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ABSTRACT

Space Surveillance and Tracking is central to the con-
tinuation of near Earth operations. Relying mainly on
operator-specific and surveillance data, catalog mainte-
nance integrity is highly sensitive to unknown maneuvers.
Within this work we propose a method to limit the impact
of non-cooperative targets on catalog maintenance and
build-up activities based on state-of-the-art multi-target
filtering and efficient control metrics.

Keywords: Multi target tracking, Maneuver detection,
control distance metric, data association.

1. INTRODUCTION

The democratization of space access increases the de-
mand for high quality Space Situational Awareness
(SSA) services. Mission analysis and collision risk as-
sessment necessitate accurate orbital population knowl-
edge, typically stored in the form of space object catalogs
[13]. To comply with some minimum requirements in or-
bital accuracy and timeliness, a vast surveillance network
needs to be paired with capable sensor tasking and data
processing algorithms. At the core of such algorithms
is the observation-correlation process, through which the
state of known (or newly detected) objects is updated
based on incoming measurements of unknown origin.

The vastness of the orbital space and the high develop-
ment and operating costs of sensor infrastructure result
in relatively long re-observation times, adversely affect-
ing the quality of tracking data. In addition, and due to
Earth orbit being a highly demanded strategical asset, the
data association problem is further complicated by non-
cooperative maneuverable spacecraft. Automated means
to identify and estimate unknown maneuvers is a strong
requirement for capable Space Surveillance and Tracking
(SST) cataloguing systems. In addition, an ideal SST al-
gorithm should be able to properly identify new launches,

object re-entries, break-up events and spacecraft maneu-
vers.

A statistical framework that naturally allows for a time-
varying population cardinality was presented by Mahler
[8], under the concept of Finite Set Statistics (FISST).
This framework deals with the definition of Random Fi-
nite Sets (RFS), which can be thought of as a random
variable over all finite subsets of the state space, e.g., a
set of random state vectors where the number of vectors
is also random. The concept of RFS soon attracted the
Multiple-Target Tracking (MTT) community, resulting in
the development of novel multi-object filters, such as the
Probability Hypothesis Density (PHD) [9] and General-
ized Labeled Multi-Bernoulli (GLMB) [15]. The latter
has seen a broad acceptance within the tracking commu-
nity as it provides a full history of object tracks via a
closed form solution (conjugate prior) in the presence of
undetected objects, false observations, and object birth.
Thereafter, under any possible data association scenario,
the multi-object state will always be (backward) traceable
and take the form of a GLMB distribution.

Implementations of the GLMB filter for maneuvering tar-
gets, or more generally, Jump Markov Systems (JMS),
are already available in the literature [11, 12]. Common
approximations for unknown maneuver dynamics con-
sider the use of equivalent process noise [5], or adaptive
model estimates based on optimal control [6]. While the
former provides a computationally efficient approxima-
tion to unknown dynamics, its applicability to the space
environment is limited due to the highly non-linear na-
ture of orbital motion, e.g. changes to apoapsis altitude
are more efficient near the periapsis. Approaches based
on optimal control, on the contrary, present high com-
putational demands that confront with the combinatory
nature of MTT. Within this work, we propose to bridge
the gap between these two alternatives through the use of
computationally efficient control distance metrics [3, 4].
Unknown maneuvers will then be characterized in terms
of control metrics that rely on approximate dynamical
models, which are still capable of capturing the main
physics underlying orbital motion. A simulated space
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surveillance scenario is used to evaluate the performance
of the proposed multiple maneuvering target tracking fil-
ter implementation, with a particular focus on data as-
sociation ambiguity and post-maneuver state estimation
consistency.

2. GLMB FILTER FOR ACTIVE SPACECRAFT

The multi-target state of a given population of space ob-
jects, referred to a certain reference epoch, can be de-
noted as

X = {x1 x2 ... xn} , x = {x m ℓ} , (1)

with the single-target state x ∈ Rd being defined on the
Cartesian position r̄ and velocity v̄ spaces, m ∈ M being
the dynamical mode in effect and ℓ ∈ L0:k ≡ L0:k−1∪Lk

a distinctive label used to differentiate each individual
target. Within this work, we adopt Mahler’s Finite Set
Statistics [8] and model the multi-object state X as a
Random Finite Set, this is, a randomly sized collection
of (random) state vectors x. In what follows, the func-
tion F(S) is used to denote all the finite subsets of some
space S. Note that for the labels of a multi-target state
X to be unique, the cardinality |X| = n of the state and
its set of labels, denoted as L(X), need to coincide. The
unique label indicator is thus defined as

∆(X) = δ|X| [|L(X)|] , (2)

where δx [y] is the Kronecker delta, thus returning a value
of 1 if and only if x = y and 0 otherwise. Let us also
define the indicator function as

1X(x) =


1 if x ∈ X,

0 otherwise.
(3)

Given a density function f defined over the single object
state, it is common to express the multi-object exponen-
tial as

[f ]X =
∏
x∈X

f(x), (4)

with [f ]∅ = 1 by convention. In the following, we adopt
the standard inner product notation

⟨f, g⟩ =
∫
f(x)g(x)dx, (5)

where f and g are two real functions. Provided a set si-
multaneous observations Z = {z1, z2, ..., znz}, let θ :
L → {0, 1, ..., |Z|} indicate a one-to-one correspondence
between target ℓ and an individual observation θ(ℓ) ∈
{1, ..., |Z|} or a missed detection θ(ℓ) = 0.

Vo et al. [15] propose to model the multi-target state
at time tk as a Generalized Labeled Multi Bernoulli
(GLMB) distribution

πk(X) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

ω
(I,ξ)
k δI(L(X))

[
p
(ξ)
k

]X
,

(6)

where ξ ∈ Ξ represents a hypothesis for the history of
associations ξ = θ0:k, hypothesis weights ω(I,ξ)

k are non-
negative and satisfy ∑

(I,ξ)∈F(L)×Ξ

ω
(I,ξ)
k = 1, (7)

and every p
(ξ)
k is a valid Probability Density Function

(PDF) defined over the single-target state space x. The
main advantage of this type of multi-object distribution
is that it remains unchanged in the event of target birth,
death, missed detections and clutter after the measure-
ment update, yet still allowing for the recovery of indi-
vidual target trajectories via the unique labels.

2.1. Filter Equations

Hereafter, we propose a definition of the GLMB filter
tailored to the special characteristics of non-cooperative
maneuvering targets in a space surveillance environment.
Different GLMB filters for Jump Markov Systems can
be found in the literature: Ravago et al. [12] propose
to hypothesize over the event of a maneuver, performing
maneuver detection via adaptive process noise and esti-
mating the post-maneuver state by means of optimiza-
tion methods; alternatively, Punchihewa [11] considers
the dynamical mode to be part of the state space, thus re-
sulting in a multi-modal single target density. Note that
by considering maneuver detection to be part of the hy-
pothesis generation process entails and additional layer
of complexity when solving the assignment problem, this
being the main reason why we adopt Punchihewa’s for-
mulation in the following. Accordingly, mode detection
is implicit in the filtering process and can be recovered
by evaluating the probability of a mode being active at
certain time stamp, relieving the hypothesis generation
from maneuver detection, thereby reduce the maximum
number of hypothesis required to capture the true data
association.

The joint prediction and update equation of the GLMB
filter is provided in Eq. (8), where I ∈ F(L) repre-
sents the prior label set, ξ ∈ Ξ is the history of data
association hypotheses up to tk, and I+ ∈ F(L+)
and θ+ ∈ Θ+(I+) indicate the filtered label set and
association maps at the current filtering epoch tk+1.
The main filtering equation, Eq. (8) is complemented by
expressions in Eqs. (9-17). Therein, the probability that
target {x+, ℓ} is alive at time tk+1 following dynamical
mode m is denoted by P (m)

S (x+, ℓ). rB,+(ℓ) represents
the probability of a target being born. P

(m)
D (x+, ℓ)

is used to express the probability that a given sensor
is able to detect target {x+, ℓ} provided it is located
within the sensor’s Field of View (FOV), and is referred
to as the probability of detection. Clutter measure-
ments are modeled by the clutter intensity function
κ(zj), effectively used to introduce false detections.



π(X+|Z+) ∝∆(X+)
∑

I,ξ,I+,θ+

ω(I,ξ)ω
(I,ξ,I+,θ+)
Z+

δI+ [L(X+)]
[
p
(ξ,θ+)
Z+

]X+

(8)

ω
(I,ξ,I+,θ+)
Z+

∝
[
1− P̄

(ξ)
S

]I\I+ [
P̄

(ξ)
S

]I∩I+

[1− rB,+]
B+\I+ [rB,+]

B+∩I+
[
ψ̄
(ξ,θ+)
Z+

]
(9)

P̄
(ξ)
S (ℓ) =

∑
m∈M

P̄
(ξ)
S (m, ℓ) (10)

P̄
(ξ)
S (m, ℓ) =

〈
p(ξ)(·,m, ℓ), P (m)

S (·, ℓ)
〉

(11)

ψ̄
(ξ,θ+)
Z+

(ℓ) =
∑

m+∈M
ψ̄
(ξ,θ+)
Z+

(m+, ℓ) (12)

ψ̄
(ξ,θ+)
Z+

(m+, ℓ) =
〈
p̄
(ξ)
+ (·,m+, ℓ), ψ

(ξ,θ+)
Z+

(·,m+, ℓ)
〉

(13)

p̄
(ξ)
+ (x+,m+, ℓ) =1B+(ℓ)p

(m+)
B (x, ℓ)+ (14)

1L(ℓ)

∑
m∈M ϑ(m+|m)

〈
P

(m)
S (·, ℓ)f (m+)

+ (x+|·), p(ξ)(·,m, ℓ)
〉

P̄
(ξ)
S (ℓ)

(15)

p
(ξ,θ+)
Z+

(x+,m+, ℓ) =
p̄
(ξ)
+ (x+,m+, ℓ)ψ

(θ+(ℓ))
Z+

(x+,m+, ℓ)

ψ̄
(ξ,θ+)
Z+

(m+, ℓ)
(16)

ψ
(j)
Z{1:|Z|}

(x+,m+, ℓ) =


P

(m+)

D (x+,ℓ)g(m+)(zj |x+,ℓ)

κ(zj)+δ0[κ(zj)]
if j ∈ 1, ..., |Z|

1− P
(m+)
D (x+, ℓ) if j = 0

(17)

The likelihood that observation z corresponds to state x
under dynamical mode m is represented by g(m)(z|x, ℓ),
and corresponds to the usual measurement likelihood.
ϑ(m+|m) indicates the probability that mode m+ is ac-
tive in the time interval [tk, tk+1] conditioned on the fact
that mode m was active during [tk−1, tk].

The transition density f (m+)
+ (x+|x), which satisfies the

Chapman-Kolmogorov equation, is defined for the ballis-
tic m = 0 and maneuver m = 1 modes as

f
(m+)
+ (x+|x) =


f (0)(x+|x) if m+ = 0,

ϕ(x+, x)

ϕ̄(x)
if m+ = 1,

(18)

where f (0)(x+|x) corresponds to a natural dynamical
model in the near Earth environment and

ϕ(x+, x) =


1 if P (x+, x) ≤ Padm,

0 if P (x+, x) > Padm,
(19)

ϕ̄(x) =

∫
ϕ(x+, x)dx+, (20)

i.e. the maneuver transition density is modeled as a uni-
form distribution over the reachable set. This set is de-
fined in terms of some control measure P (x+, x), fol-
lowing the approach proposed by Holzinger et al. [6],

and serves the purpose of evaluating the control effort re-
quired to transfer between a prior x and a posterior x+
orbital state. To ensure the transition is a proper density,
it is required to include some normalization constant ϕ̄(x)
that corresponds to the hypervolume of the reachable set,
the latter being defined by the set of states whose con-
trol distance metric to some prior orbit falls below some
admissible threshold Padm. Note the proposed dynamics
for the maneuver mode simply depends on a single pa-
rameter with a strong physical meaning: the maximum
maneuvering capability of the target. Thus, the filter al-
lows to consistently represent the state PDF in the ab-
sence of additional maneuver data, sequentially adapting
the uncertainty as more observations are received.

3. FILTER IMPLEMENTATION

As discussed in [14] the GLMB is an exact filter, yet a
complete implementation is often intractable as the num-
ber of data association hypotheses to be considered grows
unbounded. To mitigate this, it is common practice to
truncate hypotheses based on their relative weights and
also to set an upper bound nH on the number of parallel
hypotheses to be considered. Note the latter plays a cru-
cial role on the accuracy of the filter since such number
needs to be sufficiently large to keep the true association
hypothesis alive at all times. In this regard, one can make
use of Murty’s algorithm [10] to solve the ranked assign-
ment problem, i.e. determine a sorted list of measurement



to object association hypotheses. For complex cases with
high dimensionality, alternative methods based on Gibbs
sampling can be used to find an approximate solution to
the ranked assignment problem, though the devised test
case consider a moderate number of targets and thus the
current implementation uses Murty’s algorithm.

Tractability not only concerns multi-object but also sin-
gle target state space filtering, in particular for any system
undergoing non-linear transformations. There exists mul-
tiple approaches to perform filtering on non-linear sys-
tems, which are based on different assumptions. The
most general techniques, such as Particle Filtering (PF)
and Markov Chain Monte Carlo (MCMC), express prob-
ability densities in sampled form, thus being able to ap-
proximate any type of distribution provided the number
of samples is large enough. Note, however, that for high
dimensional systems the number of samples required to
ensure certain level of similarity with the true distribu-
tion grows exponentially with the state dimension, so this
type of methods rapidly become intractable. To overcome
these limitations, there are a number of methods that as-
sume the posterior to pertain to certain family of distri-
butions, typically Gaussian, and usually match the first
and second order moments: some examples are the Ex-
tended Kalman Filter (EKF) and the Unscented Kalman
Filter (UKF). Still, the accuracy of this techniques highly
depends on the divergence of the true density from the
assumed form. There exists some methods aimed at com-
bining the computational efficiency of assumed distribu-
tions and the flexibility of sampling-based approaches,
most of which rely on mixture distributions. In the Gaus-
sian Sum Filter (GSF) [7], for instance, the PDF is mod-
eled as a sum of Gaussians, also known as Gaussian
Mixture Model (GMM), each with a support sufficiently
small so that the filtering process can be approximated
as linear. Thus, one can perform a Kalman update on
each GMM component to obtain a tractable approxima-
tion for the posterior density. One of the key aspects of
these type of approaches is the need to detect whenever a
component deviates from its assumed shape under certain
non-linear transformation, and split it accordingly to min-
imize the divergence. The Adaptive Entropy-based Infor-
mation Synthesis (AEGIS) method [1] provides a solu-
tion to this particular problem by monitoring the differen-
tial entropy during uncertainty propagation and splitting
individual components whenever the linearization error,
as indicated by an increase in entropy, transcends a given
threshold.

For space objects tracking applications, both the mea-
surement and dynamical models typically shown strong
non-linearities, especially considering the long revisit
times that characterize surveillance scenarios. In addi-
tion, the definition of the maneuver dynamics given in
the previous section imply a support of a considerable
size, whose uncertainty propagation would require some
type of splitting. Thus, we propose to use a GSF with
AEGIS uncertainty propagation to combine the benefit of
sampled densities for non-linear mappings and the closed
form inference enabled by linear Gaussian assumptions
in the reduced support components.

3.1. Maneuver dynamics

In the absence of prior information regarding certain ma-
neuver, a common hypothesis is to assume fuel or energy
optimality. This is a reasonable approach when the post-
maneuver state of the system is well-defined, but can lead
to significant biases for partially observed systems. To
overcome this limitation, the maneuver transition density
can be modeled as a uniform prior (see Eqs.(18-20)) over
some reachable set, i.e. the space accessible to the tar-
get conditioned on an expected control performance. In
line with the filtering scheme proposed in the previous
section, it is possible to approximate such uniform distri-
bution by a GMM [2], whose individual components can
then be propagated via AEGIS and updated using some
Kalman-type approach. Recalling the accuracy of a linear
(Kalman) update is affected by the validity of the linear
assumption within the support of the Gaussian, both in
the state and measurement spaces, the covariance of each
individual component shall be sufficiently small. These
requirements are mostly related to the non-linear mea-
surement model, since the AEGIS propagator is capable
of automatically splitting those components whose dis-
tribution deviates from Gaussian. In any case, these re-
quirements can hinder the tractability of the method since
the required number of components can be in the order of
tens of thousands for every individual target.

Instantiating only those components that are in the sup-
port of a hypothesized observation can significantly re-
duce the computational and storage requirements, while
still allowing to characterizing the posterior distribution.
Accordingly, we propose the following procedure to ap-
proximate the single object density in the event of a ma-
neuver:

1. The density of a target is expressed as

p(x) ≈
nC∑
i=1

wiN (x;µi,Σi), (21)

being wi the weight associated to Gaussian com-
ponent with mean µi and covariance Σi. An as-
sumption regarding the control distance metric is
that the covariance shall be sufficiently small so that
the distance between some point and a Gaussian
component can be approximated by the determin-
istic distance to the component mean. Note other-
wise the control measure would follow some a priori
unknown distribution, adding an additional layer of
complexity.

2. The reachable set

R(x+;x) = {x+ : P (x+, x) ≤ Padm} (22)

is approximated by the polytope

R(x+;x) ≈ R′(x+; x̂, br, nr), (23)

where the scalars br and directions nr satisfy

P (x̂+ brnr, x) = Padm. (24)



Recall that the state density is expressed as a Gaus-
sian mixture, and hence the reachable set takes the
form of a weighted mixture

R(x+;x) =

nC⋃
i=1

R(x+;µi) (25)

with a weight wi assigned to each individual set
R(x+;µi).

3. As discussed earlier, the reachable set is only used
to determine the maneuver transition density, since
the post-maneuver state distribution is directly con-
ditioned on certain measurement. This reduced set,
termed the admissible control region, is formally ex-
pressed as

C(x+;x, z) = R(x+;x) ∩ supp(g(z|x+)), (26)

and can be approximated by some polytope

C(x+;x, z) ≈ C′(x+;x, z, x
⋆
+, bc, nc). (27)

Therein, the centroid of the admissible region x⋆+ is
defined by

x⋆+ =

{
x+ : argmin

x+

[P (x+, x)] , g(z|x+) ≥ pα

}
,

(28)
which is used to find a set of search directions nc
and magnitudes bc that satisfy the condition

P (x⋆+ + bcnc, x) = Padm (29)

or
g(z|x⋆+ + bcnc) = pα, (30)

whichever results in a lower bc.

4. DeMars et al. [2] proposed a method to approxi-
mate a uniform distribution with a GMM, provid-
ing optimal covariance values as a function of the
grid size. Each individual component is assigned a
weight that is proportional to the volume it repre-
sents with regard to the uniform distribution. Due to
the adoption of a multi-modal distribution for p(x),
and analogous to the reachable set, the admissible
control region in the previous step is also given by
a mixture. The weight associated to each individ-
ual Gaussian component that approximate this set is
computed as

w+
j =

nC∑
i=1

√
2πddet(Σ+

j )∫
R′(x+, µi)dx+

wiϕ(µ
+
j , µi), (31)

and the prior post-maneuver state distribution reads

p(x+) =

nC+∑
j=1

w+
j N (x+;µ

+
j ,Σ

+
j ). (32)

Therefore, each component is assigned a weight that
is proportional to the volumetric ratio between its

representative space
√

2πddet(Σ+
j ) and the individ-

ual reachable set
∫
R′(x+, µi)dx+, multiplied by

the weight associated to said prior component wi.

4. NUMERICAL STUDY

4.1. Test case definition

Multiple target tracking filters are specifically tailored to
operate with high ambiguity levels, for instance in clut-
tered regions with closely spaced targets. One of such
scenarios is typical in the Geostationary ring, where op-
erational satellites are assigned a tight longitude slot. Sta-
tion keeping maneuvers are thus frequently performed in
order to comply with such requirement, and oftentimes
satellites can appear close in the observation space. To
mimic this environment, we have developed a test case
involving 10 Geostationary spacecraft, wherein 3 ob-
jects perform impulsive maneuvers to approach another
three targets. These two burns, featuring a ∆V1,2 ∼
U(0.5, 1.0) m/s along a random direction, are executed
during two separate time windows tm,1 ∈ [11, 14] and
tm,2 ∈ [17, 20] elapsed hours, which correspond to the
first (daytime) blackout interval for an optical survey. Af-
ter the two-impulse maneuver, the chaser satellites are
placed at a distance ∆r ∼ U(200, 1000) m from their
corresponding targets. Figure 1 shows the evolution of
the semi-major axis as a function of the mean longitude
for one of the Monte Carlo trials, wherein one can appre-
ciate the small relative distance between the chasers and
targets. Measurements are modeled as optical attributa-
bles obtained from a single telescope every 4 hours (dur-
ing nighttime only), with an angular accuracy σα,δ = 1
arcsec and σα̇,δ̇ = 0.1 arcsec/s. The total propagation
time is 5 days to allow for the post-maneuver state es-
timates to converge to reasonable uncertainty levels for,
e.g. collision screening purposes. Figure 2 depicts the
observation and maneuver sequence for a representative
Monte Carlo trial, where it is shown that the filter receives
three observations per night for each object. The natural
dynamical model employed for the simulation considers
the Sun and Moon as third bodies, a cannonball model
for the solar radiation pressure and a non-spherical Earth
model of degree and order 8.

Implemented in C++, the tested filter presents the follow-
ing configuration:

• Probability of detection P (m)
D (x, ℓ) = 1− 10−3.

• Probability of survival P (m)
S (x, ℓ) = 1− 10−7.

• Probability of maneuver ϑ(m+|m) = 0.01.

• No birth, clutter or missed detections are considered
to focus on the impact of the maneuvers themselves.

• Minimum relative hypothesis weight ωmin = 10−7.

• Maximum number of considered hypotheses nH =
50.

• Measurement gate for data association dG = 6.0 in
the Mahalanobis distance.



• Individual component covariances are inflated with
a process noise σa = 10−8 m/s2 during propaga-
tion, thus affecting AEGIS splitting.

• We used the efficient (impulsive) control metric
derived in 3, with a maximum expected control
Padm = 5m/s.

• Single target inference is performed using an Un-
scented Kalman Filter scheme for each component
mixture.

4.2. Results and discussion

Evaluation of the filter is mainly focused on the data asso-
ciation performance of the proposed GLMB filter, though
single target consistency is also evaluated. The code
failed at retrieving test case IV results, presumably due
to corrupted data or incompatibilities between the GM
single-target density and the HDF5 format used to ex-
tract the filter output, but there are still 9 Monte Carlo
trials from which to infer some statistics. Each individ-
ual test case run for 8.2 hours on average, parallelizing
the individual measurement to object computations us-
ing separate CPU threads. Note the main share of the
workload corresponds to control metric evaluations, i.e.
finding the reachable sets and the admissible control re-
gions, accounting for about ∼ 95% since these need to
be computed for each individual GM component. Thus,
efficient parallelization in this regard, e.g. using GPGPU
programming, is expected to significantly reduce the al-
gorithm runtimes.

Data association errors, considered as any type of incor-
rect individual observation to object mapping, are gath-
ered in Table 1 for the sequential output and top 5 sur-
viving hypotheses. Cross tagging is the main data asso-
ciation error type, though there are some missed detec-
tions as indicated by odd error counts. Figure 3 presents
the evolution of the instantaneous sequential data associ-
ation error counts for the different test cases considered.
Therein, one can see that the majority of these errors are
due to a cross correlation between two targets, in fact,

the mistaken targets are two chasers whose trajectories
intersect. Note the developed algorithm is unable to dis-
tinguish these two targets since their reachable sets in-
tersect, and since the maneuver transition density is uni-
form, the two possible data association maps are equally
likely. Note one could artificially resolve this issue by
favouring optimal transfers, this is, giving higher credit
to lower control metric transfers. However, this poten-
tially results in a biased filter since the goal of each tar-
get’s maneuver is a priori unknown. Another source of
data association errors is found at the first post-maneuver
observation frame, where chasers and targets are likely
to be cross tagged due to their proximity. In any case,
it can be argued that the proposed filter is not able to re-
cover the true data association sequence for any of the test
cases considered, at least in the top 5 hypotheses. While
this holds true, one should recall the complexity of the

proposed test case, with several intersecting target trajec-
tories and unknown double burn maneuvers on the order
of 1-2m/s.

In fact, and as indicated by Figure 4, the algorithm main-
tains custody of the complete target population. This fig-
ure shows the evolution of the Optimal Sub-Pattern As-
signment metric, defined for a set of estimated X and ref-
erence X∗ targets and as in Eq. (4.2), being Γn the set of
all permutations {1, ..., n}, for n ∈ N and γ ∈ Γn a
sequence {γ(1), ..., γ(n)}. The distance dc(xi,x

∗
γ(i)) =

min
(
c, d(xi,x

∗
γ(i))

)
represents the minimum between a

cut-off c and a base distance d(·, ·). A common decision
in multi-target tracking is to use the Cartesian position
distance as d(·, ·), and so is done in this work, together
with a cutoff parameter c = 100 km and order p = 2.
Note the single target density is given by a GMM, and so
the distance is computed as a weighted sum across all the
different components. Seven cases present a maximum
OSPA below 20 km, and from the two remaining cases
one converges in a reasonable amount of time. Conver-
gence in the worst case is delayed until the fourth day, and
we attribute this to the reduced observability implied by
the use of a single surveillance sensor, typically present-
ing ambiguity in between the inclination and semi-major
axis / eccentricity.

D(X,X∗) =

 1

|X|

 min
γ∈Γ|X∗|

|X|∑
i=1

dc(xi,x
∗
γ(i)) + (|X∗| − |X|) · cp

 1
p

(33)

Besides the state estimation error in absolute terms,
somehow provided by the OSPA metric, it is of interest
to evaluate the single target filtering consistency. In doing
this, we propose to use the Scaled Normalized Estimation
Error Squared (SNEES)

SNEES =

nC∑
i=1

wi

d
(E[xi]−x∗i )TCov[xi]−1(E[xi]−x∗i ),

applied to a Gaussian mixture via a weighted sum. The
OSPA metric indicated a relatively high state estimation

error, on the order of tens of kilometers, but the consis-
tency metric shows there is no evidence to lower such er-
ror without biasing the filter, at least with no prior knowl-
edge on the maneuver characteristics. For the most part,
the SNEES of the maneuvering targets remains in the
vicinity of 1, which happens to be the optimal value, as
depicted in Figure 5. There are, however, three distin-
guishable peaks with a value exceeding 20, which corre-
spond to state estimates in the tail of the uniform maneu-
ver prior. This indicates certain level of inconsistency in
the filtered estimate, but the filter is still able to overcome



Figure 1. Semi-major axis vs mean longitude evolution for one of the Monte Carlo trials.

Figure 2. Measurement and maneuver sequence for one of the Monte Carlo trials.

this by sequentially pruning the mixture components that
are far from the true state, finally converging to a con-
sistent estimate. This suggests that care must be taken
when extracting the state in early post-maneuver epochs,
since the support of the density may present a complex
behavior. Still, since custody is maintained, an operator
could task a tracking-type sensor to resolve the ambiguity
caused by the detected maneuver, thus potentially resolv-
ing any data association conflict.

5. CONCLUSIONS

We have proposed a Generalized Labeled Multi-
Bernoulli filter to track uncooperative space objects. The
single target space is augmented with the dynamical
mode in effect during some propagation interval, with a
binary mode space given by the natural uncontrolled dy-
namics and a uniform transition density in the space as-
sumed accessible to the target. The latter is bounded by
some maximum expected control effort, whose control
magnitude should be in excess of the executed maneu-
vers in order to enhance the filter convergence and con-
sistency. As a result, data association is not conditioned
on the event of a maneuver, effectively reducing the num-
ber of hypothesis generated by the algorithm.

Our tractable implementation of the proposed scheme re-
lies on efficient control metrics, which make use of ap-
proximate dynamical models to reduce the computational

complexity. Single target densities are modeled in a mix-
ture form, as dictated by the mode-augmented state space.
We have noted that this results in an added complexity
as every individual component should be considered for
reachability computations, yet the filter is kept tractable
for a moderate number of targets and individual compo-
nents on the order of hundreds.

Though not able to infer the true data association se-
quence for the selected test case, the algorithm has proved
to maintain custody of the target population, showing ad-
equate levels of consistency in the state estimates. Fu-
ture work will explore the capabilities of the algorithm
in more demanding scenarios, such as continuous low-
thrust maneuvers in low Earth orbits, as well as improved
methods for approximating both the reachable set and ad-
missible control region.
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Figure 3. Data association error sequence for the different Monte Carlo trials.



Test Case I II III V VI VII VIII IX X
Sequential 27 22 4 36 20 19 28 24 27
Hypothesis I 25 25 2 30 29 24 26 25 26
Hypothesis II 26 26 - 32 28 4 27 26 24
Hypothesis III 27 24 - 28 28 - - 26 27
Hypothesis IV 4 - - 48 27 - - 27 27
Hypothesis V - - - 27 30 - - 28 -

Table 1. Data association errors for a total of 150 observations.

Figure 4. OSPA metric for the test cases considered.

Figure 5. SNEES evolution for the three maneuvering targets.
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