bandits: a Reinforcement Learn-
ing Problem

A MAB problem is a sequential decision problem
whose name derives from a gambling scenario in
which the player has to choose which arm in a row
of non-identical slot machines to pull. In the classic
MAB problem, each slot machine provides a pay-off
drawn from a specific but unknown probability dis-
tribution. The gambler’s intention is to maximize the
overall sum of collected rewards. At each iteration,
therefore, the gambler faces the dilemma to decide
between pulling the lever of the slot machine with
the currently highest expected reward or exploring
a different machine to gain more information. The
gambler makes this decision following a policy (i.e.
an algorithm). As a metric for evaluating a policy,
the regret ρ after K rounds is defined as the differ-
ence between the total expected reward of an optimal
policy (i.e. consistently pulling the most rewarding
arm) and the policy of interest:

ρ =

K∑
κ=1

r∗κ −
K∑

κ=1

rκ, (1)

where r∗k denotes the optimal and rk the actual ob-
tained reward in round k. More details on MAB
theory can be found in [2], [3] and [4].

2.2. Modeling a Radar Search Scenario as a MAB
Problem

This work applies the MAB model to a radar search
scenario. Concretely, we simulate a radar network
with one transmitter (Tx) and three receiver stations
(Rx). Expressed in MAB terminology, the Tx acts as
the player who, at each round, has to ”pull a lever” in
the sense of selecting one steering position p(k) out
of a set of predefined beam positions P . We assume
that the Tx, as an electronically steered array, can
switch almost instantly between beam positions in a
negligible amount of time compared to the duration
of each round of 0.1 seconds. Therefore, there are no
restrictions with regards to the order of chosen posi-
tions p(k), p(k+1), . . .: each position p(k) at round
k can technically be followed in round k + 1 by any
other position p(k + 1) ∈ P . After having selected
a beam position, the player receives a reward rk for
this round. In our implementation of the MAB prob-
lem, rk is either the overall sum of object detections
that the three Rx deliver or the number of uniquely
detected objects. If, for instance, either n detections
or n newly detected objects are registered at round
k, the Tx updates its knowledge by increasing the
rating of the chosen Tx beam position p(k) by n. In
order to evaluate the regret ρ, the optimal reward
r∗k is also calculated at each round in the simula-
tion. r∗k corresponds to either the number of detec-
tions or unique objects n∗ that an omniscient player
could have achieved if he had known the trajectories
of the targets in advance and hence had chosen the
beam position accordingly. This optimal behavior
can, naturally, not be achieved by any bandit with
limited knowledge. ρ, however, is a useful metric for
comparing different MAB algorithms. The smaller
ρ, the closer the accumulated obtained reward to the
reward obtained under hindsight knowledge, hence
the better the performance of the algorithm.

Many different MAB strategies and algorithms ex-
ist with varying complexity, game constellations and
assumptions. This work investigates the feasibil-
ity of modeling a radar search scenario as a MAB
problem. We therefore keep the focus on standard,
simple algorithms for addressing the MAB prob-
lem. Concretely, we compare different implementa-
tions of greedily behaving algorithms. Greedy al-
gorithms select the best rated lever (based on pre-
viously collected rewards) in the exploitation phase
and select a lever randomly (in our case out of a
uniform distribution) in the exploration phase, cf.
[2]. The proportions of time in which either the
exploitation or the exploration phase is active de-
pends on the parameterization of the algorithms.
Specifically, we implement a so-called Epsilon-greedy
and an Epsilon-decay algorithm. The Epsilon-greedy
algorithm is in exploitation mode during 1 − ε of
the rounds and in exploration mode for a propor-
tion of ε. In the Epsilon-decay algorithm, the value
of ε decreases in time. Thus, the player acts ex-



ploratory at the start and increasingly exploitative
as the game progresses. Pseudo-code descriptions of
both simple algorithms are given in the following.
Epsi lon - greedy algor i thm

p = random ( ) % from U[0,1)

i f p < ε
pu l l random act i on

e l s e
pu l l bes t rated arm

Epsi lon - decay a lgor i thm
p = random ( ) % from U[0,1)

i f p < ε
pu l l random act i on
ε = ε * decay_factor ( time )

e l s e
pu l l bes t rated arm

U denotes the uniform distribution. In our imple-
mentation of the Epsilon-greedy algorithm, we start
with ε = 1 at k = 0 and update the epsilon at each
round with ε = 1

1+k/10 , where k denotes the round
being played.

The arrangement of the beams available to the MAB
player is depicted in Figure 1. The fixed left-to-right
pattern search fence used for comparison selects con-
secutive beams, moving row-wise from the upper left
one to the lower right one.

2.3. Simulated Scenario

This paper considers a radar network with one Tx
and three Rx being between approximately 24 km
and 34 km apart from the Tx. Note that in this
simulation, we model a Single-Player MAB problem,
therefore any configuration using a single Tx would
be suitable, including the monostatic and bistatic
case with a single Rx. Figure 2 shows the sensor lo-
cations used for this simulation. All apertures have
a fixed position in an Earth-centered, Earth-fixed
(ECEF) frame that is configured according to the
WGS84 conventions. The implementation is based
on the Orekit space dynamics library [5] to com-
pute orbital dynamics and coordinate transforma-
tions. All antennas are tilted 30 degrees northwards
with respect to the local zenith of the station.

The simulation uses publicly available data from [6]
to create realistic target trajectories from all known
two-line element sets (TLE). The trajectories are
filtered to contain only objects up to an altitude
of 3000 km. Furthermore, the scenario begins on
Feb. 22nd 2022 at 10:25 am and ends 4 minutes
later, while any beam chosen by the MAB is active
for 0.1 seconds. The Rx schedule beams indepen-
dently from each other in order to completely cover
any active Tx beam. For simplicity, a detection is
declared if an object is caught in a Tx and Rx beam

simultaneously. Since the MABs act randomly dur-
ing the exploration phase, four Monte Carlo runs of
the simulation are averaged for assessing their per-
formance. Figure 3 illustrates the trajectories of the
objects crossing the field of view of the Tx.

3. SIMULATION RESULTS

In order to evaluate the performance of the imple-
mented MAB algorithms, we firstly define the re-
ward as the overall sum of object detections, inde-
pendent of how many different objects (in the sense
of unique object identifiers) have been detected. Fig-
ure 6 shows a comparison of two different bandit al-
gorithms with the left-to-right search fence and ad-
ditionally with a policy selecting beams randomly.
The sum of rewards (in the sense of detections), av-
eraged over 4 total simulations, are plotted over the
rounds played.

Clearly, neither the bandit algorithms nor the left-to-
right or total-random schemes collect maximum re-
wards as they all act under limited knowledge. How-
ever, all bandit algorithms collect more detections
than the left-to-right scan or the random policy. Re-
garding the total reward at the end of the simulation,
the Epsilon-greedy algorithm with ε = 0.2 performs
best, collecting 1280/3189 ≈ 40.14 % of the detec-
tions. Next is the Epsilon-decay algorithm collecting
approximately 37.28 % of the overall reward. The
Epsilon-greedy algorithm with ε = 0.4 achieves ap-
proximately 24.24 % of the maximum detections and
the Epsilon-greedy algorithm with ε = 0.9 detects
25.24 %. The left-to-right search fence and the ran-
dom policy detect 26.32 % of all possible detections.

Figures 4 and 5 show the trajectories of the objects
passing the Tx beams. The beams are colored with
respect to the normalized number of detections col-
lected in each beam at the end of the simulation. The
normalization is made on the respective maximum
of the number of detections. Figure 4 shows the dis-
tribution of the maximum reward. This resembles
the knowledge an omniscient MAB would accumu-
late during a game. In comparison, Figure 5 shows
the knowledge of the bandit with the Epsilon-greedy
algorithm with ε = 0.2 at the end of a simulation and
averaged over four simulations. Evaluating Figure 5
reveals that the bandit algorithm correctly identifies
a frequented beam (in the 3rd row, second bin from
the left) and uses it to generate a high amount of
detections during the exploitation phase. However,
it does not identify all opportunities to collect many
detections. Since it greedily exploits its knowledge,
it does not diversify and fails to uncover the possi-
bility of collecting detections through sampling e.g.
the top right beams.

In addition, considering Figure 6, we can see that
after approximately 2000 played rounds, the slope



Figure 1. Beam positions as seen from the Tx in Tx antenna coordinates (u, v).

Figure 2. Radar network configuration with one Tx
(red) and three Rx (blue).

of the available maximum reward increases, indicat-
ing that there is a new optimal beam to choose.
The Epsilon-greedy bandit, however, is designed such
that it sticks to its most promising beam (in that
case, the third bin from left, first row, see Figure 5)
for on average 80 % of the rounds as the simula-
tion advances. In other words, the bandit algorithm
gets stuck in a local maximum if the global maxi-
mum becomes apparent when the game has already
progressed and the knowledge the player collects in
its exploration phases cannot outweigh the knowl-
edge basis of the exploitation phase. Consequently,
the exploitation strategy of these simple bandits does
not match the underlying time variant distribution
of reward.

So far, we based our comparisons on the total num-
ber of detections. In other words, the reward that
the MAB uses for building its knowledge is based on
detections and it ignores the uniqueness of detected
objects. One single object may, for instance, gener-
ate a lot of hits when it passes comparably slowly
through one beam. The bandit would, in that case,
increase the rating of this beam (and, hence, choose
it more often in future rounds), but not necessarily

be able to detect yet unseen objects.

In order to be able to judge the feasibility of bandit
algorithms in radar search scenarios, we further com-
pare the uniqueness of the detected objects, i.e. how
many different objects are registered by following the
MAB algorithms.

Figure 7 shows that all bandit algorithms detect
fewer unique objects than the left-to-right scheme
of activating beams. This clearly shows how op-
timizing for detections comes at a significant cost.
The more effort the MAB spends in the exploita-
tion phase (which is on average 80 % of the rounds
for the Epsilon-greedy algorithm with ε = 0.2 and
exponentially grows as the game progresses for the
Epsilon-decay algorithm), the fewer different objects
are detected. This of course is due to the fact that
the metric on which the MAB bases its knowledge is
purely detection-based. Detections of new unknown
objects are not directly rewarded; only the accumu-
lation of detections brings benefits to the MAB.

The scenario is designed such that the left-to-right
scheme is difficult to beat by default because it scans
the beams fast enough so that few objects can cross
the beam pattern from north to south without be-
ing caught by at least one beam. That way, it
is highly probable that most objects are detected
by the left-to-right beam activation pattern at least
once, unless they pass by at the very edges of the
search space. However, the bandit algorithms, espe-
cially the Epsilon-decay algorithm, stick to promising
beams by design; thus, they have a higher probability
of missing new and unknown objects.

Figure 8 shows that by changing the metric for gen-
erating rewards from the sum of detections to the
uniqueness of detected objects, the Epsilon-greedy
algorithm with ε = 0.2 is able to generate more de-
tections than in the configuration presented in Fig-
ure 6. This is due to the fact that it now converges
in its exploitation phase to a beam in the upper right
corner, which is populated by many different objects
and therefore also generates many detections when
selected, cf. Figure 9.



Figure 3. Beam positions as in Figure 1 with the trajectories of crossing objects.

Figure 4. Normalized heatmap of the maximum possible detections for each beam. The blue lines mark the
trajectories of passing objects.

Figure 5. Normalized heatmap of the accumulated detections for each beam of the Epsilon-greedy bandit,
ε = 0.2, if rewarded based on number of detections. The blue lines mark the trajectories of passing objects, the
same as in Figure 4.



Figure 6. Comparison of the performance of different
search strategies, measured on the basis of detections
(averaged over 4 Monte Carlo runs).

Figure 7. Comparison of the performance of different
search strategies, measured on the basis of unique
object IDs (averaged over 4 Monte Carlo runs).

Figure 8. Comparison of the performance if addi-
tionally the reward metric is based on uniqueness of
detected objects (averaged over 4 Monte Carlo runs).

Therefore, we can identify one possible advantage of
the Epsilon-greedy algorithm with ε = 0.2 if it is re-
warded based on the diversity of detected objects:
It identifies a beam with a local maximum of the
diversity of objects and generates more detections
than the left-to-right beam selection pattern. To il-
lustrate this assumption, we build the quotient q(k)
as the number of overall detections over number of
discovered unique objects:

q(k) =

∑k
κ=1 rκ,detections∑t
κ=1 rκ,uniqueness

. (2)

The distribution of q is shown in Figure 10. As
can be seen, the Epsilon-greedy MAB algorithm with
ε = 0.2 generates more detections per detected ob-
ject than the left-to-right scheme consistently over
the duration of the simulation. However, as men-
tioned before, this comes at the price of missing some
objects that could be detected by spending the avail-
able resources on a different beam activation pattern.

4. CONCLUSION

In general, the search task of a radar network can be
expressed in MAB terminology. The corresponding
player is, in our case, the single Tx, having to choose
one beam (“lever”) at each round to activate (“play”)
and therefore generate detections from objects cross-
ing its field of view. We implement multiple MAB al-
gorithms of type Epsilon-greedy and Epsilon-decay,
which act exploratory during a certain part of the
rounds and exploitative (in the sense of choosing the
presumed most-rewarding beam) for the rest of the
time. If we reward the player based on accumu-
lated detections, the implemented bandit algorithms
quickly identify the most rewarding beams in terms
of the number of overall detections. However, there
is one drawback to this strategy: Rewarding only de-
tections lets the MAB be oblivious of the usefulness
of detecting new objects.

If the rewards are based on the diversity of detected
objects, we can identify an advantage of the Epsilon-
greedy algorithm with a short exploration phase of
ε = 0.2. It quickly identifies a beam with diverse
objects and generates more detections from it as it
chooses this beam more often than a left-to-right sys-
tematic beam activation scheme. This can be advan-
tageous for a reliable initialization of object tracks.

One general drawback of simple bandit algorithms
becomes apparent if highly rewarding arms appear
when the game has already progressed, as it is the
case when targets enter after multiple rounds have
already been played. The underlying optimal beam
activation pattern is, in this case, time dependent.
The player might get stuck in a local maximum, with
an even more drastic effect for algorithms with an de-
caying exploration phase like the Epsilon-decay algo-
rithm.



Figure 9. Normalized heatmap of the accumulated detections for each beam of the Epsilon-greedy bandit,
ε = 0.2, if rewarded based on diversity of discovered objects.

Figure 10. Quotient q as defined in Equation (2).

In conclusion, a MAB algorithm, if properly de-
signed, is advantageous to detect initially highly pop-
ulated beams from a fixed grid of beams and gener-
ates more detections than a left-to-right beam ac-
tivation pattern or a random policy. This mimics
a Track-While-Scan behavior of a radar and should
lead to a more accurate track initialization and a re-
duced tracking error for the discovered space objects.

However, if the underlying distribution of detectable
objects is heavily time varying, relying on greedy
agents does not suffice. Instead of a purely greedy
exploitation of the available knowledge, a more com-
plex version should be implemented that broadens
the exploitation pattern. In addition, the MAB could
include a-priori knowledge or learn to forget targets
and, therefore, more quickly adapt to a changing sce-
nario.

The knowledge of the MAB could be especially useful
if the available sensor resources are reduced because
the radar has to serve other functions like tracking.
Then, a MAB has the potential to outperform the
systematic left-to-right pattern. Similarly, the MAB
could be applied to a situation in which the area of
interest for the search is too large to be served sys-
tematically. In that situation, the left-to-right pat-

tern would also lack resources and presumably miss
more objects.

Another area where MAB have potential useful ap-
plications is if multiple Tx have to search some vol-
ume in space collaboratively. These multi-player
MAB could be designed such that the MAB ben-
efit from each other’s knowledge and automatically
coordinate their beams to a rewarding configuration.
Ideally, a MAB algorithm would converge to a known
reliable activation pattern for the case of fully avail-
able resources, but smartly exploits its knowledge in
case of reduced resources.
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