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ABSTRACT 

Predicting the detection, tracking, identification, and 

characterization performance of various remote sensing 

systems for near-earth-objects (NEO) and space debris 

requires modeling and simulation. High fidelity 

modeling is time consuming and prohibitive when 

responding to high-priority time-critical events or 

processing very large quantities of data or parameters. 

Approximate methods were found to be as much as one 

thousand times faster than standard evaluation methods, 

while still agreeing with higher fidelity models as long as 

certain preconditions were met. We will present both a 

standard and approximate radiometric space-

based object modeling approach to identify the 

performance and errors associated with each method. We 

will then recommend the best methods of modeling and 

simulation based on a number of conditions. 

1 INTRODUCTION 

One of the greatest challenges to modern space based 

operations is the growing population of space objects. 

According to Fig. 1 [1], the number of space objects has 

been growing steadily for the last half-century and in 

addition to the tracked space objects the quantity, 

characteristics, and location of the untracked debris is 

uncertain.  This makes Space Situational Awareness 

(SSA) a critical piece of space missions, one that relies 

heavily on remotely sensed observations. However 

deciding the best tactics and strategies for tasking and 

collecting these observations, sometimes in response to 

new data or hypothetical design considerations, is an 

uncertain art and requires expensive calculations in an 

ever expanding parametric problem space.  

As such, modeling the performance of remote sensing 

systems is critical for predicting the detection of targets 

of interest including NEO and space debris. However, 

because ground-based observations are largely affected 

by Earth’s atmosphere, simulating such systems can 

require significant computational time to accurately 

model the propagation of light affected by atmospheric 

aerosols. The target’s material composition, sensor-to-

target geometry, and sensor characteristics also affect the 

detection of these targets. High fidelity, full spectral 

modeling can therefore be computationally 

expensive and prohibitive when responding to high-

priority time-critical events or processing very large 

quantities of data or parameters. For this reason, we 

investigated several modeling approaches of varying 

fidelity to characterize the performance and 

error of each. We then developed an approach termed 

“Fast Metrics” to obtain fast signal calculations as 

presented here. This approach has been designed to 

optimize the speed of the calculations while monitoring 

their fidelity by comparing them to the most rigorous 

high-fidelity calculations as well as actual measurements 

collected operationally to assess their accuracy. 

2 TEST SETUP 

Each modeling approach simulated the detection of 100 

satellites from a ground-based remote sensing facility 

over the span of a year. The orbits of the satellites were 

randomly generated with altitudes ranging from 6,500 to 

49,500 km. The main metrics used to compare the errors 

associated with each method include Target Intensity, 

Irradiance at the Entrance Aperture, Signal-To-Noise-

Ratio, and Visual Magnitude.  The target was treated as a 

point source such that Signal-To-Noise-Ratio was 

calculated using Eq. 1. 

 

 
𝑆𝑁𝑅 =

𝑆

√𝑆 + 𝐵
 

(1) 

The signal peak (S) and background (B) were assumed to 

have a Poisson distribution such that the mean signal is 

equal to the variance.  Here, the background signal B 

only constitutes the path reflected irradiance of 

moonlight. Zodiacal light is ignored in all calculations. 

The sensor exposure time was notionally chosen to be 

one and ten seconds, such that a separate SNR metric is 

reported for each value. SNR did not take into 

account sensor specific values such as the read noise and 

dark current effects so that the metric is platform 

agnostic. 

The Visual Magnitude was calculated using Eq. 2 

 

 
𝑣 = −2.5 log10

𝐸𝐸𝑛𝑡𝑟𝑎𝑛𝑐𝑒𝐴𝑝𝑒𝑟𝑡𝑢𝑟𝑒

𝐸0

 
(2) 

where 𝐸0 represents the exoatmospheric irradiance of 

Vega. 
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The selected ground-based remote sensing facility 

is located in Exton, Pennsylvania where AGI owns and 

operates one of many operational Space Situational 

Awareness (SSA) sensors collecting on satellites, as 

shown in Fig. 2. The sensor contained a square vertical 

and horizontal field-of-view of one-degree and was 

oriented with a zenith angle of zero. Each satellite shape 

was approximated to be a one meter sphere of a single, 

uniform material. Six separate materials were tested in 

order to compare the effect of various reflectance 

spectrums on the standard error. The materials tested 

include Aluminum, Gray Body with 5% reflectance, and 

Gray Body with 15% reflectance. In addition, a material 

spectra with 50% reflectance varied by Gaussian noise 

was modeled, as well as a uniform distribution and a 

sinusoidal curve with Gaussian noise. The material 

reflectance spectra (𝜌) are shown in Figs. 3-4.  

The reflectance of these materials were used to calculate 

the target intensity (𝐼𝑇𝑎𝑟𝑔𝑒𝑡), calculated using Eq. 3. 

 

 
𝐼𝑇𝑎𝑟𝑔𝑒𝑡 =

𝐸𝑆𝑢𝑛 𝜌 𝑃ℎ𝑎𝑠𝑒(𝜑) 𝐴𝑇𝑎𝑟𝑔𝑒𝑡

𝜋
 

(3) 

where 𝐸𝑆𝑢𝑛 is the exoatmospheric solar irradiance, 𝜑 is 

the sensor-target-sun phase angle, 𝑃ℎ𝑎𝑠𝑒() is the phase 

function of the reflection of the target based on the phase 

angle, and 𝐴𝑇𝑎𝑟𝑔𝑒𝑡  is the cross-sectional area of the 

target. 

 

Figure 2. Modeling the SSA sensor Using STK 

 

Figure 1. Historic Space Situational Awareness Events [1] 

 



 

 

Figure 3. Spectral Reflectance of Sample Materials 

 

Figure 4. Spectral Reflectance of a Generated Uniform 

Random Material 

Simulations were run using a “Full Spectral Method” 

which used MODerate resolution 

atmospheric TRANsmission (MODTRAN) [2], a high-

fidelity computer model that calculates optical 

measurements through the atmosphere, as well as 

MATLAB [3] code to spectrally integrate.  

 

The Fast Metrics approach was implemented 

using MATLAB and Systems Tool Kit (STK) [4] written 

by Analytical Graphics, Inc. STK simulated the satellite 

orbits and sensor geometry and MATLAB retrieved the 

geometry from STK to calculate the various metrics. 

Several approximations were used in this approach in 

order to generate signal metrics significantly faster than 

other, higher fidelity models. This Fast Metrics approach 

used band effective values for all objects while the Full 

Spectral Method used spectral data sampled at 1 nm for 

the solar irradiance and material reflectance. 

In addition, the Fast Metrics atmospheric transmission 

(𝜏𝜃) was approximated for targets with zenith angles less 

than 85 deg using Eqs. 4-5. 

 

 
𝐸𝑇𝑎𝑟𝑔𝑒𝑡 = 𝜏𝜃

𝐼𝑇𝑎𝑟𝑔𝑒𝑡

𝑑𝑇𝑎𝑟𝑔𝑒𝑡𝑇𝑜𝑆𝑒𝑛𝑠𝑜𝑟
2  

(4) 

 

 

𝜏𝜃 = 𝑒ln(𝜏𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒)/ cos 𝜃  (5) 

where 𝐸𝑇𝑎𝑟𝑔𝑒𝑡 represents the target irradiance, 

𝑑𝑇𝑎𝑟𝑔𝑒𝑡𝑇𝑜𝑆𝑒𝑛𝑠𝑜𝑟  is the distance from the target to the 

sensor, 𝜏𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒  is the single static atmospheric 

transmission at zenith, and 𝜃 is the target zenith angle 

from the ground sensor. A graphic of the ground sensor 

and sample input parameters is displayed in Fig. 5. Here, 

the angle taken at the target from the sun to the sensor is 

the phase angle (𝜑). 

 

Figure 5. Ground Sensor Graphic Depicting Sample 

Input Parameters.  

Furthermore, the path reflectance from lunar light was 

approximated to be a constant percentage of the lunar 

irradiance on the ground at the location of the sensor.   

 

For cases when the lunar zenith angle was greater than 

85 deg and less than 99 deg, atmospheric refraction had 

a significant effect on the path reflectance from lunar 

light. For such cases the path reflectance was 

approximated by interpolating the empirical curve 

shown in Fig. 6. 

 

 

Figure 6. Empirical Curve of the Path Reflectance 



 

MODTRAN was used to generate the empirical curve. 

The geometry was varied from a lunar zenith angle of 85-

105 deg. At each lunar zenith angle, the path radiance 

was calculated at target zeniths of 15, 30, and 45 deg. 

These values were than averaged to achieve the curve.  

3 RESULTS 

Simulating the sensor for one year resulted in the 

calculation of approximately 2.2 million target signals. 

Approximately 10% (220,000) of the test points were 

then calculated using the Full Spectral Method to serve 

as a basis of comparison.  

3.1 Aluminum 

The results calculated for an aluminum target are 

presented in this subsection. Fig. 7 compares the target 

intensity calculated by the Fast Metrics approach and the 

Full Spectral Method. Results are shown using aluminum 

as the material composition for each target.  

Results from the two methods agree rather well, as 

shown in Fig. 7 as expected. The high correlation across 

results entails that using band effective values to 

calculate target intensity is a good approximation for 

aluminum targets across a spread of sensor-to-target 

geometries.  

 

 

Figure 7. Comparison of Target Intensity for Aluminum 

A comparison of the calculated target irradiance values 

at the sensor is shown in Fig. 8. The atmospheric model 

used is a significant factor in calculating the target 

irradiance at the sensor aperture. The high correlation 

presented in Fig. 8 signifies that the simpler model used 

to calculate the propagation through the atmosphere in 

the Fast Metrics calculations (Eq. 4) closely matches the 

results from the Full Spectral Method in calculating the 

target irradiance.  

 

 

Figure 8. Comparison of Target Irradiance at the 

Sensor Aperture for Aluminum 

A comparison of the total irradiance calculated at the 

sensor is shown in Fig. 9. The total irradiance is 

calculated as the sum of the target irradiance and the 

path radiance from moonlight. Fig. 9 shows a poor 

correlation between the results calculated using Fast 

Metrics and the Full Spectral Method. As the target 

irradiance matches well across methods, the poor 

correlation is due to the path radiance model used in the 

Fast Metrics. The Fast Metrics calculations uses a model 

that approximates the path radiance from moonlight as a 

constant fraction of the lunar irradiance at the sensor. As 

a result, this approach does not directly calculate the 

propagation of the path radiance in order to reduce the 

computation time. Accordingly, higher fidelity 

atmospheric models such as MODTRAN should be 

used when lunar path radiance is an important factor in 

the signal calculations. In addition, this is a potential 

area of future work as steps can be made to improve the 

path radiance model in the Fast Metrics calculations 

while keeping the computation time to a minimum.   

 

 

Figure 9. Comparison of Total Irradiance at the Sensor 

Aperture for Aluminum 

The calculated Signal-to-Noise (SNR) ratio using the 

Fast Metrics calculations and the Full Spectral Method 

is shown in Fig. 10. The SNR is based on a one second 

integration time. The results show a very 

strong correlation, signifying that the Fast Metrics 

calculations match well with the results from the Full 



 

Spectral Method. An additional trend can be seen in Fig. 

10, resulting from the dependency on lunar zenith. 

When the moon is not visible in the night sky, the path 

radiance from moonlight is zero and SNR is purely a 

function of the target irradiance. Since Fast Metrics can 

accurately calculate the target irradiance, these set of 

data points have a very high correlation.  However when 

the moon is visible to the ground sensor, SNR is also a 

function of the path radiance. As the Fast Metrics 

calculations employ a rather limited model of 

atmospheric scattering, these data points form a second 

trend that Fast Metrics do not capture. 

 

 

Figure 10. Comparison of SNR for Aluminum Using a 

One Second Integration Time 

Furthermore, Fig. 11 presents SNR for a ten second 

integration time. The results match quite well with those 

of Fig. 10, showing that the integration time does not 

have a noticeable effect on the agreement between 

methods and we see an improvement of roughly √10𝑥. 

 

 

Figure 11. Comparison of SNR for Aluminum Using a 

Ten Second Integration Time 

Finally, Fig. 12 presents a comparison of the 

calculated visual magnitude. Here visual magnitude is 

solely a function of the target irradiance, and so the 

visual magnitude calculated using Fast Metrics 

correlates rather well with the Full Spectral Method 

data.  
 

 

 

Figure 12. Comparison of Visual Magnitude for 

Aluminum 

3.2 Signal-To-Noise Ratio for All Materials 

A comparison of the calculated SNR using Fast Metrics 

and the Full Spectral Method is presented in this 

subsection. Figs. 13-24 show the correlation of SNR for 

each material considered and for both a one second and 

ten second integration time. Axes titles are omitted after 

Figs. 13-14 as all of the figures presented in this 

subsection plot the Fast Metrics values on the y-axis and 

the Full Spectral Method values on the x-axis. 

Figs. 13-24 show that the calculation of SNR using Fast 

Metrics agrees well across materials. The SNR results for 

the sinusoidal material (presented in Figs. 21-22) 

matches noticeably worse than for other materials. This 

can be attributed to the significant features the sinusoidal 

material has across the spectrum, such as the reflectance 

dipping to 0% at 0.52 um and reaching 100% reflectance 

at 0.65 um. Such features are not captured when using a 

band effective value for the material. Thus it is not 

recommended to use Fast Metrics with a single, band 

effective value for materials that have significant spectral 

features. Rather, this method should use spectrally 

downsampled reflectance and atmospheric values with a 

representative set of spectral samples. 

 

 

 

 

 

 

 

 

 

 



 

Figure 13. Comparison of SNR for Aluminum Using a 

One Second Integration Time 

Figure 14. Comparison of SNR for Aluminum Using a 

Ten Second Integration Time 

Figure 15. Comparison of SNR for a Gray Body (5% 

Reflectance) Using a One Second Integration Time 

Figure 16. Comparison of SNR for a Gray Body (5% 

Reflectance) Using a Ten Second Integration Time 

 

Figure 17. Comparison of SNR for a Gray Body (15% 

Reflectance) Using a One Second Integration Time 

 

Figure 18. Comparison of SNR for a Gray Body (15% 

Reflectance) Using a Ten Second Integration Time 



 

Figure 19. Comparison of SNR for a Material at 50% 

Reflectance Varied by Gaussian Noise Using a One 

Second Integration Time 

Figure 20. Comparison of SNR for a Material at 50% 

Reflectance Varied by Gaussian Noise Using a Ten 

Second Integration Time 

Figure 21. Comparison of SNR for a Material 

Reflectance of a Sinusoidal Curve Varied by Gaussian 

Noise Using a One Second Integration Time 

Figure 22. Comparison of SNR for a Material 

Reflectance of a Sinusoidal Curve Varied by Gaussian 

Noise Using a Ten Second Integration Time 

Figure 23. Comparison of SNR for a Uniform Random 

Material Reflectance Using a One Second Integration 

Time 

Figure 24. Comparison of SNR for a Uniform Random 

Material Reflectance Using a Ten Second Integration 

Time 



 

4 TIMING AND BENCHMARKING 

The Fast Metrics calculations were implemented STK 

Desktop and STK Engine on separate trials to test the 

performance difference. STK Engine provides an 

Application Programming Interface (API) to automate 

capabilities in STK Desktop. As such the results from 

STK Desktop and STK Engine are identical. However, 

since STK Engine has less overhead in the case of 

“No Graphics” mode, STK Engine exhibits faster 

performance. 

Table 1. Computational Time Across Methods 

 MODTRAN Fast Metrics 

via STK 

Desktop 

Fast 

Metrics via 

STK 

Engine 

Calculation 

Time Steps 

 

220,000 

 

 

2,205,930 

 

 

2,205,930 

Total Time 04 days 

02:00:18 

00 days 

00:56:17 

00 days 

00:46:54 

 

Extrapolating the time it took the Full Spectral Method to 

calculate 220,000 time steps from Tab. 1 out to the total 

calculation time steps calculated using Fast Metrics, the 

Full Spectral Method would have taken a total time of 40 

days 22 hours and 43 minutes. Thus, the Fast Metrics 

method is greater than 1,000x faster than the Full Spectral 

Method. In addition, using STK Engine over STK 

Desktop provided an increase in speed 

by roughly 17%. Therefore in cases were graphics are 

not needed, it is recommended to use Fast Metrics with 

STK Engine. 

As the Fast Metrics results match well with the Full 

Spectral Method as long as certain caveats hold true, such 

as using sufficient spectral sampling for target materials 

that have significant spectral features, it is strongly 

recommended to use Fast Metrics when applicable. Most 

notably, in cases where computational time is a critical 

factor such as large parametric sweeps of signal 

calculations and other use cases outlined in Tab 2., using 

Fast Metrics provides a significant advantage without 

sacrificing fidelity.   

4.1 Computer Specifications 

Computer specifications of the machine used for all of 

the calculations are included for benchmarking 

purposes. The machine used was running Windows 10 

and had 16.0 GB installed RAM. In addition the 

machine had an Intel Core i7 2.70 GHz processor as 

well as a NVIDIA Quadro M1000M dedicated graphics 

card. 

 

4.2 MATLAB Optimization 

MATLAB’s built-in Profile tool was used to optimize the 

run-time of the Fast Metrics calculations. The 

Profile tool allows users to track the execution time of 

functions. One important note about the optimization of 

the MATLAB scripts is the use of MATLAB’s built-

in concatenation function called cat. To obtain the data 

from STK, the Fast Metrics calculations iterate through 

each satellite in the model and 

calculates visibility times. The calculations then iterate 

through each pass of the current satellite and requests 

geometric parameters such as the range and position of 

the satellite. After receiving the data for each pass, the 

Fast Metrics calculations concatenate the data of the 

current pass to all of the previously stored data using 

the cat function.  

Steps were made to pre-allocate the size of the arrays 

instead of actively concatenating for each pass. A revised 

version of the calculations were made that implemented 

the pre-allocation. Theoretically, this would have sped 

up the calculations as concatenating data can often be 

computationally expensive. The revised version of the 

calculations pre-allocated the memory by creating an 

array large enough to store data for the theoretical 

maximum number of visibility times. The data for each 

satellite would be stored in this array. After storing all 

of the data, the array would be resized, removing any 

unused locations. MATLAB’s Profile tool was then used 

to compare the speed of this approach to the speed of the 

original implementation. Surprisingly, the profiler 

revealed that it was significantly faster to 

use MATLAB’s cat function then to pre-allocate data. 

This is most likely due to the relatively slow speed of 

removing unused locations from the large arrays. In 

addition, MATLAB’s cat function is highly optimized to 

concatenate arrays quickly such that the time spent 

concatenating arrays was relatively insignificant to the 

time spent by the rest of the calculations. 

5 ANALYSIS 

A heat map of the 220,000 geometric test points used in 

the analysis is provided in Fig. 25 to show the 

parametric diversity of the simulations. The lunar phase 

angles are plotted against the lunar zenith angles for 

each test point. The spread of the data shows each 

geometric condition was sampled sufficiently to be 

statistically relevant.  

 



 

 

Figure 25. Heat Map of the Test Point Geometries 

Fig. 26 presents the spectral irradiance for a test point 

calculated by the Full Spectral Method. Here, 

aluminium is used as the target material. Fig. 26 shows 

the solar irradiance at the satellite, the reflected 

satellite irradiance at the Earth prior to any atmospheric 

model, and the satellite irradiance at the sensor after the 

atmospheric model is applied. Absorption features can 

be seen in the solar irradiance at 431 and 517 nm from 

Iron, 486 and 657 nm from Hydrogen, and 589 nm from 

Helium and Sodium. In addition, an atmospheric 

absorption feature can be seen at 687 nm from Oxygen. 

This feature causes a significant dip in the final target 

irradiance but not in the solar irradiance due to the 

significant presence of Oxygen in the atmosphere.  

 

Because the Full Spectral Method uses a small sampling 

width of 1 nm, these spectral features are explicitly 

captured in the target irradiance and directly affect the 

sensor’s final SNR as calculated by the Full Spectral 

Method. However since the Fast Metrics calculations 

use Band Effective values, the results calculated by Fast 

Metrics only indirectly take such spectral features into 

account. Furthermore, the effect of Rayleigh scattering 

can be seen in the large dip in target irradiance values 

from 400-450 nm. Such effects are not captured in the 

Fast Metrics calculations due to the simpler, band-

effective atmospheric model used. Thus it is not 

recommended to use single band Fast Metrics with 

materials that have significantly different reflectance 

values for blue light than light at other parts of the 

spectrum.  

 

 

Figure 26. Propagation of Spectral Irradiance Using 

MODTRAN 

6 USE CASES 

There are a number of scenarios where calculating the 

signal of objects in space is important. SSA is especially 

important to satellite owners and operators, and is 

primarily a function of detecting and characterizing the 

observations of both satellites as well as scanning the 

adjacent areas for potential objects including space debris 

and Near-Earth-Objects (NEO). AGI developed the 

Commercial Space Operations Center (ComSpOC) [5] to 

collect SSA data commercially for satellite owners and 

operators and their mission operations team shared a 

number of real-world scenarios where fast signal 

calculations would be useful. Tab. 2 shows specific 

examples of common tasks at various mission phases.  

Table 2. A Sample Set of Mission Phases and Tasks 

Requiring Signal Calculations 

Mission Phase Tasks Requiring Signal Calculations 

New Missions 

and Research 

Design, Test, and Characterize 

Performance for: 

 New Sensor Systems 

 Detection Algorithms 

 Collection Modes of 

Operation 

 Targets of Interest 

Initialization 

and Operations 
 Schedule Planning 

 Detecting Odd Orbits 

 Difficult Solar, Celestial, or 

Galactic Backgrounds 

 Site Selection and 

Performance Prediction 

Time Critical 

Situations 
 Anomalies 

 Loss of Contact 

 Loss of Attitude Control 

 Bad TLE Data 

 No Show Problems 

 

One such example was satellite Shijian-17 (SJ-17) when 

from Nov - Dec 2018 the observed visual magnitude did 



 

not match predictions at different points of the collection 

windows. Using the Fast Metrics calculations, 400 

sample observations from operational collection 

conditions were generated in 18 seconds and compared to 

the empirical measurement over a period of one month 

from an observation site in Dubbo, Australia as shown in 

Fig. 27. Using Fast Metrics with the default satellite 

model values, there is already excellent agreement with a 

visual magnitude difference from empirical 

measurements of less than 5%, as shown in Tab. 3. 

Because the Fast Metrics calculations include various 

simplifications (such as modelling the satellite as a 

uniform, aluminium sphere), certain trends are not 

captured. This plus inherent noise in measured data 

results in a lower correlation in the data as shown in Fig. 

27. However despite these assumptions, there is still good 

agreement between the Fast Metrics calculations and the 

measured values. Accordingly, results show that with 

many assumptions very fast calculations can be utilized 

in time critical situations or for very large data analysis.  

 

Figure 27. Comparison of Visual Magnitude for SJ-17 

Table 3. Visual Magnitude Accuracy of Fast Metrics 

Calculations for SJ-17 

Average 

Percent Error 

 

3.72% 

Standard 

Deviation 

 

2.82% 

7 CONCLUSION 

Fast calculations for predicting the detection, 

identification, and characterization performance 

of remote sensing systems were found to be as much as 

one thousand times faster than standard evaluation 

methods. These fast calculations largely agreed with 

higher fidelity models and operationally measured 

empirical data.  In certain use cases, such as time critical 

events and analysis containing a very large amount of 

data, fast calculations can be used when higher fidelity 

modeling is prohibitive. 

The Fast Metrics calculations contain many assumptions 

that must be handled carefully. It is recommended to use 

sufficient spectral sampling for target materials that 

contain significant spectral features. As the calculations 

implement a simple atmospheric approximation, it is also 

not recommended to use the current Fast Metrics lunar 

path radiance model when this is an important factor. 

Because of the significant increase in speed, 

implementing Fast Metrics calculations can improve the 

efficiency of various SSA operations. As the amount of 

space objects orbiting Earth and the number of 

observational sensors measuring such objects continue to 

increase, Fast Metrics will provide a scalable solution for 

modeling the performance of remote sensing systems 

while agreeing favourably with higher fidelity models. 
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