
BACARDI: A SYSTEM TO TRACK SPACE DEBRIS

M. Stoffers(1), M. Meinel(2), M. Weigel(3), M. Siggel(4), H. Fiedler(5), K. Rack(6), and Y. Wasser(7)

(1)German Aerospace Center, Simulation and Software Technology, Cologne, Germany, Email: martin.stoffers@dlr.de
(2)German Aerospace Center, Simulation and Software Technology, Berlin, Germany, Email: michael.meinel@dlr.de

(3)German Aerospace Center, Space Operations and Astronaut Training, Oberpfaffenhofen, Germany, Email:
martin.weigel@dlr.de

(4)German Aerospace Center, Simulation and Software Technology, Cologne, Germany, Email: martin.siggel@dlr.de
(5)German Aerospace Center, Space Operations and Astronaut Training, Oberpfaffenhofen, Germany, Email:

hauke.fiedler@dlr.de
(6)German Aerospace Center, Simulation and Software Technology, Cologne, Germany, Email: Kathrin.Rack@dlr.de

(7)German Aerospace Center, Space Operations and Astronaut Training, Oberpfaffenhofen, Germany, Email:
yi.wasser@dlr.de

ABSTRACT

We present the ”Backbone Catalogue of Relational De-
bris Information” (BACARDI) as an effort of the German
Aerospace Center (DLR) to keep track of cooperative and
uncooperative orbital objects. Key features of BACARDI
are a database storing information about all known orbital
objects, and a set of processing services that produce or-
bit information and different products like collision warn-
ings.

Keywords: space situational awareness, space debris, or-
bit database, workflow system.

1. INTRODUCTION

The ,,Backbone Catalogue of Relational Debris Informa-
tion” (BACARDI) has been developed in a joint approach
of the German Space Operation Center (GSOC) and DLR
Simulation and Software Technology. It’s aim is to pro-
vide an unified database that contains orbit information
of active satellites and space debris in Earth’s orbit and
related data products.

This paper describes the technical approaches taken to
develop the BACARDI system:

• First we give a broad overview of the system as a
whole in Section 2.

• The main part of this paper describes the software
of the BACARDI system in Section 3. After an ar-
chitectural overview we focus on technical details li-
braries and frameworks and how they are integrated
to build-up the system.

• Towards the end we present some existing and
planned services that will be provided by BACARDI
in Section 4

• Finally we close with our conclusions in Section 5.

2. BACARDI OVERVIEW

BACARDI itself is a large-scale Python-based software
platform to register and track orbital objects like space
debris and satellites. The system supports different rep-
resentations of orbital objects like TLE, osculating or-
bits, or ephemerides. Thus it allows for keeping track
of objects from different sources with the aim to com-
pile a database with highest completeness of known ob-
jects orbiting Earth and achieve precise orbit accuracy. To
achieve this, data is collected from external databases as
well as sensor networks all around the globe. Especially,
SMARTnetTM [11] provides tracking data from a network
of ground-based telescopes operated by DLR, AIUB (As-
tronomical Institute of the University of Bern) and ADS
(Applied Defence Solution). For computation, the plat-
form integrates the Fortran flight dynamic libraries of the
German Space Operation Center (GSOC) and combines
its capabilities with the database.

BACARDI is designed to be scalable. At the core of the
software a database with the orbital and meta information
of all known objects is maintained. New tracklets, which
are time series of measurements of the same object within
a certain time span, are correlated with known objects to
allow for orbit improvements of already recorded orbits,
detection of manoeuvres, and in the case of negative cor-
relation new objects can be detected. Also a regular col-
lision detection for all known objects will be performed
in the near future.

While the amount of recorded objects grows, additional

Proc. 1st NEO and Debris Detection Conference, Darmstadt, Germany, 22-24 January 2019, published by the ESA Space Safety Programme Office

Ed. T. Flohrer, R. Jehn, F. Schmitz (http://neo-sst-conference.sdo.esoc.esa.int, January 2019)



BACARDI

Flight
Dynamic
Libraries

Airflow

Scheduler CLI
Monitoring
Webservice

Airflow
Database

DAG
Definitions

HTTP

Django

Webservice

Object Relational
Mapper

Tasks

BACARDI
Database

HTTP

Executor

Figure 1. Architectural Overview of BACARDI.

processing power can be added by providing additional
computing hardware. This enables us to keep the sys-
tem growing while the data set grows from approximately
26,000 known objects today to an estimated number of
about 250,000 objects once the new space fence of the
USA is operational. As a first estimate, we are projecting
a system that is able to process about 10 new incoming
measurements per second. Besides our scalable architec-
ture this is achieved by tuning the Fortran codes for use
on many-core systems and accelerator hardware.

3. TECHNOLOGY

The following subsections provide a more detailed in-
sight as to how we designed the architecture to support
the implementation of BACARDI.

• First we explain the architectural overview and as-
sociated goals in Subsection 3.1.

• Next we describe the core ,,Django” package in Sub-
section 3.2.

• The GSOC Flight Dynamic libraries are topic of
Subsection 3.3. How they are made available for
Python code using F2x is topic of Subsection 3.4.

• The workflow management with the ,,Airflow”
package as well as scheduling and execution of tasks
is handled in Subsection 3.5.

3.1. Overview of the Architecture

In BACARDI, we aim for a loosely coupled software
architecture with strictly separated packages to address
maintainability, test-ability and extensibility. Figure 1
shows an outline of BACARDI. The architecture is di-
vided into the three main packages labelled ,,Airflow”,
,,Django”, and ,,BACARDI”. While BACARDI does not
have a layered architecture in a classical sense, these
packages build upon each other in a hierarchical way.
Well defined functional constraints and interfaces of the
packages are the base for a decoupled and extensible de-
sign. We especially pay high attention to keep the core
,,Django” package decoupled in a way that it is still us-
able without the parts of the ,,Airflow” package.

3.2. Django Core Package

This package consists of three components that make up
the core functionality of BACARDI.

First, it contains the main data model, that is defined us-
ing the Django Object Relational Mapper (ORM). The
ORM allows for defining Python classes that are describ-
ing the data. These classes are automatically mapped to
tables in a relational database. By providing an object-
oriented interface, the ORM makes it easier to query ob-
ject instances from the database without the need to use
a query language. It also enables us to replace the under-
lying database technology if necessary. The ORM also
validates data written into or retrieved from the database
against the model. This reduces the risk of incomplete
database entries significantly.



Figure 2. Excerpt of BACARDI database tables.

As an addition the Django allows to track changes and
version of the ORM using an integrated migration con-
cept. This ensures a reliable and stable database schema
during the lifetime of the software.

The most important database tables and data relations im-
plemented are outlined in Figure 2. As depicted, for each
sensor observation the applicable measurement correc-
tions are related, as well as measurement error records to
be used for measurement weighting during observation
correlation and orbit determination. Correlation results
are stored, which establish the association between sen-
sor tracks, orbits, and objects.

Different representations of an orbit are handled. So
far, the Simplified General Perturbations theory for prop-
agation of Two-Line Elements is implemented as well
a numerical orbit integrator. Future version will in-
clude interpolation of orbit ephemeris and the Draper
Semi-Analytical Satellite Theory (DSST). For each orbit
record, a set of auxiliary data, like solar flux and geomag-
netic indices, or the selected force model settings, can be
stored. This allows for orbit propagation with identical
input data.

The object history will be established with database
records on fragmentation events, like explosions or on-
orbit collisions, satellite launch and re-entry into the
Earth’s atmosphere. More tables dedicated to derived
data products exit. As an example, for close approach
(CA) detection thresholds on collision probability and
on the CA geometry can be set for individual objects,
depending on the needs of different satellite missions.
For each CA event, updates for the screening results are
stored.

The next core component is a collection of tasks. To
enforce a separation between the database access layer
and other parts of the software, common tasks are placed
within the ,,Django” package. These tasks can be seen as

atomic activities that interact with the data model. They
act as building blocks for more complex services. Tasks
are split into the three categories named ,,importer”, ,,ex-
porter”, and ,,processor”.

• Importer: An importer is defined as a task that
imports data from a source into the BACARDI
database. It can utilise external libraries to fetch and
transform data into valid database objects.

• Exporter: An exporter is defined as a task that ex-
ports or serialises data from the BACARDI database
into a specific format. It can utilise external libraries
to store or send the result at or to different locations.

• Processor: A processor is defined as a task that ex-
ecutes computations on the data within the BAC-
ARDI database. E.g. associate tracklets with col-
lected tracks or determine new orbits from associ-
ated tracklets and tracks. It can utilise external li-
braries like FD libraries to perform such computa-
tions.

Lastly, there is a ,,Webservices” component that uses
Django to provide access to model data and tasks using
a simple web-based API. This component might be used
in a future version of BACARDI to exchange data with
partners.

3.3. Flight Dynamic Libraries

At GSOC, there is a long history of software develop-
ment and application to space operations. Therefore, al-
ready existing software related to orbital mechanics could
be integrated into BACARDI as another package. Build-
ing on Fortran libraries from the flight dynamics group, a
mixed language programming approach is adopted. Ex-
isting and newly developed Fortran code is wrapped and



Figure 3. Internal workflow of F2x to wrap Fortran sources to Python.

Figure 4. Benchmarks results to compare different F2x
templates with f2py.

called from Python, the main programming language of
BACARDI.

The flight dynamics libraries provide many useful algo-
rithms, e.g. time and coordinate system transformation,
various orbit perturbations or modelling of sensor obser-
vations [8]. These functions serve as building blocks for
new Python modules or Fortran extensions. This reduces
time and effort needed to implement new algorithms.

Subroutines for complex and computational intensive cal-
culations like numerical orbit determination and propa-
gation [10] can be executed in Fortran. We achieved run
times much faster compared to a pure Python implemen-
tation.

The FD libraries have been carefully developed, tested
and are flight-proven by many satellite missions. Existing
test cases have been reproduced after code wrapping and

automated as Python unit tests.

3.4. F2x

To integrate the Fortran code of the FD Libraries into
BACARDI, we use F2x [6]. This tool was initially de-
veloped in the context of the BACARDI project and is
meant as a more powerful replacement for f2py [5].

F2x combines modern approaches to overcome some of
the restrictions of f2py. Especially, it allows for using
derived data types. It also abstracts from the underlying
Fortran compiler by applying the standardised BIND(C)
interfacing option. The parsing of the Fortran source is
performed utilising a full Fortran grammar imported from
the Open Fortran Parser project. The wrapping layers are
created with template based code generation techniques
and thus allow flexible adaptation. The representation of
the code that is used as model for code generation is a
simplified version of an abstract syntax tree that is used
to abstract the generation from the actual parser in use.

Figure 3 shows the internal process that F2x applies to get
from Fortran source to a usable Python module. All these
steps are implemented as an automated build process with
distutils. It is based an the NumPy infrastructure to sup-
port a wide range of Fortran compilers.

There are currently two implementations: One is
a feature-complete implementation that uses Python’s
ctypes library to access the BIND(C)-exported Fortran
methods, the other implementation uses Cython to gener-
ate the required Python API. This implementation is pre-
liminary and lacks a lots of features supported by ctypes.
However, some benchmarks have been made to compare
both implementations with each other as well as with
f2py. The results are shown in Figure 4. One can clearly
see that the ctypes implementation is a lot slower than
f2py, which was expected. In contrast, the Cython imple-
mentation shows much faster results that are in the range
of f2py.



Figure 5. DAG for tracklet to track correlation and orbit determination.

3.5. Airflow

We use the Python-based Open Source framework
Apache Airflow to handle task scheduling and processing
in BACARDI. The ,,Airflow” package consists of four
main components: a task scheduler, an executor running
tasks, a command line interface (CLI), and a web inter-
face for management and monitoring.

To combine simple tasks into more complex services or
workflows, Airflow utilises the concept of Direct Acylic
Graphs (DAGs). These tasks – being the basic building
blocks – are imported from the ,,Django” package. This
approach enables us to loosely couple BACARDI core
functionalities to Airflow while still being able to eas-
ily replace Airflow. The separation also avoids complex
DAG scripts and keeps BACARDI core functionalities
testable and adaptable for future modules.

As shown in Figure 1, DAGs are explicitly configured
in DAG definition files. These configuration files define
schedule times for DAGs as well as which queue or hard-
ware pool is used within a specific task. It is also possible
to set a priority to each task if needed.

A typical DAG is shown in Figure 5. One can see differ-
ent tasks that are partially executed in parallel where each
task is maintaining its own connection to the BACARDI
database, if necessary.

The main purpose of the Airflow scheduler component
in BACARDI is to schedule DAGs at a predefined point
in time. Therefore, the scheduler constantly monitors
the DAG definitions and updates the database, if changes
were made or DAGs are due to schedule. For this reason,
Airflow is maintaining its own database to store metadata
about scheduling and execution of DAGs. Next to state
and runtime information about upcoming, running and
finished DAG runs, the database is also used as communi-
cation channel between different Airflow components as
well as between separate tasks. By using its own database
it is ensured that the main BACARDI database is kept free
from metadata of the scheduling. To execute unscheduled
processes, the web services and the command line inter-

face provided by Airflow can be used.

Beside similar solutions like Luigi [7], Apache Airflow
is designed to be adjustable in all of its components. To
scale-out the system the executor component, which is
responsible for the actual task execution, can be transpar-
ently replaced with another executor component. For Ex-
ample, the default local parallel executor can be replaced
with a celery executor [3] to distribute and load-balancing
tasks over multiple hardware resources by utilising mes-
sage queuing systems. This allows us to scale the sys-
tem with the expected increase in load caused by a grow-
ing dataset and additional sensors from various networks
constantly delivering new observations.

4. EXISTING AND PLANNED SERVICES

The Django web framework used in BACARDI allows
for exposing functionality over a ReST Api. By reusing
the exporter functions from the task package, data such as
TLEs can be queried from a web resource. This way we
enable other software to make use of our data. A first ex-
ample is implemented with the BACARDI Viewer. The
viewer was inspired by the Stuff in Space project [12] and
is a WebGL based software that visualises the orbital ob-
jects of the database inside the web browser. The BAC-
ARDI Viewer propagates the objects in real time based
on TLE data using the satellite.js library [9]. One of its
objectives is to visually illustrate the challenge of space
debris to a broad public. Therefore, it is possible to in-
teractively discover the space around the Earth, jump to
objects with a mouse click, or use several filters to re-
duce the amount of data displayed. We also included
many ways to filter objects: object name, time of start,
data source, altitude, perigee, apogee and any combina-
tion thereof. In addition to the current position data, it
is planned to also visualise paths with increased collision
probability in the future. A screenshot of the BACARDI
Viewer software is shown in Figure 6.

Future version of BACARDI will allow to directly import
and export datasets or trigger new calculations from an
attached dataset in Apache Airflow utilising a ReST Api.



Figure 6. Screenshot of the BACARDI Viewer

5. SUMMARY

We presented the ,,Backbone Catalogue of Relational De-
bris Information” (BACARDI) that collect orbit informa-
tion, determines orbits from sensor observations and gen-
erates derived data products. Especially, we described the
architecture of the whole system and how we approached
the implementation using popular Python frameworks
like Django and Airflow. We briefly introduced how we
integrated the flight dynamic libraries written in Fortran
by using F2x. As some first results we also introduced the
BACARDI Viewer which is one of the first applications
using BACARDI.

Currently a first version of BACARDI is set up to evalu-
ate current implementations. All of the infrastructure is
ready for high availability production use. Interfaces for
data import are constantly fed by partner catalogues and
data from SMARTnetTM so a growing number of associ-
ated observations and recorded orbital objects is gener-
ated. First results for processing optical telescope obser-
vations can be found in [2] and [11].

REFERENCES

1. Apache Software Foundation (ASF), Apache Airflow
(incubating), https://airflow.apache.org/

2. M. Weigel, M. Meinel and H. Fiedler, ”Processing of
Optical Telescope Observations with the Space Object
Catalogue BACARDI”, 25th International Symposium
on Space Flight Dynamics (ISSFD), Munich, 2015.

3. Solem A., and contributors, Celery: Distributed Task
Queue, http://celeryproject.org/

4. Django Software Foundation and individual contrib-
utors, Djangp Web Framework: The web framework
for perfectionists with deadlines, https://www.
djangoproject.com/

5. Peterson P., (2009). F2PY: a tool for connecting For-
tran and Python programs, International Journal of
Computational Science and Engineering, 4(4), 296–
305

6. Meinel, M. (2018). F2x: A versatile, template-
based Fortran wrapper written in Python, (Ver-
sion 0.1), Zenodo, https://doi.org/10.5281/
zenodo.1405956

7. Spotify AB, Luigi: Python module to build complex
pipelines of batch jobs, https://github.com/
spotify/luigi

8. V. Chobotov, ”Orbital Mechanics”, Third Edition,
American Institute of Aeronautics and Astronautics,
2002.

9. Kandadai S. et al., satellite.js: Modular set
of functions for SGP4 and SDP4 propagation
of TLEs, https://github.com/shashwatak/
satellite-js

10. O. Montenbruck adn E. Gill, ”Satellite Orbits - Mod-
els, Methods and Applications”, Springer, 2000

11. H. Fiedler, J. Herzog, M. Prohaska, T. Schildknecht
and M. Weigel, ”SMARTnet(TM) - Status and Statis-
tics”, International Astronautical Congress 2017 (IAC),
Adelaide, 2017

12. Yoder J., Stuff in Space: A real-time interactive
WebGL visualisation of objects in Earth orbit, http:
//stuffin.space/

https://airflow.apache.org/
http://celeryproject.org/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://doi.org/10.5281/zenodo.1405956
https://doi.org/10.5281/zenodo.1405956
https://github.com/spotify/luigi
https://github.com/spotify/luigi
https://github.com/shashwatak/satellite-js
https://github.com/shashwatak/satellite-js
http://stuffin.space/
http://stuffin.space/

	Introduction
	BACARDI Overview
	Technology
	Overview of the Architecture
	Django Core Package
	Flight Dynamic Libraries
	F2x
	Airflow

	Existing and planned services
	Summary

