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ABSTRACT

The number of space objects orbiting the Earth is rapidly
increasing. An opportunity to detect and measure the po-
sition of space objects are passive optical staring systems,
e.g. our system called APPARILLO. While staring sys-
tems are capable of measuring highly accurate equatorial
coordinates of space objects via an astrometric calibra-
tion, they do not provide information on their altitude un-
less the space object is assumed to fly on a circular orbit.
In this work we discuss an approach in which the altitude
of a space object is measured via triangulation (simul-
taneous observation with two staring systems placed at
different positions on Earth). Based on theoretical calcu-
lations, we estimate that the triangulation with two star-
ing systems can provide the altitude of a typical space
object in a low Earth orbit with an accuracy as low as
200 m. This is two orders of magnitude better compared
to a simple circular orbit approximation that can be used
for a single staring system.

Keywords: Passive Optical Staring; Bi-Static Measure-
ment; Initial Space Debris Detection; Low Eath Orbit;
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1. INTRODUCTION

The number of space objects orbiting our Earth is ris-
ing rapidly. This leads to more and more frequent con-
vergences, which pose a potential thread for the two as
well as for other satellites. To ensure safety in space
for current and future missions, continuous monitoring
of the entire space is essential. Some common methods
are listed below.
Radar sensors [1] can scan space day and night, regard-
less of the weather and the lighting. A disadvantage of
such a system is the high cost involved in building and
operating it.
Satellite laser ranging systems [2] deliver extremely pre-
cise orbit information of individual satellites. However,
they need orbit information in advance, which is for ex-
ample provided by a radar system.
Passive optical staring systems offer another possibility

to provide this orbit information on a large scale. They
benefit form their low cost and their flexibility.
We are developing a solution for an accurate three-
dimensional passive optical tracking system for low
Earth orbit (LEO) objects, the APPARILLOs [3] (abbrev.
Autonomous Passive-Optical Staring of LEO Flying
Objects).
An APPARILLO, Fig. 1, is based on a sensitive camera

Figure 1. Single APPARILLO staring system located at
the DLR in Stuttgart.

that records images of the sky during twilight and night-
time periods. Secondary sensors like a weather sensor,
a light sensor and a GPS module complement the image
taking process. The whole system is controlled by a lo-
cal computer which runs the software OOOS [4] (Orbital
Objects Observation Software). This software controls
everything beginning from the evaluation of the obser-
vation condition, over the image acquisition, the image
analysis [5] up to the processed data upload.
Each system itself is highly modular, which offers great
flexibility in terms of applications and equipment. For ex-
ample, the lens can easily be switched to a longer/shorter
focal length to detect smaller/more targets, the camera
can be swapped out for another model specified for dif-
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ferent wavelengths or with greater resolution. That flex-
ibility not only makes it a versatile system that can be
adapted to the current needs, it also enables easy and in-
expensive repairs and upgrades to react to the latest tech-
nical developments.
In previous work [6] it is shown that one APPARILLO
is able to detect objects down to a diameter of 25 cm in
LEO. The measurement is accurate up to a 700 m along
track and for the cross-track position even up to 30 m. A
single APPARILLO can detect a large number of objects
at a time. Up to 160 LEO objects per hour have been de-
tected in previous observation campaigns, two thirds of
which have been identified and the other third categorised
as a ”new” discovery. These ”new” detections could not
be correlated with the publicly available space track TLE
catalogs [7].
The coordinates of the detected objects from one APPAR-
ILLO are given in equatorial coordinates. These are two
dimensional coordinates, which are used to locate for ex-
ample stars and satellite in the sky. Due to the working
principle of a camera, information of the third dimension
cannot be measured using a single system. With the help
of two systems and triangulation, the orbital altitude of a
satellite and thus the third spatial dimension can be deter-
mined [8, 9]. The goal of this work is to find an optimal
configuration consisting of the spacing, the observation
direction and the hardware of these systems in order to
determine the altitude as precisely as possible.

2. CIRCULAR ORBITS

The first and simplest step in implementing an altitude
measurement is to estimate its value based on the mea-
sured orbit parameters. In this case the velocity |ṙ| is
required. The assumption needed to perform this approx-
imation is that the Resident Space Object (RSO) is on a
circular orbit. An object (at the position r) that moves
in the present of a central force and is orbiting around its
center point in exact circles, will have a constant velocity
|ṙ| = const. and a constant radius |r| = const.. These
are directly connected to each other, which is described
by Kepler’s third law

T 2 =
4π2

GM
a3. [10] (1)

In this formula G is the gravitational constant and M
is the mass of the Earth. The product of both GM =
3.986... · 1014 m3/s [11] can be measured with a high
precision through satellite observations. The time for a
complete orbit T is given by the measured velocity and
the (mean) distance |r| of the satellite. For the assumed
circular orbit, the semi-major axis a equals the geometric
distance from the center of the Earth the to the satellite
a = |r|.
In order to get an estimate of the quality of the circu-
lar orbit approximation, an average numerical eccentric-
ity value ϵ of LEO satellites is required. The eccentricity
is then calculated in the following way

e = a · ϵ. [12] (2)

The information about the numerical eccentricity ϵ and
the altitude of known satellites can be found in a TLE
catalogue [7].
In Fig. 2 a histogram of the numerical eccentricities of
LEO satellites is displayed. It is visible that most orbits
are close to being circular and the numerical eccentricity
decreases rapidly. Its median value is ϵ̄ = 2.81e-3. In
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Figure 2. Logarithmic histogram of the eccentricity val-
ues of current satellites in LEO according to the Space
Track catalogue [7].

order to convert ϵ into an uncertainty of the altitude mea-
surement, two extreme cases have to be distinguished.

1. The RSO was measured at its perigee.

2. The RSO was measured at its apogee.

In the first case, the RSO was at its closest position. For
the possible error in this case, the most distant position of
the orbit, the apogee, must be considered. This is given
by the following

h = a1 − e1 = a1(1− ϵ) ⇔ a1 =
h

1− ϵ
(3)

⇒ hmax = a1 + e1 = a1(1 + ϵ) ⇒ h
1 + ϵ

1− ϵ
, (4)

where h is the measured altitude. It is also the point at
which the RSO has its maximum possible distance hmax

considering the two cases. This applies analogously to
the second case with a reversed sign. In this case the
calculated distance to perigee is the closest point hmin.
The resulting error is as follows

∆h = hmax − hmin = h
4 ϵ

1− ϵ2
. (5)

The orbital altitude A examined in further calculations
is A = 700 km. With Eq. (5) and the determined mean
value of the numerical eccentricity ϵ̄ the altitude error is
∆h = 79 km.



3. THEORETICAL CALCULATION

The goal of this work is to improve the error resulting
for the circular orbit estimation and actually measure the
altitude of the satellite. This is done by detecting the
RSO using multiple APPARILLOs, while each of them
measures the RA (right ascension) and Dec (declination)
coordinates. The accuracy of a single system ∆p by
means of the streak detection and astrometry is set to be
∆p = 3px. This means that the RSO is captured at an
angle equivalent to those 3 pixels. The accuracy di of the
used system can then be calculated using basic geometry,
which leads to the following equation

di = A
∆p · (Si/Ri)

f
. (6)

The sensor size is S = 36.9× 36.9mm with a resolution
of R = 4096 × 4096 px. The focal length f of the used
lens is f = 200mm. For a satellite at an altitude of
A = 700 km the projected along and cross track error
would be around d = 95m. Based on the results of
earlier work [6], this is a conservatively estimated value
that will be achievable with the future system.
Each error can be visualised by a cone around the line
of sight (LOS) which overlap at the RSO, see Fig. 3.
To calculate the intersection volume two approximations
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Figure 3. Two APPARILLOs detecting the same LEO ob-
ject. The intersection of the error cones allows the alti-
tude and its uncertainty to be specified.

were made.

• The first approximation is to neglect that the error
cones diverge in the vicinity of the RSO. In math-
ematical terms, this means that the object becomes
a cylinder. This approximation is justified, because
the cone does not diverge that much at the relevant
altitudes.

For example, the RSO is approximately at distance
of 700 km and the FOV = 27.9′′. According to
Eq. (6), this results in a diameter of d = 95m. At an
altitude of (700± d) km the difference of the diam-
eter is ∆d = 3 cm, which can be neglected.

• The second approximation is that the field of view
of the three pixels responsible for the error is not a
square. It is modified to be a circle. This means that
the uncertainty of the satellite’s position is the same
in each direction of travel across the camera. This
approximation is justified by the fact that the chosen
uncertainty was derived from an average of previous
work [6].

The two approximations are visualised in Fig. 4. This
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Figure 4. Visualisation of the approximations to calculate
the intersection volume.

problem has now been simplified to a calculation of the
intersection volume of two cylinders with an arbitrary an-
gle α to each other. In this case and without restriction of
generality it is possible to say that cylinder 1 is located
around the z-axis. The center line of cylinder 2 is located
in the zy plane in a way that both center lines will form
the desired angle α. This results in the satellite being at
(0,0). For further calculations and to avoid mathemati-
cally undefined values it is also allowed to assume that
the radius of the first cylinder R1 is less than or equal to
the radius of the second cylinder R2, R1 ≤ R2. The hull
Ci of a general cylinder can be given in the following
way

Ci =

(
Ri cos(φi)
Ri sin(φi)

zi

)
(7)

where Ri is the radius of the cylinder and φi ∈ [0, 2π[,
zi ∈ R. This corresponds to the hull C1 of cylinder 1
without further adjustments. The second cylinder is ro-
tated around the x-axis with the chosen angle α and its
boundary C2 is then given by

C2 = Rx(α) ·Ci, (8)



where Rx(α) is the three-dimensional rotation matrix
around the x-axis with an angle of α. The parameters
of the resulting intersection curve

C1 = C2 (9)

are calculated to be

R2 cos(φ2) = R1 cos(φ1) (10)

and

z1 = R2 sin(φ2)
1

sin(α) −R1 sin(φ1)
cos(α)
sin(α) (11)

z2 = R2 sin(φ2)
cos(α)
sin(α) −R1 sin(φ1)

1
sin(α) . (12)

If these parameters are inserted into the original cylin-
der equations Eq. (7), two intersection curves I1/2 are
obtained as a result. These curves are the edges of the re-
sulting volume. In Fig. 5 an example result is displayed.
Because the curvature of the surface area is always zero

Figure 5. Intersection of the two error cones with an an-
gle of α = 45◦ while observing an RSO (yellow dot).
The blue lines are the intersection curves and the dashed
black line is the ground vector g.

in one direction, only the edges are necessary to calculate
the altitude difference. This can be visualised by plac-
ing such an object on a flat surface, like a table. In this
case at least one edge of it always touches the table. To
get the correct value for the altitude difference the correct
ground vector g′ has to be found in the rotated coordinate
system. With the knowledge of the rotations necessary to
map both line of sights LOS1, LOS2 to the desired con-
straints, the original ground vector g can be then rotated
accordingly. The result of the dot product of the modi-
fied ground vector g′ with the intersection curve I1 is the
spatial difference of this curve along this ground vector.

∆h1 = max(g′ · I1) (13)

The intersection figure is point symmetric around the
RSO. This means, to get the total altitude difference ∆h
the altitude difference to one edge must be doubled.

∆h = 2∆h1. (14)

4. RESULTS

The established theoretical framework can now be used
to find an optimal solution for the setup of two APPAR-
ILLOs. Each system has a large set of variables. To keep
this analysis in a manageable format some variables are
restricted to realistic values. The camera is fixed, it has
a resolution of R = 4096 × 4096 px and the sensor size
is S = 36.9 × 36.9mm. The lens has a focal length of
200 mm. The resulting angle subtended by each pixel is
then FOV = 9.3′′. The error is set to be 3 times the
FOV of a single pixel. The RSO is in an orbit with an
altitude of 700 km.

4.1. The optimal placement and alignment

In the first step the influence of the spacing between the
two APPARILLOs is investigated. In addition to this dis-
tance, the observation angle is a key factor of the ac-
curacy. The distance between the two APPARILLOs is
determined by the position of the RSO, the earth sur-
face, and the observation angle of each APPARILLO, see
Fig. 6. The RSO will also be in the plane of the two AP-
PARILLOs, which is perpendicular to the horizon of each
APPARILLO.
With these restrictions, the altitude uncertainty can be

φ1φ2APP2 APP1
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Figure 6. The position of an APPARILLO is determined
by the observation angle φi. By varying this angle, the
position of the APPARILLO shifts along the earth’s sur-
face.

calculated depending only on the two angles φ1 and φ2.
It is displayed in Fig. 7.
The results show values up to 500 m. Data above this
limit is excluded, because the uncertainty is rising very
fast and diverges in cases in which both APPARILLOs
look in the same direction. This data would overshadow
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Figure 7. Result of the altitude uncertainty of measurements by two APPARILLOs in a bi-static observation condition.
The two plots show different lens combination. In Figure a) both APPARILLOs have a 200 mm lens equipped. Figure b)
shows the result when APPARILLO 1 has a 105 mm lens equipped.

the important features and is removed. For the selected
hardware configuration, the optimal observation angle to
achieve the lowest possible altitude uncertainty is 42◦ for
both APPARILLOs. The trinagulation is accurate up to
200 m and the best spacing of the two APPARILLOs is
1334 km along the surface of the earth.
The result is point symmetric around the 90◦, 90◦ point,
because the angle of one LOS with the ground vector
has a symmetric extreme point at 90◦. This situation de-
scribes the changing of the ”observation sides”, the AP-
PARILLOs are mirrored and nothing changes in terms of
content, compare Fig. 6. In addition to this it also has a
symmetry axis that follows the line of origin. This is be-
cause both APPARILLOs have the same focal length and
therefore the same uncertainty.
If the lens of APPARILLO 1 is changed to a smaller focal
length f = 105mm, Fig. 7 b), that system has a larger
field of view, but also a larger error. The point symme-
try is still present because the reason for it is only re-
lated to a single APPARILLO and the RSO. The second
symmetry axis then no longer exists because the two AP-
PARILLOs have different uncertainties and can not be
exchanged anymore. The optimal spacing is longer at
1584 km and the RSO is closer to the APPARILLO 1, re-
sulting in a steeper observation angle. The observation
angles are φ1 = 46◦ and φ2 = 36◦. The smallest altitude
uncertainty for this case is 289 m.

4.2. The fixed position

In this section a specific scenario is investigated. The
position of both APPARILLOs is fixed at interesting lo-
cations. In this case, two APPARILLOs were placed in
Stuttgart and in Andøya, the distance is about 2300 km.
In contrast to the previous investigation, the position of
the satellite RSO is now changed, but the altitude is kept
constant at 700 km. The satellite can now also take po-
sitions that are not in the plane spanned by the two AP-

PARILLOs and the ground vector. This problem is also
solved with the theory described in Section 3. The alti-
tude uncertainty is shown in Fig. 8. The two blue dots
mark the position of the APPARILLOs. The position
of the satellite is projected onto its ground track and is
given in latitude and longitude. The data that is on the
imaginary connection line between the APPARILLOs is
already contained in Fig. 7. It is symmetric around this
axis. The best possible altitude uncertainty is 228 m. If
the satellite moves between the two APPARILLOs in a
corridor of 10◦, the uncertainty remains below 250 m. It
gets significantly worse when both observers are oriented
in the same direction, for example, if both face south.
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Figure 8. Altitude uncertainty map of a satellite observed
by two APPARILLOs located in Stuttgart and Andøya.
The displayed values correspond to the altitude uncer-
tainty in meters. (Map tiles by Stamen Design, CC BY
3.0 — Map data © OpenStreetMap contributors)



5. COMPARISON AND SUMMARY

The results of the theory established in Section 3 show
that it is possible to achieve altitude accuracies up to
200 m with only two APPARILLOs. The assumption that
the object is on a circular orbit results in an uncertainty
of 79 km. Compared to this assumption, the bistatic mea-
surement would result in an error that is 2 orders of mag-
nitude better. Besides the hardware choices, camera or
lens, the location of both APPARILLOs is a key value to
increase the accuracy. The optimal spacing between two
APPARILLOs to detect objects at an altitude of 700 km
is 1334 km, where both line of sights have an elevation of
42◦. The theory also shows that this angle and accuracy
is dependent on the used optics.
This work is the first step towards a network of multi-
ple APPARILLOs. It determines guidelines to choose the
distances between each APPARILLO and provides a the-
oretical framework to calculate the altitude uncertainty of
measurements of a given configuration.
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