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ABSTRACT

This paper presents a survey of past and new results of
the application of advanced sampling techniques for or-
bital conjunction analysis and Near Earth Objects impact
probability computation. The theoretical background of
the methods is presented, along with the results of their
applications and a critical discussion of the benefits intro-
duced.
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1. INTRODUCTION

When dealing with space debris and Near Earth Objects
(NEO), the major threat for human activities in space and
global safety is represented by possible collisions. The
risk of in-orbit collisions between operative satellites and
space debris, indeed, is a crucial issue in satellite opera-
tion. When a close approach is identified, it is necessary
to define an indicator that can reasonably tell how risky
the predicted conjunction may be, and a common prac-
tice for space agencies and satellite operators is to con-
sider the collision probability for this purpose, together
with conjunction geometry and miss-distance [15]. On
the other hand, whenever a new asteroid is discovered, it
is of crucial importance to have accurate tools for detec-
tion and prediction of possible impacts. The task intro-
duces relevant challenges due to the imperative of early
detection and propagation of its state and associated un-
certainty, and the problem is made even more compli-
cated by the fact that the dynamics describing the mo-
tion of these objects is highly nonlinear, especially during
close encounters with major bodies.

Present day approaches for orbital conjunctions analysis
and robust detection and prediction of planetary encoun-
ters and potential impacts by NEO include simplified

models or full nonlinear approaches. Simplified mod-
els significantly reduce the required computational bur-
den, but their range of application is very narrow. On the
other hand, full nonlinear models, i.e. canonical Monte
Carlo (MC) simulations, represent a general and flexi-
ble way of approaching collision and impact probability
estimation, but they involve unavoidable intensive com-
putations, which may be not suitable for satellite-debris
daily collision probability computation or fast NEO im-
pact probability estimation. An elegant and effective
compromise was introduced by Milani, based on the con-
cept of the Line Of Variations (LOV) [18].

In recent times, new advanced Monte Carlo techniques,
such as the Importance Sampling (IS), Line Sampling
(LS) and Subsets Simulation (SS) methods were devel-
oped, aiming at reducing the computational burden by
either restricting the sampling phase space or identify-
ing optimal sampling paths within it. In parallel, an in-
tense study on alternative uncertainty propagation meth-
ods was carried out, and innovative approaches based on
the use of differential algebra (DA) were proposed. This
paper presents a series of combinations and applications
of the mentioned techniques to orbital conjunctions anal-
ysis and NEO impact probability computation. The prob-
lem of orbital conjunctions is faced combining the men-
tioned SS and LS techniques with DA, obtaining a high-
order, efficient tool that can be applied to any set of initial
states and using any arbitrary reference frame. The chal-
lenging task of NEO impact probability computation is
faced both directly applying the SS and LS techniques
and combining the IS method with DA. The presented
approaches offer competitive results in both fields, pro-
viding a significant improvement with respect to standard
MC performance while maintaining a sufficiently high
level of accuracy. For all the approaches, test cases are
presented, and a detailed analysis of the performance of
the proposed methods is offered.

The paper is organized as follows. First, a detailed the-
oretical description of differential algebra, Importance
Sampling, Line Sampling and Subset Simulation is of-

Proc. 1st NEO and Debris Detection Conference, Darmstadt, Germany, 22-24 January 2019, published by the ESA Space Safety Programme Office

Ed. T. Flohrer, R. Jehn, F. Schmitz (http://neo-sst-conference.sdo.esoc.esa.int, January 2019)



a, b ∈ R a, b ∈ FP

a× b

× ⊗

a⊗ b

T

T

f, g

f × g

× ⊗

T

T

F,G

F ⊗G

Figure 1: Analogy between the FP representation of real
numbers in computer environment (left) and the algebra
of Taylor polynomials in DA framework (right)[12].

fered. Then, the results of their application to orbital
conjunction analysis and NEO impact probability com-
putation are presented, along with a critical discussion of
benefits and limitations of the presented approaches.

2. THEORETICAL BACKGROUND

A detailed description of the methods presented in the ar-
ticle is offered in this section. The differential algebra
approach and its recent enhancements are presented in
the first part. Then, three advanced orbital sampling tech-
niques are described: Importance Sampling, Line Sam-
pling and Subset Simulation.

2.1. Differential Algebra and Automatic Domain
Splitting

Differential algebra provides the tools to compute the
derivatives of functions within a computer environment
[25, 26, 23, 24, 16, 7]. The basic idea of DA is to bring the
treatment of functions and the operations on them to the
computer environment in a similar way as the treatment
of real numbers [7]. Real numbers, indeed, are approxi-
mated by floating point (FP) numbers with a finite num-
ber of digits. In a similar way, suppose two sufficiently
regular functions f and g are given. In the framework
of DA, these functions are converted into their Taylor se-
ries expansions, F and G respectively (see Fig. 1). For
each operation in the function space, an adjoint opera-
tion in the space of Taylor polynomials is defined. As a
results, the implementation of DA in a computer environ-
ment provides the Taylor coefficients of any function of
v variables up to a specific order n: any function f of v
variables can be expanded into its Taylor expansion up to
an arbitrary order n, along with the function evaluation,
with a limited amount of effort. The Taylor coefficients
of order n for sum and product of functions, as well as
scalar products with real numbers, can be directly com-
puted from those of summands and factors. In addition to
basic algebraic operations, differentiation and integration
can be easily introduced in the algebra, thus finalizing
the definition of the differential algebra structure of DA
[5, 6]. The DA used in this work is implemented in the
DACE software [22].

A relevant application of DA is the automatic high or-
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Figure 2: ADS algorithm schematic illustration [28].

der expansion of the solution of an Ordinary Differen-
tial Equation (ODE) with respect to the initial conditions
[7, 13, 22]. This expansion can be achieved by consid-
ering that any integration scheme, explicit or implicit,
is characterized by a finite number of algebraic opera-
tions, involving the evaluation of the ODE right hand
side (RHS) at several integration points. By replacing
the operations between real numbers with those on DA
numbers, the nth order Taylor expansion of the flow of
the ODE, φ(t; δx0, t0) = Mφ(δx0), at each integration
time, for any perturbed initial condition x0 + δx0 can be
obtained.

While a single polynomial map can accurately describe
the evolution of an uncertainty set for short term propa-
gation or dynamics characterized by a low level of nonlin-
earities, which is a common case of orbital conjunctions,
the accuracy of a single polynomial maps drastically de-
creases as the propagation window increases or the ef-
fect of nonlinearities becomes more important. This is
the typical case of NEO long term propagations. The ap-
proximation error of the DA representation is strictly re-
lated to the size of the domain the polynomial is defined
in [28]. This means that, if one divides the initial do-
main into smaller domains and then computes the Taylor
expansion around the center points of the new domains,
the error can be reduced, still covering the entire initial
set with all the generated polynomial expansions. Start-
ing from these considerations, Automatic Domain Split-
ting (ADS) employs an automatic algorithm to determine
at which time ti the flow expansion over the set of ini-
tial conditions is no longer able to describe the dynam-
ics with enough accuracy [28]. Once this event has been
detected, the domain of the original polynomial expan-
sion is divided along one of the expansion variables into
two domains of half their original size. By re-expanding
the polynomials around the new centre points, two sepa-
rate polynomial expansions are obtained. In this way, the
splitting procedure guarantees a more accurate descrip-
tion of the whole uncertainty set at the current time epoch
ti. After such a split occurs, the integration process is re-
sumed on both generated subsets, until new splits are re-
quired. A representation of the ADS procedure is shown
in Fig. 2. The main degrees of freedom of the algorithm
are the tolerance for the splitting procedure and the max-
imum number of splits per subset. A detailed description
of the role of these parameters and ADS is offered in [28]
and [17].



2.2. Advanced orbital sampling techniques

Three advanced Monte Carlo sampling techniques are
presented in this section: Importance Sampling, Line
Sampling and Subset Simulation. All presented methods
aim at identifying the failure region of an uncertainty set
with the minimum amount of samples. For the problem
under study, failure is represented either by a collision in
orbital conjunction analysis or an impact for NEO impact
monitoring. The occurrence of the events is expressed by
the value of the performance function

gx(x0) = d(x0)−D (1)

where x0 represents a single initial condition for NEO
impact monitoring, a couple x0 = (x1

0,x
2
0) for conjunc-

tion analysis, d is a function that maps an initial condition
x0 to a performance index, and D is the selected criti-
cal distance. For conjunction analysis, the performance
index is the Distance of Closest Approach (DCA). For
impact monitoring, it is the minimum planetocentric dis-
tance. The critical distance is a threshold beyond which
a “failure” is identified. For conjunction analysis, this
threshold can be identified as half of the diameter of the
sphere including both objects [20]. For impact monitor-
ing, D represents the planet radius. According to this
definition, it follows that

gx(x0)


< 0 → failure
= 0 → limit state
> 0 → no failure

(2)

2.2.1. Importance Sampling

The Importance Sampling (IS) method amounts to re-
placing the original probability density function (pdf)
qx(x) with an Importance Sampling Distribution (ISD)
q̃x(x) arbitrarily chosen by the analyst so as to gener-
ate a large number of samples in the importance region
of the phase space F . This region represents the set of
initial conditions leading to collisions in orbital conjunc-
tion analysis or impacts for NEO impact monitoring. The
general IS algorithm is the following:

1. Identify a proper q̃x(x).

2. Express the failure probability P (F ) as a function
of q̃x(x).

P (F ) =

∫
IF(x)qx(x)dx =

=

∫
IF(x)qx(x)

q̃x(x)
q̃x(x)dx

(3)

where IF(x) : IRv → {0, 1} is an indicator function
such that IF(x) = 1 if x ∈ F , 0 otherwise.

3. Draw NT samples xk : k = 1, 2, . . . , NT from the
importance sampling distribution q̃x(x). If a good
choice for the auxiliary pdf is made, the generated
samples concentrate in the region F .

4. Compute the estimate P̂ (F ) for the failure probabil-
ity P (F ) by resorting to equation (3):

P̂ (F ) =
1

NT

NT∑
k=1

IF(xk)qx(xk)

q̃x(xk)
(4)

5. Compute the variance of the estimator P̂ (F ) as:

σ2(P̂ (F )) =
1

NT

(∫
I2F (x)q2x(x)

q̃2x(x)
q̃x(x)dx

− P 2(F )

)
≈ 1

NT

( ̂P 2(F )− P̂ 2(F )
)
(5)

The selection of the ISD represents the most critical point
for the method. Several techniques have been developed
in order to find the one giving small variance for the es-
timator [30]. As later described in Sec. 4, this sampling
method can be combined with DA for NEO impact mon-
itoring, and the ISD can be modelled according to the
results of the DA propagation.

2.2.2. Line Sampling

The Line Sampling (LS) method is a Monte Carlo-based
approach for the estimation of small probabilities. The
main idea behind LS is to transform a high-dimensional
problem into a number of conditional one-dimensional
problems solved along an important direction α. The LS
method follows four steps: 1) the mapping of random
samples from the physical coordinate space into a nor-
malized standard space, 2) the determination of the ref-
erence direction α, 3) the probing of the failure region
along lines following the reference direction α, 4) the es-
timation of the failure probability.

In the LS approach, a vector of uncertain parameters
x0 ∈ IRn is first transformed into the adjoint vector
θ ∈ IRn belonging to the so-called “standard normal
space”, where each variable is represented by an inde-
pendent central unit Gaussian distribution. This is done
by relying on Rosenblatt’s transformation [27]

θ = Tx,θ(x0)

x0 = Tθ,x(θ)
(6)

A natural choice for the important direction is the normal-
ized gradient of the performance function at the nominal
point in the standard normal space

α =
∇θgθ(θ)

||∇θgθ(θ)||2
(7)

If not available analytically, the gradient can be estimated
numerically. Another approach consists in obtaining an
estimate by computing the normalized centre of mass of
the failure domain. This is achieved by Monte Carlo



Markov Chain (MCMC), using as seed a point belong-
ing to the failure region or close to it, and computing the
mean of the Ns samples generated in the failure region.
Once the important direction is identified, the LS method
proceeds as follows [20]:

• Sample NT vectors θ from the normal multidimen-
sional joint probability distribution.

• For each sample i, estimate its conditional one-
dimensional failure probability P̂ i. This task is
solved performing the following operations (see also
Fig. 3)

– Project the vector θi onto the straight line pass-
ing through the origin and perpendicular to α
to obtain the vector θi,⊥.

– Write the parametric equation of samples
along the important direction θi = θi,⊥ + cα

– Compute the values of cij , with j = 1, 2,
for which the performance function is equal
to zero. This step requires the evaluation of
the performance function, which involves ex-
tra numerical propagations.

– If the two values are coincident or no solution
is found, then the ith one-dimensional prob-
ability P̂ i is equal to zero, otherwise, given
the two solutions ci1 and ci2, the probability be-
comes

P̂ i(F ) = P [ci2 ≤ N(0, 1) ≤ ci1] =

= Φ(ci1)− Φ(ci2)

where Φ(cij) is the standard normal cumulative
distribution function, N(0, 1) is the standard
normal distribution, with zero mean and unit
standard deviation, and F is the failure event
(in-orbit collision for conjunction analysis or
NEO impact for impact monitoring).

• Compute the unbiased estimator P̂NT(F ) as the
sample average of the independent conditional one-
dimensional probability estimate

P̂NT(F ) =
1

NT

NT∑
i=1

P̂ i(F ) (8)

The variance of the estimator is given by

σ2(P̂NT(F )) =
1

NT(NT − 1)

NT∑
i=1

(P̂ i(F )−P̂NT(F ))2

(9)

2.2.3. Subset Simulation

The Subset Simulation (SS) method is a Monte Carlo
method based on the principle of computing small failure

Figure 3: Scheme of the iterative procedure used to sam-
ple each line in the standard normal coordinate space.
The failure region is labeled with F, with a single border
highlighted as a red line (image courtesy of [31]).

probabilities as the product of larger conditional proba-
bilities [3, 8, 32]. Given a target failure event F , let
F1 ⊃ F2 ⊃ ... ⊃ Fn = F be a sequence of interme-
diate failure events, so that Fk = ∩ki=1Fi. Considering
a sequence of conditional probabilities, then the failure
probability can be written as

P (Fn) = P (F1)

n−1∏
i=1

P (Fi+1|Fi) (10)

where P (Fi+1|Fi) represents the probability of Fi+1

conditional to Fi.

The method is initialized using standard Monte Carlo
to generate samples at the so called conditional level 0
(CL 0) starting from the available nominal state vectors
and related uncertainties of the investigated objects. The
number of samples generated at this level is maintained
for each generated conditional level and it is referred to
as N . Once the failure region F1 is identified, a MCMC
Metropolis Hastings algorithm is used to generate con-
ditional samples in the identified intermediate failure re-
gion. Another intermediate region is then located, and
other samples are generated by means of MCMC. The
procedure is repeated until the failure region is identi-
fied. A scheme of the method is shown in Fig 4. In the
presented approach, the intermediate failure regions are
identified by assuming a fixed value of conditional prob-
ability P (Fi+1|Fi) = p0. The identification of each con-
ditional level, therefore, is strictly related to this value,
and changes accordingly step by step, as explained in the
followings. The resulting Subset Simulation algorithm
follows the general description offered in [20] and goes
through the following steps:

1. Set i = 0 and generate N samples x0,k
0 , k =

0, ..., N at conditional level 0 by standard Monte
Carlo.
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Figure 4: Subset Simulation process: a), initialization by standard MC, b), CL 1 identification, c), samples generation by
means of MCMC, d), new iterations and impact region identification (image courtesy of [17]).

2. Propagate each sample for the selected time window
and compute its performance function, defined as

gix(x0) = d(x0)−Di

{
< 0 → x0 ∈ (i)th CL
> 0 → x0 /∈ (i)th CL

(11)
where Di is the current threshold, whereas d is a
function that provides, for each sample, its perfor-
mance index. For conjunction analysis, the index
is the Distance of Closest Approach, for NEO im-
pact probability computation, this index represents
the minimum planetocentric distance.

3. Sort the N samples in descending order according
to their associated value of performance function.

4. Identify an intermediate threshold valueDi+1 as the
(1− p0)N th element of the list. Define the (i+ 1)th
conditional level as Fi+1 = {d < Di+1}. Consid-
ering how the threshold was defined, the associated
conditional probability P (Fi+1|Fi) = p0

5. If Di+1 < D, go the last step, otherwise select the
last p0N samples of the list xi,j0 , j = 0, ..., p0N .
By definition, these samples belong to the (i + 1)th
conditional level.

6. Using MCMC, generate (1−p0)N additional condi-
tional samples starting from the previously selected

seeds belonging to Fi+1. A sample is set to belong
to Fi+1 according to its performance function value.

7. Set i = i+ 1 and return to step 2

8. Stop the algorithm.

The total number of generated samples is

NT = N + (n− 1)(1− p0)N (12)

where n is the overall number of conditional levels re-
quired to reach the failure region. Since the conditional
probability is equal to p0 for each level, the failure prob-
ability becomes:

P (F ) = P (Fn) = P (Fn|Fn−1)pn−10 =

= pn−10 NF/N
(13)

where NF is the number of samples belonging to the fail-
ure region.

A Bayesian post-processor for SS (SS+) is suggested in
[32] to refine the computed failure probability and deter-
mine higher moments. If we define

nl =

{
p0N if l < n
NF if l = n

(14)



Table 1: Time, distance and velocity of closest approach for the Keplerian test cases and reference values for collision
probability [20].

Test case TCA (days) DCA (m) ∆vTCA (m/s) D (m) P̂c (MC) NT [11] P̂c [2] % err (-)

5 2.0 2.449 0.520 10 4.454e-2 2.30e6 4.440e-2 -0.32%
6 2.0 2.449 0.173 10 4.340e-3 2.50e7 4.324e-3 -0.36%
7 2.0 3.183 0.196 10 1.614e-4 6.71e8 1.580e-4 -2.13%

the first moment of the distribution of the failure proba-
bility becomes

ESS+ [P ] =

n∏
l=1

nl + 1

N + 2
(15)

whereas the second moment is expressed by

ESS+ [P 2] =

n∏
l=1

(nl + 1) (nl + 2)

(N + 2)(N + 3)
(16)

The variance of the estimator, therefore, can be computed
as

σ2(P ) = E[P 2]− (E[P ])2 (17)

Equations 15 and 17 will represent our reference for the
analyses presented in this paper.

3. ORBITAL CONJUNCTION ANALYSIS

The estimation of the collision probability for in-orbit
conjunction analysis requires the computation of a multi-
variate integral. Different methods exist for the computa-
tion of this multi-dimensional integral[1, 4, 21]. Most of
these approaches rely on strong assumptions, assuming
uncorrelated position uncertainties for the two objects,
objects moving along straight lines at constant velocity
during the conjunction, negligible uncertainties in veloc-
ity, and constant, multi-dimensional Gaussian uncertain-
ties in position during the whole encounter for both ob-
jects. These assumptions produce accurate results when
the relative motion between the satellite and the object is
rectilinear and the conjunction occurs close to the initial
epoch.

Methods that account for nonlinearities, which are usu-
ally relevant for GEO conjunctions, typically rely on an-
alytical methods or Monte Carlo simulations. Despite be-
ing a general and flexible way to compute collision proba-
bility, the MC approach has the main drawback of requir-
ing intensive computation. For this reason, MC methods
are not suitable for daily collision probability computa-
tion, since the results can be obtained in a timely manner
only relying on simplified orbital dynamics, such as two
body propagators or SGP4/SDP4.

The approach illustrated in this paper was first pre-
sented in [20] and combines the previously described

DA method with standard MC, LS and SS, obtaining the
DAMC, DALS and DASS methods for orbital conjunc-
tion analysis. The basic idea is to use DA to obtain the
Taylor expansion of the Time of Closest Approach (TCA)
and the Distance of Closest Approach (DCA) of the two
orbiting objects. The occurrence of close approaches
is first identified using the nominal initial orbital states.
Then, DA is used to propagate sets of initial conditions
by computing the Taylor expansion of the final states x1

f

and x2
f at the nominal TCA. The resulting polynomials

are functions of both the final time and the initial un-
certain state vectors x1

0 and x2
0. The polynomial map of

the relative distance between the two objects is then com-
puted through simple algebraic manipulations. By using
partial polynomial inversion techniques and imposing the
stationarity condition of the relative distance with respect
to time, the Taylor expansions of TCA and DCA with re-
spect to x1

0 and x2
0.

[t∗] = t∗ +Mt∗(δx1
0, δx

2
0)

[d∗] = d∗ +Md∗(δx1
0, δx

2
0)

(18)

are computed. Given any perturbed initial condition of
the two objects (δx1

0, δx
2
0), the evaluation of the two

Taylor polynomials provides the values of the TCA and
DCA. This enables a drastic reduction of the computa-
tional cost by replacing standard propagations with multi-
ple polynomial evaluations. At this stage, the sampling is
performed relying either on MC, LS or SS, taking advan-
tage of the availability of the resulting polynomial maps.
In particular, for the DALS method, the availability of
the DCA expansion is exploited for the computation of
the important direction α, whereas all numerical propa-
gations of the standard algorithm are replaced by numeri-
cal evaluations. A detailed explanation is offered in [20].
For DAMC and DASS, the advantages are limited to the
replacement of numerical propagations.

We present here the results of the application of the
proposed methods for three different test cases taken
from [2], where simple Keplerian dynamics is used for
performance comparison. Results and figures are taken
from [20]. The comparison is done considering the num-
ber of propagated samples NT, the standard deviation of
the estimated collision probability σ, the coefficient of
variations δ = σ/P̂ , and the figure of merit ∆, defined as

∆ = δ
√
NT (19)

The selected figure of merit does not depend on the num-
ber of samples, since for Monte Carlo methods σ ∝



Table 2: Computed collision probability for the Keplerian test cases. The comparison is shown in terms of relative error
with respect to reference P̂c, number of samples NT, computational time tCPU, coefficient of variations δ and figure of
merit ∆ [20].

Test case Method P̂c (-) % err (-) NT tCPU (s) δ (-) ∆ (-)

5

MC 4.452e-2 -0.05% 1.0e5 4.75 1.465e-2 4.63
DAMC 4.459e-2 +0.11% 1.0e5 0.67 1.464e-2 4.63
DALS 4.451e-2 -0.07% 5.0e3 2.53 7.662e-4 0.05
DASS 4.450e-2 -0.09% 2.0e4 0.13 2.738e-2 3.87

6

MC 4.339e-3 -0.01% 1.0e6 43.21 1.515e-2 15.14
DAMC 4.350e-3 +0.24% 1.0e6 6.67 1.513e-2 15.13
DALS 4.341e-3 +0.03% 5.0e3 2.58 1.484e-3 0.11
DASS 4.328e-3 -0.27% 4.0e4 0.27 3.586e-2 7.17

7

MC 1.615e-4 +0.04% 2.7e7 1155.36 1.514e-2 78.68
DAMC 1.612e-4 -0.15% 2.7e7 179.34 1.516e-2 78.76
DALS 1.621e-4 +0.41% 5.0e3 1.43 1.936e-2 1.37
DASS 1.626e-4 +0.72% 6.0e4 0.43 4.580e-2 11.22

particular, it is worth noting that for order k ¼ 4 it also
exceeds the computational time of pointwise MC, that
for test case 5 requires a lower number of samples. Never-
theless, the computational effort of DALS and DASS

decreases for lower collision probability, becoming nearly
103 times lower than the one of a standard Monte Carlo
method for test case 7.

The figure of merit D, normalized for each test case with
the value of the standard Monte Carlo method, is plotted
against the collision probability P c in Fig. 8(a). The same
criteria used in Fig. 7 for markers coloring and shape is
used, i.e. different markers are used for each method and
they are colored according to the expansion order using a
gray scale. The normalized unitary c.o.v. is equal to 1 for
the DAMC since the same number of samples of the stan-
dard Monte Carlo method is used. The lower value is
achieved with DALS, which is two order of magnitude
lower than DAMC. The efficiency of DASS increases for
lower probabilities. The use of different expansion orders
does not affect the final value of the normalized D, since
points are overlapping and indistinguishable. The only
exception is found for DALS in cases 5 and 6, where the
normalized D is slightly higher when k ¼ 1. This is proba-
bly due to a slightly lower accuracy of the first-order
DCA expansion in those cases.

The figure of merit X is plotted versus the collision prob-
ability in Fig. 8(b), again normalized with respect to the
value obtained with the standard Monte Carlo method.
Since the computational time increases with the expansion
order as shown in Fig. 7, the value of X decreases for

Fig. 6. Comparison of the collision probability obtained with the tested methods for the Keplerian test cases. The DA expansion order is k ¼ 3 for
DAMC, DALS, and DASS. The solid black line is the reference value for collision probability and the gray lines are the 5% relative error bounds.

Fig. 7. Normalized computational time of DAMC, DALS, and DASS for
the Keplerian test cases vs. collision probability for different expansion
orders. Markers are colored using a grayscale, where black is used for the
expansion order k ¼ 1 and lighter gray for k ¼ 4.
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higher order. The best performing among the three
methods for the considered test cases is DALS, since the
normalized figure of merit is at least 10 times larger than
the one of DASS and 102 times larger than DAMC. For
test case 7, where collision probability is lower, the effi-
ciency of DASS in terms of X is higher than the other cases.
Note that the value of X for an expansion order k ¼ 1 is
lower than the one obtained with k ¼ 2 for DALS for test
case 5 and 6. As stated before, the reason is the slightly
lower accuracy of the map in this case, that is not mitigated
by the lower computational time.

To conclude this analysis, the collision probability com-
puted with Alfano’s formula and the DA-based methods
with an expansion order k ¼ 1 are compared in Table 3.
It can be observed that using a first-order DA expansion
the percentage relative error is similar to that obtained
using Alfano’s method for test case 7, where the relative
motion is no more linear. The DA-methods at first
order are therefore equivalent to Alfano’s analytical
approximation.

4.2. Comparison of the methods on real conjunctions

In this section four test cases are considered to test the
algorithms for collision probability computation. The

selected test cases include LEO and GEO close encounters
with different relative velocity at TCA. The selected test
cases are listed in Table 4: the satellites involved in each
conjunction case and the associated orbital regimes are
listed in the second and third column; the other columns
report the TCA, DCA, the relative velocity at TCA, and
the collision threshold D used for the computation of P c.
On the last column the collision probability computed
using Alfano’s formula is listed. The initial orbital states
used for orbit propagation with AIDA are listed in Appen-
dix A.

The collision probability is computed with DAMC,
DALS, and DASS for each test case, and the results are
listed in Table 5. Uncertainties on both position and veloc-
ity are considered in these simulations. The variance of the
initial positions and velocities are estimated from pseudo
observations generated using TLE and SGP4/SDP4 and
are given in Appendix A. In Morselli et al. (2014) it was
shown that, for similar range of uncertainties, the error
of a third order Taylor expansion of the DCA is lower than
the collision threshold for a maximum propagation time of
one week.

The number of samples of the DAMC are estimated
using Eq. (10) considering a relative error e ¼ 5%, whereas
the number of samples for DALS is fixed to 5� 103 and the

Fig. 8. Normalized figures of merit D and X of DAMC, DALS, and DASS for the Keplerian test cases vs. collision probability for different expansion
orders. Markers are colored using a gray scale, where black is used for the expansion order k ¼ 1 and lighter gray for k ¼ 4.

Table 3
Comparison of the collision probability computed with Alfano’s method and the DA-based methods for the Keplerian test cases with a DCA expansion of
order k ¼ 1.

Test case P c (Alfano) % err [�] P c (DAMC) % err [�] P c (DALS) % err [�] P c (DASS) % err [�]

5 4.440E � 02 �0.32% 4.444E � 02 �0.23% 4.448E � 02 �0.14% 4.432E � 02 �0.50%
6 4.324E � 03 �0.36% 4.337E � 03 �0.06% 4.332E � 03 �0.18% 4.361E � 03 +0.49%
7 1.580E � 04 �2.13% 1.580E � 04 �2.13% 1.568E � 04 �2.87% 1.584E � 04 �1.88%
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(b)

Figure 5: Normalized computational time tCPU (a) and figure of merit ∆ (b) of DAMC, DALS and DASS for the three
considered test cases vs collision probability for different expansion orders. Markers are colored using a grey scale, where
black is used for the expansion order k = 1 and light gray for k = 4 [20].

1/
√
NT. It is designed to enable the comparison of differ-

ent methods in terms of accuracy and number of samples
required to reach that accuracy level. The three consid-
ered test cases are labeled as test case 5, 6 and 7, and are
characterized by linear relative motion between the two
objects, motion at the boundary of linear relative motion
and nonlinear relative motion respectively.

Table 1 shows the characteristics of the three selected
cases in terms of time, distance, and relative velocity
at the closest approach ∆vTCA, along with the reference
value for the collision probability as obtained with stan-
dard Monte Carlo simulation. The value of NT used for
MC simulations was selected according to [11]. For each
trial, two sets of initial conditions are sampled from each

initial covariance matrix and the associated DCA is com-
puted in the proximity of the nominal TCA. The last two
columns of the table show the collision probability ob-
tained using Alfano’s formula and its associated percent-
age relative error to the reference.

Table 2 shows the results obtained with the three pro-
posed DA-based approaches. The results are expressed
in terms of expected collision probability P̂c, relative er-
ror with respect to reference, number of required samples
NT, computational time tCPU, coefficient of variation δ
and figure of merit ∆. For all simulations, an expansion
order k for DA propagation equal to 3 was considered.
As can be seen, for all three test cases, the computed col-
lision probability values are in good agreement with the



Table 3: Nominal equinoctial parameters and related uncertainty covariance matrix for asteroid 2017 RH16 at 6475
MJD2000 (September 24, 2017).

a (AU) P1 (-) P2 (-) Q1 (-) Q2 (-) l (deg)

State 0.8752 -0.1867 -0.4014 -0.0020 0.0050 319.9653

Cov.

9.7910e-08 1.2616e-08 3.6644e-08 -1.1067e-09 -2.2278e-10 -2.2745e-06
1.2616e-08 1.8745e-09 5.2329e-09 -1.3999e-10 -3.7340e-11 -2.1989e-07
3.6644e-08 5.2329e-09 1.4767e-08 -4.0882e-10 -1.0114e-10 -7.0073e-07

-1.1067e-09 -1.3999e-10 -4.0882e-10 1.2541e-11 2.4080e-12 2.6480e-08
-2.2278e-10 -3.7340e-11 -1.0114e-10 2.4080e-12 9.2142e-13 2.6346e-09
-2.2745e-06 -2.1989e-07 -7.0073e-07 2.6480e-08 2.6346e-09 7.4365e-05

reference values. A first consideration on the use of dif-
ferential algebra can be made by comparing the perfor-
mance of MC and DAMC for all three selected test cases.
By analyzing the required computational time, indeed,
it is evident that, as the expected probability decreases,
the required number of samples increases, and the advan-
tages guaranteed by the introduction of the polynomial
map become more and more evident. A second consid-
eration can be done by comparing the results of DAMC
with DALS and DASS. As can be seen, for all three test
cases, both methods guarantee good accuracy levels with
a number of samples that is at least one order of magni-
tude lower than what required by MC and DAMC. This
difference increases as the expected collision probability
decreases. This fact has obviously a direct positive con-
sequence on the value of the figure of merit ∆.

The performance of all three DA-based methods is
strongly influenced by the selected expansion order. As
the expansion order increases, the accuracy obtained in
the definition of the polynomial maps increases, but the
required computational time increases as well. Figure 5a
shows the computational time required by the three DA-
based methods, normalized with respect to the computa-
tional time of standard MC, as a function of the collision
probability, for expansion orders from 1 to 4. A greyscale
is used, with black for k = 1 and light gray for k = 4.
Different markers are used for the three methods: squares
for DAMC, circles for DALS and triangles for DASS.
Let us concentrate the analysis on the performance of
DALS and DASS. As can be seen, for each method, the
required computational time increases as the expansion
order increases, and the advantages with respect to stan-
dard MC increase as the expected collision probability
decreases. In particular, DALS becomes progressively
more and more appealing with decreasing collision prob-
abilities.

Figure 5b shows the figure of merit ∆, normalized for
each test with the value of the standard Monte Carlo
method, as a function of the collision probability. The
same criteria used in Fig. 5a are used here. The normal-
ized unitary coefficient of variations is equal to 1 for the
DAMC since the same number of samples of standard
MC is used. The lower value is achieved with DALS,
which is two orders of magnitude lower than DAMC. The

efficiency of DASS increases for lower probabilities. As
can be seen, the effect of the expansion order in this case
is negligible. Overall, both DALS and DASS offer a valu-
able alternative tool with respect to standard MC for con-
junction analysis.

4. NEO IMPACT PROBABILITY COMPUTA-
TION

Present day approaches for robust detection and predic-
tion of planetary encounters and potential impacts by
NEO mainly refer to linearized models [9] or full nonlin-
ear orbital sampling [29, 10, 19]. Among nonlinear meth-
ods, the Line of Variations (LOV) method [19] represents
the reference technique for impact probability computa-
tion of NEO.

The preferred approach to detecting potential impacts de-
pends on the uncertainty in the estimated orbit, the in-
vestigated time window and the dynamics between the
observation epoch and the epoch of the expected impact
[14]. Linear methods are preferred when linear approxi-
mations are reliable for both the orbit determination and
uncertainty propagation. When these assumptions are not
valid, one must resort to more computationally intensive
techniques: among these, Monte Carlo methods are the
most accurate but also the most computationally inten-
sive, whereas the LOV method guarantees compute times
3-4 orders of magnitude lower than those required in MC
simulations, though the LOV analysis may grow quite
complex after it has been stretched and folded by mul-
tiple close planetary encounters, leaving open the possi-
bility of missing some pathological cases [14].

Two different approaches are described in this paper: for
the general problem of NEO impact probability compu-
tation, the presented LS and SS methods are directly ap-
plied, providing an efficient tool for impact monitoring.
The special case of resonant return analysis is faced us-
ing a dedicated combination of ADS and IS. For each
method, a single test case is presented. The propaga-
tions are carried out in Cartesian coordinates with re-
spect to the J2000 reference frame centered in the So-
lar System Barycenter (SSB), with the inclusion of the
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Figure 6: Visualization of the initial dispersion in the uncertainty space (δα,δl) in the case of asteroid 2017 RH16: a)
initial conditions leading to impact obtained via standard MC, b) boundaries of the subdomain identified via LS, c)
samples per conditional level obtained with SS.

Table 4: Application of Line Sampling and Subset Simulation to the case of asteroid 2017 RH16 against standard Monte
Carlo simulation.

NIC NT P̂ (-) σ̂ (-) δ (-) ∆ (-)

MC 5e4 5e4 1.42e-3 1.68e-4 1.19e-1 26.61

LS (ref) 1e3 8245 1.56e-3 7.19e-5 4.60e-2 4.18
LS (σMC) 164 1557 1.43e-3 1.70e-4 1.19e-1 4.70
LS (NMC

T ) 6250 5.02e4 1.52e-3 2.85e-5 1.89e-2 4.19

SS (ref) 1e3 2.8e3 1.45e-3 2.24e-4 1.55e-1 8.19
SS (σMC) 2e3 5.6e3 1.43e-3 1.57e-4 1.10e-1 8.27
SS (NMC

T ) 1.8e4 5.04e4 1.42e-3 5.20e-5 3.66e-2 8.22

gravitational contributions of the Sun, all the major plan-
ets, and the Moon, including relativity effects [28]. All
the physical constants (gravitational parameters, plane-
tary radii, etc.) and ephemerides are obtained from the
JPL Horizons database via the SPICE toolkit (https:
//naif.jpl.nasa.gov/naif/). All propagations
are carried out in dimensionless units (with the scaling
length and time respectively equal to 1 AU and 1 solar

year) using the adaptive Dormand-Prince Runge-Kutta
scheme of 8th order (RK78), with absolute and relative
tolerances both equal to 1e-12.

The first test case presented is asteroid 2017 RH16. As-
teroid 2017 RH16 will encounter the Earth at short dis-
tance in 2026, with a currently expected impact probabil-
ity of 1:689. Table 3 shows the initial conditions in terms

https://naif.jpl.nasa.gov/naif/
https://naif.jpl.nasa.gov/naif/
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Figure 7: Projection of the generated subsets onto the a− l plane of the initial conditions for test case of asteroid 99942
Apophis (ADP propagation, order 5, tolerance 1e-10, Nmax 10, 5σ domain). In light blue, boundaries of the ISD [17].

Table 5: Apophis equinoctial parameters and related un-
certainties on June 18, 2009 00:00:00 (TDB).

Nominal value σ

a 0.922438242375914 2.29775e-8 AU
P1 -0.093144699837425 3.26033e-8 -
P2 0.166982492089134 7.05132e-8 -
Q1 -0.012032857685451 5.39528e-8 -
Q2 -0.026474053361345 1.83533e-8 -
l 88.3150906433494 6.39035e-5 ◦

of nominal equinoctial parameters and related uncertain-
ties, as obtained from the Near Earth Objects Dynamic
Site1. This case was used to test the presented LS and SS
method against the computation of the impact probability
value in 2026.

Figure 6 shows the results of the numerical simulations
obtained with standard MC, LS and SS, in terms of sam-
ples distribution on the semi-major axis- true longitude
(a − l) plane of initial conditions. Figure 6(a) shows the
results of standard MC, with impacting samples repre-
sented in red. Fig. 6(b) shows the results obtained with
LS. Grey dots represent samples drawn from the initial
distribution that do not lead to impact, whereas green
dots are the initial conditions along the boundaries of the
impact regions resulting from the LS application. Fig-
ure 6(c), finally, shows the evolution of the conditional
samples obtained with SS. The method was applied by
employing 1000 samples per conditional level, a fixed
conditional probability equal to 0.2, and an auxiliary dis-
tribution centered in the current sample and with the same
magnitude of the original one. Blue dots represent sam-
ples drawn at CL0 by standard MC, whereas different

1http://newton.dm.unipi.it/neodys/

colors are used for each conditional level. The algorithm
rapidly identifies the impact region, and after three con-
ditional levels, the current threshold distance becomes
lower than the Earth radius, and the algorithm stops.

An overview of the obtained performance is shown in Ta-
ble 4. For both LS and SS, three results are presented:
the results at convergence, the results obtained using a
number of samples granting the same accuracy level of
standard MC (σMC), and the results obtained performing
the same number of propagations of standard MC (NMC

T ).
The comparison between the methods is performed by
analyzing the number of random initial conditions NIC,
the total number of orbital propagations NT, the impact
probability estimate P̂ , the standard deviation σ̂ of P̂ , the
coefficient of variation δ of the probability estimate and
the figure of merit ∆. The overall number of propaga-
tions NT was selected as a term of comparison for the
computational burden of the methods. As can be seen,
both methods allows us to improve the performance of
standard MC both in terms of achievable accuracy and
computational cost. That is, the same accuracy level of
standard MC simulation can be obtained by performing
a number of propagations that is one order of magnitude
lower for both LS and SS, or a higher accuracy level can
be obtained by propagating the same number of samples
used for standard MC. This result is confirmed by the
value of the figure of merit ∆.

The critical case of impact probability computation of
NEO during resonant returns is here faced combining
ADS and IS. The method, referred to as ADP-IS, was
presented in [17] and can be divided in two phases. Dur-
ing the first phase, the epoch of the resonant return is es-
timated with DA, and the uncertainty set is propagated
in time by means of ADS. A tailored pruning action is
introduced during the propagation, and only subsets that
are involved in the resonant return of interest are main-
tained throughout the propagation. At the end of the first

http://newton.dm.unipi.it/neodys/


Table 6: Comparison between standard MC and ADP-IS method for the test case of the resonant return of asteroid 99942
Apophis [17].

NT tCPU / sample (s) P̂ (-) σ̂ (-)

MC 1.0e6 1.2 2.20e-5 4.71e-6
ADP-IS 341804 0.012 1.90e-5 6.81e-6

phase, several subdomains are generated only in specific
regions of the initial uncertainty set. At this point, the
sampling phase starts. An ISD is shaped on the basis of
the generated subsets, and the IS phase is started. Sam-
ples are propagated to the epoch of the expected resonant
return, and impacting samples are recorded. The proce-
dure terminates when the variations in the estimated im-
pact probability becomes lower than a selected threshold.

The method is here presented for the critical case of as-
teroid 99942 Apophis. Table 5 shows the nominal ini-
tial state and associated uncertainties σ for Apophis on
June 18, 2009 expressed in terms of equinoctial param-
eters p = (a, P1, P2, Q1, Q2, l), considering a diagonal
covariance matrix. Data were obtained from the Near
Earth Objects Dynamic Site in September 2009. Asteroid
Apophis will have a close encounter with Earth on April
13, 2029 with a nominal distance of 3.8e4 km. Accord-
ing to the selected initial conditions, though an impact in
2029 can be ruled out, the perturbations induced by the
encounter open the door to resonant returns in 2036 and
2037. The aim is therefore to apply the presented method
to provide an estimate for the impact probability at the
epoch of the first resonant return, in 2036.

Figure 7 shows the results of the first propagation phase
in terms of subdomains distribution on the a − l plane.
The method was applied considering an uncertainty set
of 5σ size, an expansion order of the ADS propagation
equal to 5, a maximum number of splits equal to 10, and a
tolerance for the splitting procedure equal to 1e-10. Each
subdomain is coloured according to the epoch at which
its DA propagation was stopped. The subdomains distri-
bution represents the starting point for the second phase,
based on IS. First, an ISD including all the generated sub-
sets is defined. Figure 7 shows in light blue the bound-
aries of this ISD as projected onto the a− l plane. Then,
the sampling phase starts: samples are generated on the
basis of the ISD, each sample is associated, if possible,
to a specific subset, and it is propagated to the epoch of
minimum geocentric distance. All impacting samples are
stored, and an estimate for the impact probability is ob-
tained. Table 6 shows the results for the considered case,
and a comparison with standard MC. Given the different
propagation window for samples of the two method, an
equivalent computational time per sample is introduced
here as a term of comparison. As can be seen, the combi-
nation of ADS and IS guarantees a significant reduction
in the required computational time, still providing good
accuracy levels.

5. CONCLUSIONS

This paper presented an overview of past and present re-
sults obtained applying advanced uncertainty propagation
and sampling techniques to the challenging tasks of in-
orbit conjunction analysis and NEO impact probability
computation. All presented approaches offer great bene-
fits in terms of computational effort with respect to stan-
dard Monte Carlo approach, while granting a competitive
accuracy level. Our research activity is currently devoted
to the enhancement of the presented NEO impact prob-
ability computation tools, with the aim of widening the
range of test cases and obtaining a more robust tool for
impact monitoring.
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