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ABSTRACT

Untraced space debris are the principal threat to the func-
tioning of operational satellites whose services have be-
come a fundamental part of our daily life. Small debris
between 1 and 10 cm are currently too small to be cat-
aloged and are only detectable for a limited amount of
time when surveying the sky. The very-short arc nature
of the observations makes it very difficult to perform pre-
cise orbit determination with only one passage of the ob-
ject over the observing station. For this reason the prob-
lem of data association becomes relevant: one has to find
more observations of the same resident space object to
precisely determine its orbit. This paper focuses on multi-
target tracking, which is part of the data association prob-
lem and deals with the challenge of jointly estimating the
number of observed targets and their states from sensor
data. We propose a new method that builds on the ad-
missible region approach and exploits differential algebra
to efficiently estimate uncertainty ranges to discriminate
between correlated and uncorrelated observations. The
multi-target tracking problem is formulated with two dif-
ferent mathematical conditions: as initial-value problem
and as boundary-value problem. The first one allows us
to define the constraints as a six-dimensional region at a
single epoch for each observation, while the second one,
instead, allows us to consider the two-by-two compari-
son as a Lamberts problem thus constraining the position
vectors at the two epochs. The efficiency and success rate
of the two formulations is then evaluated.

Key words: Multi-target tracking, differential algebra,
admissible region, initial value problem, boundary value
problem.

1. INTRODUCTION

The problem of determining the state of resident space
objects (RSOs) is fundamental to maintain a collision-
free environment in space, predict space events and per-
form activities. Due to the development of new observing
technologies and the ever-growing number of RSOs, the
number of observations available is increasing by the day.

This calls for more efficient methods able to deal with
the amount of data produced. Furthermore, when sur-
veying the sky, the short-arc nature of the observations
does not allow for precise orbit determination during a
single passage of the object over an observing station:
more short-arcs pertaining to the same object are neces-
sary to determine a track. This process is called data as-
sociation. Within the data association problem, the multi-
target tracking (MTT) problem has gained relevance. It
refers to the problem of jointly estimating the number of
targets and their states from sensor data. It is especially
necessary for too-short observations where current initial
orbit determination (IOD) methods fail, as highlighted in
[9]. We propose a new method that builds on the ad-
missible region (AR) approach and exploits differential
algebra (DA) to efficiently estimate uncertainty ranges
to discriminate between correlated and uncorrelated ob-
servations. The uncertainty is defined in six dimensions
thus determining a region of Admissible States, called ad-
missible states region (ASR). This region is subsequently
pruned when a new observation is acquired to remove the
states that do not match with new observations. The prun-
ing is enabled by the automatic domain splitting (ADS)
tool, which estimates and controls the truncation error
of the polynomial expansions in DA: whenever the tol-
erance is not respected, the domain over which the ex-
pansion is determined is halved and two new expansions
determined. This tool is exploited in this work during
propagation. Every time a new observation is available,
the ASR available is compared against the newly created
ASR. If there exists at least a sub-domain in common to
the two ASRs, a temporary track is formed, where the
new ASR is the intersection of the two. Whenever the
intersection is the empty set, the track is discarded. The
MTT problem is here formulated with two different math-
ematical conditions: as initial-value problem (IVP) and
as boundary-value problem (BVP). The first one allows
us to determine the ASR as a six dimensional region at
a single epoch for each observation. The region is then
propagated each time a new observation is available to
look for intersections. The second one, instead, allows
us to consider the two-by-two comparison as a Lamberts
problem thus determining the ASR as a composition of
position vectors from the two epochs. The intersection
of the ASR is then found by comparing the velocity vec-
tors at the two epochs and the outcome of the Lamberts
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algorithm. Section 2 contains all the mathematical tools
necessary to build the algorithm: Section 2.1 gives an
overview on DA, Section 2.2 describes linear regression,
while Section 2.3 introduces the AR. Section 3 defines
the algorithm for the IVP setup while Section 4 that for
the BVP approach. Results are displayed in terms of as-
sociations found and computing time in Section 5, while
conclusions and future works are discussed in Section 6.

2. MATHEMATICAL TOOLS

2.1. Differential Algebra

This work makes use of DA, a computing technique that
uses truncated power series (TPS) instead of numbers to
represent variables [1]. By substituting the classical im-
plementation of real algebra with the implementation of
a new algebra of Taylor polynomials, any deterministic
function f of v variables that is C**! in the domain of
interest [—1, 1]V is expanded into its Taylor polynomial
up to an arbitrary order k with limited computational ef-
fort [3, 4]. The notation for this is: f ~ 7}(k). Similarly
to algorithms for floating point arithmetic, various algo-
rithms were introduced in DA, including methods to per-
form composition of functions, to invert them, to solve
non-linear systems explicitly, and to treat common ele-
mentary functions [2]. Ultimately, this technique allows
for the definition of analytical solutions of complicated
systems of equations which normally require numerical
techniques to be solved.

2.2. Linear Regression

A list of observed angles in consecutive epochs for a sin-
gle object is called tracklet. Tracklets usually contain five
or more observations, each observation being made of a
right ascension «, a declination §, a precision ¢ and a
time of observation ¢. To account for sensor level errors,
the precision of the observation can be modeled as white
noise and thus be considered as a Gaussian random vari-
able with zero mean and ¢ standard deviation [10]:

Y~ N(y, %). (1)

where, for the case of optical observations analyzed in
this paper, the observed values y are the right ascension
« and the declination 6. When tracklets are too short, in-
formation about curvature is very scarce and the tracklet
can be linearly approximated [11]. This happens espe-
cially in the case of Geostationary Earth Orbits (GEOs),
where the apparent null motion with respect to the ob-
servatory enhances the problem of gaining information
about the curvature of the orbit. In this case, the distribu-
tion of the right ascension and declination can be linearly
regressed with respect to time, following the well known

linear regression equation Y = Bo + ,B X
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precision (w = o~2). The regression can be conve-
niently performed at the central time of observation (C)

so that the resulting slope and intercept are uncorrelated.
The four dimensional vector containing the estimated val-

@ t 2)
§

ues (Gc, Sc, &, 5) is known as Attributable. The quantity

_B-8

Sg

T ~tN_2 3)
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tained by considering the covariance definition
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where H; = [1 t; — t¢]. Remembering that we are per-
forming the regression at the central time of observation,
differently from [7] who perform it at ¢ = ¢y, the follow-
ing holds:

. >.;&; = 0and thus T = 0. This is exploited to
obtain a diagonal matrix, thus uncorrelated coeffi-
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Confidence intervals (CI) of predicted values can be con-
structed through the covariance of the predicted quantity

and the Student’s T quantiles. Given a predicted value f3:

ClL: [B Ety ap - \/Cov(B)} (6)
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Figure 1. Regression for the right ascension o centered
at the central time of observation. Values are amplified
by a factor 1000 for clarity purpose. The black dot and
arrow represent respectively the predicted value and its
IC for the central time of observation.

where o, defines the confidence level and B stands for
any of the attributable components, with their respec-
tive covariance matrices. Fig. 1 summarizes the regres-
sion showing the observations (dots), the mean prediction
(solid line) and the CI (dashed lines).

2.3. Admissible Region

The Admissible Region (AR) is an approach introduced
by [8] to handle too-short arcs where classical methods
for IOD fail. The method gathers all the information
available within the attributable and determines the set
of ranges and range-rates achievable depending on phys-
ical constrains: by setting a maximum eccentricity and
a minimum and maximum semi-major axis for the orbit,
the 2D region in the (p, p)-plane that satisfies the con-
straints can be determined. For each point in the plane,
then, the state of the object is defined. Fig. 2 shows the
AR for a too-short arc simulated from object 36830'. The
constraints are found by exploiting the equations for en-
ergy and angular momentum [6]. The constraints used to
build Fig. 2 are: ay,;, = 20,000 km, a4, = 60,000
km, e,,4. = 0.75, where the values are respectively min-
imum semi-major axis, maximum semi-major axis and
maximum eccentricity. These constraints comprise both
GEOs and geostationary transfer orbits (GTOs), which
can both be observed when looking at the geostationary
area. The method, however, does not consider any uncer-
tainty in the observations.

IThe object numbers used throughout the paper refer to the NORAD
IDinhttps://www.space-track.org/
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Figure 2. Admissible region for a too short arc of ob-
served object 36830, enclosed by a dashed rectangle. The
black dot is the center of the rectangle.

3. IVPSETUP

When setting the resolution for the MTT problem as an
IVP, one defines the conditions at t = ¢( and then propa-
gates forward. Firstly, the ASR at ¢ is defined. To do so,
we consider the state in polar coordinates

X =1[p, p, a, &, 6, 0]" (7

to exploit both the knowledge on the AR (p, p) and on

the attributable (v, ¢, 0, §). The state is initialized as
DA variable to include all possible combinations of the
uncertain state components. The point solution and un-
certainty for range and range-rate are highlighted respec-
tively with the black dot and dashed box in Fig. 2, while
the uncertain attributable is defined as the predicted value
at central time of observation and its IC.
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0z € [—1,1] is the achievable variation. The propagated
state is thus a function of the initial six-dimensional state:

X, =Tx, (Xo) 9

Since the initial state is propagated through the use of
ADS to keep the map accuracy controlled, the final map
is actually a list of polynomials in the form of Eq. (9):

X, =JTix, (Xo) (10)



(a) Forward propagation of uncertain state
from tg to t1.

(b) Analysis of intersection between propa-
gated state at ¢; and ASR, with subsequent
pruning of uncertainty at ¢o.

(c) Propagation of intersecting state at t1 to
t2. Analysis of intersection at ¢ and pruning
of uncertainty at ¢g.

Figure 3. IVP setup for three observations.

A sketch of the uncertainty propagation is shown in
Fig. 3(a). At each .55, an AR and linear regression can
be performed, thus obtaining the ASR X ,  in the form
of Eq. (8) and shown in Fig. 3 as red regions. The prop-
agated state can thus be compared with the newly ob-
tained data by means of range intersection: if there exists
an intersection between the achievable values for each
component of the state vector, then the two observations
are temporarily coupled. Fig. 3(b) shows the intersection
(green) and the portion of initial domain kept, while the
remaining initial domain is discarded. This part of initial
domain is then propagated forward where a new obser-
vation is available and the same procedure is completed
(Fig. 3(c)). The advantage of this method is the possi-
bility of handling as many observations as necessary and
the possibility to include perturbations in the dynamics.
Whenever an intersection cannot be found, the two ob-
servations are regarded as uncorrelated and the temporary
track discarded. This can be seen in Fig. 4.

This procedure was introduced in [9].

Figure 4. Example of uncorrelation for IVP setup.

4. BVP SETUP

Opposed to the IVP set up, there is the BVP approach.
Here the state vector is composed of the position vectors
attg and tq:

Xo.1 = [po, @0, S0, p1, a1, 01]7, (11)

and conditions are set at the boundaries of the domain,
that is at the two times of observations:
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An ADS-based Lambert’s solver can thus be imple-
mented to find the list of orbits that fit these two uncertain
states, namely Lyq 1} in Fig. 5(a), finding the velocities at
the boundaries (Fig. 5(a)):

Voi = [po, &, do, p1, cu, 01]F

= LJ7?,V0,1 (Xo01) (13)

However, (p, &, d)o,1 are already available from the at-
tributable and AR and can thus be compared against the
newly obtained map in Eq. (13). Again, only the por-
tions of the initial domain that produce a 6D intersec-
tion are retained (Fig. 5(b)). When a third observation
becomes available, one has to set new boundary condi-
tions, analyzing the list of fitting orbits through ¢; and ¢,
(Fig. 5(c)). Here a further check is made to make sure that
the pruned domain obtained from Ly 1} and Ly 2y does
overlap (Fig. 5(d)). This check is a necessary condition
for correlation, however not sufficient: it is indeed not en-
sured that the 6 found intersections happen for a specific
point of the initial domain. The only way to be com-
pletely sure about the correlation is to perform compute
Lyo,2y and check the intersecting domains at both times
(Figs. 5(e) and 5(f)). Whenever either one of the Lam-
bert solvers or an intersection produce and empty set, the
temporary track is discarded, as sketched in Fig. 6.

5. RESULTS

To test the success rate and speed of the two methods, a
realistic observing scenario was simulated. The test case



(a) Lambert approach between ¢ and ¢1 with
uncertainty on position vectors: Lg 13.

e

(d) Analysis of intersection between output
of Lg,1y and Ly oy attg.

(b) Intersection analysis between Lambert
outcome Lyp 1} and ASR.

(e) Lambert approach between ¢g and t2 with
uncertainty on position vectors - L {0,2} -
with subsequent intersection analysis.

.

(c) Lambert approach between ¢ and t2 with
uncertainty on position vectors - Ly oy -
with subsequent intersection analysis.

(f) Analysis of intersection between output
of Lo 1y and Lgg 2y attp and Ly oy and
L{0,2} to.

Figure 5. BVP setup for three observations.

Figure 6. Example of uncorrelation for BVP setup.

follows the strategy presented in [12]: six objects in geo-
stationary Earth orbit (GEO) were observed in the same
field of view every two hours in a four hours span, with
precisiong 0 = 1 arcsec. Here an assumption is made
that every object is re-observed and the dynamics is ke-
plerian. Fig. 7 shows the values for the right ascension
and declination of the six objects observed, where ob-
ject F has been created to be part of the clustered objects
represented. The algorithm needs to analyze all possi-
ble couples in the first two observation slots and decide
which are correlated, then go on to the third observation
slot and continue the correlation process. The main dif-
ference that can be noticed straight away between the [VP
and BVP methods, is the treatment of a fourth or more ob-
servation: while the IVP can handle as many consecutive
observations as needed, the BVP setup needs to re-set the
boundary conditions and make increasing checks on each
couple, thus slowing down the process. Nevertheless, it
is possible to firstly assess their performance on the first
three observing slots and then decide which strategy to
adopt later.

Table 9(a) shows the results in terms of identified tracks
and computing time, obtained with a MacBook Pro, 2.6
GHz, Intel Core i5. The tolerance for the ADS was set to
1 km for range, 1 m/s for range rate, 10~% arcsec for an-
gles and 10~ arcsec/s for angular rates. The CIs were
obtained with confidence level ooy, = 1%. Both meth-
ods were able to identify all tracklets. However, the IVP
algorithm created many more false tracks than the BVP,
where the only false correlation can be discarded by post-
processing the correlations found. The false tracks were
all created starting from the clustered objects, where dis-
tinguishing the objects is more difficult, as expected. A
great difference is found in the computing time, where
the BVP approach outperformed the IVP by one order
of magnitude. The results clearly show that the BVP
method was able to spot the correct correlations in less
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Figure 7. Right ascension and declination of six objects
observed three times over a four hours time.



Table 1. IVP and BVP results for association and com-
puting time.

True False False Computing
Positive  Positive  Negative Time
IVP 6 5 0 414.7 s
BVP 6 1 0 45.0 s

time. On the other hand, however, it has trouble han-
dling more than three observations: indeed, the Lambert
routine has to be performed N — 1 times each time an
N observation is available, thus reducing the efficiency
of the tool. Looking at Fig. 8, one can clearly notice
that the biggest effort for the IVP approach is spent on
the first correlation (Fig. 9(b)), while the second correla-
tion involves a much smaller domain. This suggests that
an hybrid approach may be the best solution: adopt the
BVP approach for the first two or three observations, and
then associate new observation with forward propagation
as in the IVP approach. Indeed, Fig. 9 shows that the
BVP approach created much less domains during the first
two correlations, was faster and had a much higher suc-
cess rate for correlations. Increasing the confidence level
oy, it was noted that the computation time decreased but
some false negatives were also found, while decreasing
it boosted the number of false positives and computing
time, as expected.

6. CONCLUSION AND FUTURE WORK

This paper analysed a novel approach to tackle the MTT
problem by exploiting a high-order method that enables a
semi-analytical description of the uncertainty region as-
sociated to an optical observation. The AR approach and
linear regression were used to define the physical bound-
aries of the variables, given that current IOD methods fail
when the observed arc is too short.

Two different approaches were described in this papers.
With the IVP approach, conditions were set at the ini-
tial time of observation. This defined the ASR, which
was then propagated forward and checked against the fol-
lowing ASRs. Whenever the intersection produced and
empty set, the temporary track was discarded. With the
BVP approach, conditions were set at the boundary of the
working environment, that was at the two times of obser-
vations considered. The ASR thus consisted of the two
position vectors and the full state was obtained through
a Lambert routine. For each new observation, the con-
ditions were changed and a new Lambert routine per-
formed. Structure-wise, the IVP approach seemed more
suitable to deal with any number of new observations,
since the initial conditions never changed and only for-
ward propagation was performed. Indeed, the Lambert
routine had to be performed N — 1 times each time an
NN observation is available. Nevertheless, results showed
that the BVP was one order of magnitude faster when
looking for correlation for six GEO objects observed
three times and only created one false correlation (eas-
ily discarded by post-processing the correlations found).
The reason why less time was needed was that uncer-

tainty propagated much faster in the IVP approach, as
shown in the projection of the ASR over the AR. This
suggested the possibility of implementing an hybrid ap-
proach to take advantage of all strengths of the two meth-
ods: on one side the efficiency of the BVP to start the
correlation process, on the other the possibility of corre-
lating more than three observations with only one forward
propagation with the IVP approach. The implementation
of an hybrid approach is thus the next step of this study.
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Figure 8. IVP approach: sequential pruning of Admissible Region for observed object 36830. All pruned boxes contain

true solution.
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Figure 9. BVP results at three times of observation for observed object 26470. All pruned intersections contain the true

solution.



