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ABSTRACT

Space object observations cannot always be unambigu-
ously associated to catalogued objects. Multiple objects,
orbiting in close proximity to each other, can pass an as-
signment criterion and can therefore become likely can-
didates for the association. If the state uncertainty of the
catalogued objects is large, this ambiguity can only be re-
solved when new observations arrive again. In order to
screen for conjunctions between space objects, the most
likely associations have to be identified at all time steps.
This works studies an approach where multiple objects
with unresolved associations are grouped and then their
orbits are determined simultaneously. The measurements
are loosely associated first with a weighting factor de-
pending on the statistical distance to the current reference
trajectory. The factors are iteratively updated using an
expectation-maximization approach with repeated orbit
determination and association runs. The method is pre-
sented along with practicality considerations and recom-
mendations for an operational implementation.
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1. INTRODUCTION

Passive optical telescopes typically collect short arcs of
observations, called tracklets, that contain a series of right
ascension (α) and declination (δ) values. The observa-
tions from different images are associated to each other
with high confidence assuming e.g. a linear movement
between frames [5]. However, associating tracklets to
each other or to catalogued objects cannot always be
achieved without ambiguities [12], i.e. a new tracklet fits
well with multiple other tracklets or with multiple objects
in the catalogue. The issue is common for observations
of co-located satellites in geostationary orbits.

A considerable amount of research has been published
on the association of optical measurements to catalog ob-
jects, e.g. [6, 10, 7, 8]. They mostly deal with the proper
representation of state and measurement uncertainties to
increase the true positive rates, while allowing only few

false associations. Notably, references [6] and [8] pro-
pose using different coordinate systems for the associ-
ation. Reference [10] represent the uncertainty with a
Gaussian mixture to achieve better performance.

All approaches aim at reducing the number of false pos-
itives, but given the close proximity operation of some
spacecraft, they will nevertheless find multiple matching
object candidates for a new measurement. A hard selec-
tion of the best fitting candidate could then lead to wrong
associations and create catalog states unusable for colli-
sion avoidance services. A soft or loose association, e.g.
for all objects where an association criterion falls below
a threshold, can be resolved later on when more obser-
vations are available. The ESA correlation software as
described by [14] uses a statistical distance measure be-
tween actual measured tracklet and one modeled from the
catalog object state for the correlation. Alternative dis-
tance metrics are provided in [7, 10, 11]. All objects that
create modeled measurements close enough to the actu-
ally measured one are then loosely linked to the tracklet.
Once all possible object candidates have been identified
and more than one observation is available, the ambigui-
ties can be resolved for groups of objects.

Multiple-hypothesis tracking (MHT) frameworks are
used to combine several observations to one track in
the presence of multiple objects and possibly also clut-
ter. Reference [2] provides a summary over current ap-
proaches and references for different implementations.
The main drawback of a MHT approach is that the full
enumeration of combinations of different observations
can lead to an explosion in the number of hypotheses that
have to be maintained. This can partly be overcome by
pruning (deleting) unlikely hypotheses and merging dif-
ferent object state hypotheses.

Probability hypothesis density filters, e.g. as described
by [3] for cataloging applications, represent all hypothe-
ses in one multi-object probability density function. In
reference [3] it is proposed to use a mixture of Gaussians
for that purpose. However, this leads to the same diffi-
culty of creating a large number of mixture components
that need to be updated when new measurements arrive.
The same pruning and merging clean-up steps need to im-
plemented to overcome the problematic growth and keep
the problem computationally feasible.
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Reference [13] proposes the so-called probabilistic multi-
hypothesis tracking (PMHT), which treats the associa-
tion decisions not as an integer-programming problem
(i.e. each tracklet can only originate from only one ob-
ject), but instead defines continuous assignment weights.
These weights are then estimated jointly with the states
using an expectation-maximization approach [4]. The al-
gorithm uses the fact that the trajectory estimation is a
straight-forward task if the assignment vector is known
(they propose a Kalman filter and smoothing process).
Equivalently, the most likely assignment vector can be es-
timated if the trajectories of the objects are available. The
expectation-maximization approach iteratively improves
the association probabilities and then the object states.

Based on the work in [13], reference [9] proposes a sim-
ilar approach using a batch least-squares adjustment for
the state and association weight estimation. Batch non-
linear least-squares is commonly used for spacecraft orbit
determination [1]. This is the reason why this work takes
up the latter formulation to solve the tracklet assignment
problem for closely-spaced objects.

The paper is structured as follows: first the combined
association probability and trajectory estimation process
adapted from [9] is presented, then it is applied for a test
case of two satellites flying in close formation with each
other, and lastly, possible challenges and practical con-
siderations are outlined.

2. MIXED-MODEL LEAST SQUARES ESTIMA-
TION

It is assumed that the individual angular observations of a
tracklet are associated to each other with high confidence.
The angles are therefore combined into one observation
vector

z = (α1, δ1, α2, δ2, . . . )
⊤

. (1)

As the sky is regularly scanned by a limited number of
telescopes and limiting weather conditions, each object
can only be tracked for a few minutes. The information
of such short tracklets can be compressed by fitting a sim-
ple model (e.g. linear) to the observations and using the
fitting parameters as the observation. The angles and an-
gular rates vector z̄ = (α, δ, α̇, δ̇) at a mean epoch, also
called attributable vector, is often used in association (cf.
[11]) as it smoothes out noise of the individual observa-
tions. It will be later used for the computation of the as-
sociation weights instead of directly using the individual
observations.

For the batch estimation problem, all tracklets are sum-
marized in one vector

Z =
(
z⊤1 , z⊤2 , . . . , z⊤n

)⊤
, (2)

where n denotes the number of tracklets. These tracklets
have been loosely associated to m objects using one of
the association metrics discussed in the introduction.

Each object trajectory is described with a state vector y,
e.g. using orbital elements or position and velocity, at
a certain epoch (not necessarily at the same). The state
vectors for allm targets are summarized in the vector

Y =
(
y⊤1 , y

⊤
2 , . . . , y

⊤
m

)⊤
. (3)

The assignment vector

A = (k1, k2, . . . , kn)
⊤ where kj ∈ (1, . . . ,m) (4)

links every tracklet to one object, with kj corresponding
to the target numbers as used in (3).

Given all measurements Z and a measurement function h
which maps the object states Y to the measurement space
considering the assignments in A, the least squares prob-
lem can be described with

E = Z− h (Y,A) , (5)

where E is a vector of residuals. Assuming the errors be-
tween modeled tracklets and observed ones (Z) are zero-
mean and the uncertainty is described with a covariance
CE, the weighted least-squares solution can be computed
with [

Ŷ, Â
]
= argmin

Y,A
E⊤C−1

E E . (6)

This problem is a high dimensional (m state vectors each
at least 6 dimensional and n assignments) mixed-integer
nonlinear optimization problem and difficult to solve di-
rectly. The assignment vector A contains integer val-
ues and the number of measurements n can become very
large.

The residuals are rewritten as a finite mixture

E =

m∑
i=0

wi(Z− hi(yi)) (7)

where the association weights w are introduced. The
components of theweights vectors are either 0 if the track-
let is not assigned to the object, or 1 if it is. As proposed
by [13, 9], the hard assignment is replaced with a soft as-
signment using the continuous range between between 0
and 1. In order to count each measurement once, the fol-
lowing constraint must be fulfilled for each weight vector

m∑
i=0

wi = 1 . (8)

The loss function in equation (6) can be rewritten with

m∑
j=0

w2
i (Z− hi(yi))

⊤C−1
E (Z− hi(yi)) . (9)

If the weights are known, the non-linear least squares
problem can be solved with a method such as Gauss-
Newton or Levenberg-Marquardt. In fact, each compo-
nent of the sum can then be individually minimized, lead-
ing tom separate orbit determination runs for each object.



Likewise, when the state estimates are known, theweights
are computed that minimize the loss function considering
the constraint in equation (8) (cf. [9]):

wi =
[(Z− hi(yi))⊤C

−1
E (Z− hi(yi))]−1∑m

j=0[(Z− hj(yj))⊤C
−1
E (Z− hj(yj))]−1

.

(10)

Iterative optimization process The iterative optimiza-
tion process is described in figure 1. First, the spacecraft
states are initialized using prior knowledge, e.g. from pre-
vious orbit determination runs or from external sources
such as publicly provided two-line elements (TLEs) ob-
tained from www.space-track.org. If the prior knowl-
edge comes with an uncertainty estimate, it can be incor-
porated into the loss function [9]. For the sake of nota-
tional simplicity, this work does not consider the prior
state uncertainty, but just initialize the target trajectories.

Based on the initial trajectories of the objects, the tar-
get association weights are computed using equation (10).
However, it turned out for the test case (in next section)
that the convergence performance could be improved
when using the mean angles and angular rates z̄ instead
of the direct observation vector z. Of course, this requires
a different measurement function h̄ and measurement co-
variance C̄E. The attributable z̄ is also commonly consid-
ered beneficial for classical association tasks, e.g. for the
attribution penalty in [11].

Once the vectors wi are computed, the weighted non-
linear least squares adjustment can be started using the
association weights in addition to the already existing
weighting computed from CE. The result of each ad-
justment is the updated state vector of the corresponding
object. The process of computing weights and updating
the object states is repeated until convergence in the loss
function (9) is detected.

Initialize object states 

Compute assignment weights 

Update object states 

Final object state estimates and 

assignments 

converged 

Figure 1. Illustration of the iterative mixed-model least-
squares estimation process

3. TEST CASE

As a test case, two satellites from the Eutelsat Hotbird
13 constellation are observed (COSPAR ids: 2006-032A
and 2008-065A) from the Zimmerwald observatory in
Switzerland. The available measurement set is from the
first week of January 2015 and contains around 17 mea-
surements for 2006-032A and 11 for 2008-065A. The data
has been loosely associated to the objects using TLEs and
the approach described in [6]. The selected cluster is the
same as the test case presented in [15], however, using
different observations.

The iterative process is started using a TLE with an epoch
close to the latest tracklet. The state vector at estimation
epoch is obtained by using SGP4. From thereon a high-
fidelity force-model is used for the state propagation, con-
sidering a 32x32 gravity field model, third body perturba-
tions (Sun and Moon), and solar-radiation pressure. The
initial discrepancy between trajectory and observations is
quite large as can be seen in figure 2. The figure shows
the hour angle (i.e. local sidereal time - right ascension)
and the declination of the modeled objects and the mea-
surements (×).

The updates of the associationweights for each iteration is
illustrated in figure 3. Most weights quickly converge to-
wards 1 or 0, however, a few converge to a constant level
of around 0.2 or 0.8 respectively. One tracklet has even
a weight value larger than 0.3/less than 0.7. This tracklet
could be either an outlier or generated by a different and
not considered object. Outliers can corrupt the solution
for the individual orbit determination runs and should be
avoided. This can be efficiently tackled in the PMHT for-
mulation, when accounting for an additional clutter model
as e.g. presented in [16].
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Figure 2. Initial guess of the spacecraft trajectories to-
gether with the measurements.
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Figure 3. Evolution of association weights during opti-
mization.

The evolution of the loss function value is shown in figure
4. It clearly shows that the process converges to a solu-
tion. It should be noted that this solution could be also a
local-minimum as global convergence in not guaranteed
by the presented approach. Reference [16] summarizes
an approach, namely covariance inflation and deflation,
to increase the chances of finding the global minimum.
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Figure 4. Evolution of loss function during optimization.

The estimated trajectories of the two spacecraft after con-
vergence is reached are shown in figure 5. The obser-
vations match well with the trajectories, except for one
mentioned outlier.

4. CONCLUSIONS

The paper presents the current status of our efforts to
apply the methods and findings of probabilistic multi-
hypothesis tracking research to orbit determination prob-
lems for closely spaced spacecraft formations. The
method is shown to work in principle, but it requires fur-
ther testing and implementation efforts to use it in an au-
tomatic way on larger data samples.

Practically, it is unfeasible to process all objects in space
simultaneously with one loss function. Therefore, satel-
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Figure 5. Final estimate of the spacecraft trajectories to-
gether with the measurements.

lites need to be grouped or clustered into subproblems.
This grouping can be effectively achieved by combin-
ing objects with an overlap in associated observations. If
these groups become too large, they can be furthermore
reduced by limiting the group size and use a clutter model
to account for measurements that have been wrongly as-
sociated to the group.

One of the main drawbacks of the approach is its sensi-
tivity to an unfavorable initial guess for the object orbits,
which then leads to a local minimum being found instead
of the global one. The presented test case shows an ex-
treme situation of using poor initial orbits, but neverthe-
less finds the proper associations. Further research is re-
quired to characterize the radius of convergence. It is ex-
pected that the previous orbit determination result stored
in the catalog should be a sufficiently good starter, but this
needs to be confirmed using a moving window processing
of larger data sets.
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