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ABSTRACT

A large number of resident space objects (RSO) is located
in Earth’s vicinity. Today, 19206 RSOs, thereof 2027 are
active satellites, are trackable. Nevertheless, the number
will increase by thousands of additional satellites as the
so-called mega constellations are established. This will
lead to an increased risk of collisions with other RSOs.
The RSOs can be detected using telescope and radar sen-
sors. Detections of RSOs always come with inaccuracies
due to measurement noise. Extrapolation methods for or-
bit determination in turn suffer from model inaccuracies,
which lead to a decay of the orbit information over time.
Frequent updates of the orbital states are needed to com-
pensate for the degradation. Methods within the field of
statistical orbit determination (SOD) are used to decrease
the error of the measurement and improve the latter.

One particular method is the usage of Kalman filters,
where a dynamical model of the specific problem is com-
pared against sensor measurements. In the following, a
specific type of Kalman filter is investigated, the ensem-
ble Kalman filter. The EnKF uses a set of randomly cho-
sen states based on a probability density function (ensem-
ble) to approximate the uncertainty of the state vector.
The ensemble is propagated and updated using the mea-
surement at the respective epoch. It is tested within a
simulation environment and compared to the Unscented
Kalman filter (UKF) to evaluate, whether it is possible
to use the EnKF for orbit determination. Thereby, the
number of ensembles and the number of measurements is
varied.

Keywords: SSA; Propagator; Unscented Kalman Filter;
Ensemble Kalman Filter; Uncertainty; Covariance Ma-
trix.

1. INTRODUCTION

Due to the launch of mega constellations, the population
in Earth’s vicinity will further increase by more resident
space objects (RSO) [29]. Currently, the number of track-
able RSOs is 19 206 , whereas 2027 are active satellites

as of 28. Sep. 2018 [1]. The remaining RSOs consist of
space debris as inoperative satellites, rocket upper stages,
mission related objects, or other space debris bigger than
5 cm to 10 cm in diameter [21]. This threshold is de-
fined by the capability of radars and telescopes to track
RSOs. In fact, the detection threshold may be lower. A
far higher number of smaller RSOs exist that were gen-
erated by collisions (e.g. Cosmos and Iridium in 2009
[27]), explosions, or slag and dust from solid rocket mo-
tors.

The orbital data of catalogued RSOs are currently made
available to the public as two line elements (TLE)
datasets (averaged Keplerian elements according to the
SGP4 theory) by the Combined Space Operations Center
(CSpOC). However, the precision of TLEs is low (about
several hundred meters [21, 19]) due to the doubly aver-
aged Keplerian elements. On the other hand, the CSpOC
(formerly JSpOC) use precise orbit data that is not ac-
cessible to public, which can be used to provide collision
warnings (Conjunction Data Messages) to satellite oper-
ators.

If precise orbit data is not available or the orbit determina-
tion (OD) suffers from a low data quality, OD algorithms
have to be applied to improve orbital data by incorpo-
ration of further measurements. Propagation of orbital
states are of further interest for long term predictions [28]
and collision avoidance maneuvers [34]. One approach is
the application of Kalman filters. The Kalman filters con-
sist of two parts, the time update and the measurement
update. Within the time update, the next state vector1

is propagated using a dynamical model. Subsequently,
a measurement at the specific epoch is used to improve
the propagated state vector. The originally postulated
Kalman filter (KF) [17] is not suitable to orbit determina-
tion problems because it is only applicable to linear cases.
A non-linear extension of the KF is the Extended Kalman
Filter (EKF), where the dynamical model is linearized.
By the resulting derivation, or Jacobi matrix, the state
vector and its uncertainty is propagated. Nevertheless,
the calculation of the Jacobi matrix can be complicated
due to the nature of the derivatives [16]. The problems of

1The state vector in orbit determination consists of the position and
velocity information.
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the EKF motivated the development of a new variant of
the KF, the Unscented Kalman Filter (UKF) [16]. Com-
pared to the EKF, the UKF does not use linearized time
updates. Instead, a stochastic propagation of the uncer-
tainty is performed. The state and uncertainty is propa-
gated by splitting the state in the so called (deterministic)
sigma points that are propagated and merged again.

The filter tested within this paper is the Ensemble Kalman
Filter (EnKF). The EnKF was introduced to forecast
model statistics in an ocean model [4] and was used in
other fields like meteorology and climatology [24, 37,
22], oil reservoir models [9], and geo sciences [31]. An
extensive overview of application areas and modifications
of the EnKF is given in [5, 2, 33]. The EnKF was devel-
oped to conquer the problems of the KF and EKF with the
propagation of the state. The KF is not applicable with
non-linear dynamical models and the usage of the EKF
can lead to instability due to the linearized propagation
of the covariance matrix. Thus, Evensen [4] proposed a
stochastic method using random sampling points (simi-
lar to the sigma points of the UKF) to approximate the
propagation of the uncertainty.

The general possibility of applying the EnKF in OD is
studied in this paper. A part of the tests is accomplished
in comparison to the UKF. In section 2, the basics of OD,
UKF, and EnKF are shown. Tests are performed and dis-
cussed in section 3, where different parameters are varied.
Lastly, a conclusion is given in section 4.

2. FILTER

2.1. Basics

The input of the filter has to be the state vector and its co-
variance matrix because the Kalman filters are not able to
calculate the covariance matrix out of given state vectors.
The state vector describes the actual state of a RSO. In
orbit determination problems, the state vector

X ∈ R6,

consists of six elements containing position and velocity
for each Cartesian coordinate direction. The covariance
matrix

P ∈ R6×6,

describes the uncertainty of the state vector and is a sym-
metric, positive definite matrix. On its main diagonal, the
variances (the squared standard deviations) for each po-
sition and velocity direction are assigned. Furthermore,
the minor diagonals contain the correlations between the
elements of the state vector [36]. Figuratively, the co-
variance matrix describes an error ellipsoid. In its cen-
ter, the RSO is located. This error ellipsoid is depicted
in Figure 1 using the UVW-reference system2. An error
ellipsoid is available for the position and the velocity, re-
spectively.

2The UVW-reference system describes a system which origin is the
orbiting RSO. Its axis U is the radial vector that coincides with the vec-
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Figure 1. Depiction of uncertainties of the state vector
X using the UVW reference system by an error ellipsoid
[6].

The process described by the time update is used to
propagate the state vector. A given state vector at epoch
t0 is propagated using the mathematical model up to
epoch t1. Therefore, (semi-) analytical or numerical
propagators can be used. The advantage of analytical
propagators is their computational speed but the draw-
back is the low accuracy. However, numerical propaga-
tors are usually more accurate but the calculation time
increases [25]. Due to lack of knowledge of the exact
physical effects, or simplifications, the propagators do not
propagate the state vector exactly. That is why the miss-
ing information has to be incorporated additionally. This
is achieved by using the process noise Q ∈ R6×6. The
process noise is described by a matrix which is an equiv-
alent to the covariance matrix. Having Gaussian white
noise, the process noise is added to the covariance ma-
trix.

In the next step, the propagated state vector and covari-
ance matrix are processed by the measurement update.
Here, the observation vector at the corresponding epoch
is used to update the propagated state vector and co-
variance matrix. This is done by the calculation of the
Kalman Gain K ∈ R6×6. The Kalman Gain is a factor
(in the multivariate case it’s a matrix) that weighs at what
ratio the propagated state vector or the measurement will
be used to achieve the new state. The calculation of the
Kalman Gain requires the previously mentioned propa-
gated covariance matrix, a measurement covariance ma-
trix (the calculation is specific for the different Kalman
filters), and the measurement noise R ∈ R6×6. The
measurement noise describes the uncertainty (position
and velocity) of the measurement. Nevertheless, the mea-
surement noise is not constant and varies for every mea-
surement. Propagated state vector and its covariance ma-
trix are updated using the Kalman Gain and the measure-
ment at the respective epoch. The measurement updates
(as the time update) contain specific equations that are
different for UKF and EnKF. Thus, the detailed formula-
tion is shown in the following sections. The KF and the
EKF will not be described in this paper. These details can
be found in the literature [17, 38].

tor pointing from Earths center to the RSOs center, the axis V (along-
track) points tangentially into the moving direction, and W (cross-track)
is the orthogonal axis of U and V [38].



2.2. Unscented Kalman Filter

The principle of the UKF is described in Figure 2. The
state vector is assumed to be a random variable featuring
an expected value (first moment). The uncertainty of this
expected value is stated by the covariance matrix (second
moment) in the multivariate case.
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Figure 2. Procedure of the UKF [6].

The steps within the time update are shown by the points
1-3. Firstly, the UKF is initialized by the state vector
X̂0 that is equal to the filter input X̂k−1 at time step
k − 1. The hat (̂ ) depicts a state vector after the mea-
surement and the bar (̄ ) depicts a state vector after the
time update. In step 1, further state vectors are generated
using the state vector X̂k−1, which is assumed to be a
randomly distributed variable. This process is called un-
scented transformation (UT) that generates 13 so called
sigma points. These sigma points map the uncertainty
of the random variable and form an ellipsoid. In Fig-
ure 2, the sigma points are exemplarily depicted by two
sigma pointsχ1,k−1 andχ2,k−1. The central sigma point
χ0,k−1 is equal to the state vector X̂k−1. The usage of
12 or 13 sigma points that are with or without the cen-
tral state vector, depends on the literature. In step 2,
the sigma points are propagated by the dynamical model.
Subsequently, the sigma points are merged using weight-
ing factors to get the propagated state vector X̄k (step 3)
[16, 11]. Lastly, the measurement update is performed
where the measurement yk is incorporated calculating
the updated state vector X̂k. This process (steps 1-4) is
repeated for every available measurement as shown in the
block diagram in Figure 3. The updated state vectors are
moving around the real orbit because, figuratively, they
are following the real orbit. Due to the uncertainties, the
real orbit cannot ideally be calculated. In the following
sections, the filtering process is described in detail. The
block diagram in Figure 3 shows the input and output of
every process.

UT Time update Qk

χi,k−1

Measurement update

Rk, yk

X̂0,P 0

X̄k, χk, P̄ k
X̂k,P k

Figure 3. Block diagram of the UKF [6].

2.2.1. Unscented Transformation

The UT splits the state vector into several sigma points.
In Equation 1, the calculation of 13 sigma points3 is
shown [16, 11, 30].

χ0,k = X̄k−1

χi,k−1 = X̄k−1 +
√

(n+ λ)P k−1|i
χn+i,k−1 = X̄k−1 −

√
(n+ λ)P k−1|i

}
i = 1, . . . , n

(1)

Thereby, 12 of 13 sigma points are calculated using each
column of the covariance matrix P at step k indicated by
i, whereas the dimension if the state vector is

n = 6.

A scaling parameter λ is additionally used to vary the
distance of the outer sigma points to the central sigma
point χ0,k. The square root of P is defined as

√
P = S, (2)

so that
P = SST . (3)

S defines a lower triangular matrix and its transpose an
upper triangular matrix. S is usually calculated by the
Cholesky decomposition [8]. Examplary, the second ex-
pression in Equation 1 is calculated as

χi,k−1 = X̄k−1 +
√
n+ λSk−1|i.

The calculation of the scaling parameter λ is defined in
Equation 4 where α adjusts the distance between the cen-
tral and the other sigma points that is set to small, non-
negative values [11].

λ = α2 (n+ κ)− n where
10−4 ≤ α ≤ 1

κ = 3− n.
(4)

κ is also a scaling parameter that is dependent on the
dimension of the sate vector [11, 16]. The matrix
χ ∈ R6×13 contains the resulting sigma points.

3For the case of orbit determination, where n = 6 is valid for a three
dimensional state space



2.2.2. Time Update

The previously calculated sigma points are propagated
using the non-linear dynamical model F (Equation 5).

χ∗
k = F (χk−1,uk−1) (5)

The model input u in the general formulation in Equa-
tion 5, which describe accelerations that are not induced
by the natural environment (e.g. due to usage of rocket
engines), is omitted in the following considerations. In
the following step, the propagated sigma points are com-
bined to achieve the propagated state vector X̄k (Equa-
tion 6).

X̄k =

2n∑
i=0

W
(m)
i

χ∗
i,k (6)

The sum is weighted using the weighting factors stated by
equations 7 and 8. The index (m) illustrates the affiliation
to the state vector.

W
(m)
0 =

λ

n+ λ
(7)

W
(m)
i =

1

2 (n+ λ)
for i = 1, . . . , 2n (8)

Having calculated the propagated state vector, its propa-
gated covariance matrix is

P̄k =

2n∑
i=0

W
(c)
i

(
χ∗
i,k − X̄k

) (
χ∗
i,k − X̄k

)T
+Qk. (9)

As mentioned before, the covariance matrix is not cal-
culated using the state transition matrix used by the KF
and EKF [38]. Instead, the UKF deviates the covariance
matrix by calculating the residues of sigma points and
propagated state vector. This sum is also weighted using
equations 10 and 11. The index (c) illustrates the affilia-
tion to the covariance matrix.

W
(c)
0 =

λ

n+ λ
+ 1− α2 + β (10)

W
(c)
i =

1

2 (n+ λ)
for i = 1, . . . , 2n (11)

Different to Equation 7, [11] uses further tuning parame-
ters in Equation 10 to weight the covariance matrix. If a
Gaussian distribution is assumed, the parameter β is set
to

β = 2

as applied by [11]. Additionally, the process noise ma-
trix Qk is used in Equation 9, which is calculated for the
respective time step. This addition is allowed if the pro-
cess noise is a Gaussian white noise [16, 11], which is
assumed in the following. A further calculation method
if white noise cannot be assumed, can be found in [11].
Process noise was not incorporated in the actual propa-
gated state vector. Thus, [16, 11] propose to amplify the
sigma points to consider the process noise (Equation 12).

χk =

[
X̄k X̄k +

√
(n+ λ) P̄ k X̄k −

√
(n+ λ) P̄ k

]
(12)

The UT is applied by using the propagated covariance
matrix P̄ k.

In the measurement update described in the next section,
one part of the update is the comparison of the true ma-
surement yk with the propagated state vector X̄k. There-
fore, X̄k has to be transformed into the same coordinate
system as the measurement [16]. This non-linear trans-
formation is performed by the function h for every am-
plified sigma point χi,k (Equation 13):

Y i,k = h (χi,k) (13)

In orbit determination, the function h is used to trans-
form the Cartesian, inertial geocentric coordinate system
ECI (state vector) into the topocentric coordinate sys-
tem. Here, the true measurement consists of the coor-
dinates range, azimuth, elevation, and their derivatives.
As for X̄k, the transformed state vector ȳk is calculated
by Equation 14 using the weighting factors obtained from
equations 7 and 8.

ȳk =

2n∑
i=0

W
(m)
i Y i,k (14)

2.2.3. Measurement Update

The measurement update serves to refine the propagated
state vector by the data of the observed RSO. As al-
ready mentioned, the Kalman Gain K has to be calcu-
lated for this purpose. Therefore, the covariance matrix
of the transformed state vector P yy,k (Equation 15), and
the cross covariance matrix P xy,k (Equation 16) have to
be calculated using the sigma points and its transformed
derivate. The indices (yy) and (xy) clarify the consid-
ered residues of state vector or transformed state vector.

P yy,k =

2n∑
i=0

W
(c)
i (Y i,k − ȳk) (Y i,k − ȳk)

T
+Rk

(15)

P xy,k =

2n∑
i=0

W
(c)
i

(
χi,k − X̄k

)
(Y i,k − ȳk)

T (16)

For every filtering iteration at step k, the measurement
noiseRk have to be calculated (see section 3.2.5) because
the measurement noise depends on the actual properties
of the measuring station. The Kalman Gain results as
a multiplication of the matrix P xy,k and the inverse of
matrix P yy,k (Equation 17).

Kk = P xy,kP
−1

yy,k (17)

Finally, the propagated state vector X̄k is updated by
Equation 18 to X̂k.

X̂k = X̄k +Kk (yk − ȳk) (18)

The Kalman Gain is used to update the covariance matrix
by Equation 19.

P̂ k = P̄ k −KkP ykyk
KT

k (19)



If further measurements are available, the filtering pro-
cess is repeated starting with the UT.

2.3. Ensemble Kalman Filter

The procedure of the EnKF is shown in Figure 4.
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Figure 4. Procedure of the EnKF.

The EnKF is initialized by the state vector X0 (random
variable) from which an arbitrary number of sampling
points, the so called ensembles [5, 18], are generated
(step 0). Within the time update in step 1, the ensembles
are propagated to the epoch of the measurements. The
update of the ensemble is accomplished within the mea-
surement update in step 2. To achieve the updated state
vector X̂k (and also the updated covariance matrix P̂ k),
the ensemble is merged (step 3). The ensemble Ẑk is the
input for the next iteration step in contrary to the UKF,
where the updated state vector and covariance matrix are
used. As shown in the block diagram in Figure 5, the
ensemble is not regenerated.

Initial ensemble Time update Qk

Z0

Measurement update

Rk, yk

X0,P 0

Z̄k, P̄ k

Ẑk

X̂k, P̂ k

Figure 5. Block diagram of the EnKF.

2.3.1. Initial Ensemble Matrix

The filtering process begins with the generation of sam-
pled state vectors based on the initial state vector. The set

of sampling points (ensembles) is stored by the matrix
Zk ∈ R6×N , whereas N states the number of sampling
points. These ensembles represent the uncertainty of the
initial state X0 [5]. Therefore, the initial ensemble ma-
trix is generated using the initial covariance matrix P 0.
The generation of the initial ensemble Z0 is shown in
Equation 20.

Zi,0 = τ i with τ i ∼ N (x0,P 0)

Z0 = [Z1,0,Z2,0, . . . ,ZN,0]
(20)

τ i is a normally distributed random variable, whereas the
initial state vector is its mean and the initial covariance
matrix its uncertainty.

2.3.2. Time Update

Within the time update, each ensemble member Ẑi,k−1

is propagated by the dynamic model F to the next time
step (Equation 21). Ẑi,k−1 = Zi,0 is applied for the first
pass of the filter.

Z̄i,k = F
(
Ẑi,k−1

)
+wi,k with wi,k ∼ N (0,Qk)

Z̄k =
[
Z̄1,k, Z̄2,k, . . . , Z̄N,k

]
(21)

Additionally, a random error wi,k is added [18]. This
error represents the uncertainty of the model itself. The
covariance matrix of the model error is the process noise
matrixQk. Following, the propagated mean Z̄m,k of the
ensemble matrix is calculated using Equation 22.

Z̄m,k =
1

N

N∑
i=1

Z̄i,k (22)

To avoid the divergence of the filter due to an underesti-
mated state covariance matrix, a scaling parameter γ was
applied to ”inflate” the covariance matrix [10]. This infla-
tion is achieved by an artificial increase of the ensembles
residues as shown in Equation 23.

Z̄i,k ← γ
(
Z̄i,k − Z̄m,k

)
+ Z̄m,k (23)

The propagated covariance matrix is obtained by Equa-
tion 24 [35].

P̄ k =
1

N − 1

N∑
i=1

(
Z̄i,k − Z̄m,k

) (
Z̄i,k − Z̄m,k

)T
(24)

The weighting in Equation 22 and Equation 24 is the
same for every state vector because the ensemble mem-
bers are threated equally. The process noise matrixQk is
not added as in Equation 9 anymore because the model
error was already incorporated randomly in the ensem-
bles.



2.3.3. Measurement Update

The measurement update of the original EnKF ([4, 5])
has a drawback. Although the time update contains no
linearizations, the measurement update still contains the
measurement operatorH that transforms the state vector.
Nevertheless,H is linear, or linearized. [15] proposed an
approach (and revisited among others of [35]) according
to [16] that got rid of this measurement operator. This
approach is similar to the procedure of the UKF.

Within this paper, a scheme is used that is proposed by
Tang [35]. At first, ensembles as well as its mean have to
be transformed with the measurement function h (Equa-
tion 25). The upper index (e) states that the matrix or
vector belongs to an ensemble.

Y
(e)
i,k = h

(
Z̄i,k

)
Y

(e)
k =

[
Y

(e)
1,k,Y

(e)
2,k, . . . ,Y

(e)
N,k

]
Y m,k = h

(
Z̄m,k

) (25)

The transformed ensembles are stated column-wise in the
matrix Y (e)

k ∈ R6×N . The measurement covariance ma-
trix P (e)

yy,k (Equation 26) and the cross covariance ma-

trix P (e)
xy,k (Equation 27) have to be calculated including

the transformed ensemble. Two possibilities to calculate
these two matrices are proposed in [35]. One method
consist of the usage of the transformed measurements
and the transformed mean to calculate the residues (as
done by the UKF). The second method uses randomly
perturbed (real) measurements instead of the transformed
mean as also shown by [5]. By this method, the mea-
surement noise is directly incorporated into the measure-
ments. Nevertheless, the first method mentioned led to
a stable filtering process. The calculation of P (e)

yy,k and

P
(e)
xy,k is shown in Equation 26 and Equation 27, respec-

tively.

P̄
(e)
yy,k =

1

N − 1

N∑
i=1

[
Y

(e)
i,k − ȳ

(e)
k

] [
Y

(e)
i,k − ȳ

(e)
k

]T
+Rk

(26)

P̄
(e)
xy,k =

1

N − 1

N∑
i=1

[
Z̄i,k − Z̄m,k

] [
Y

(e)
i,k − ȳ

(e)
k

]T
(27)

To incorporate the uncertainty of the measurements, the
measurement noise Rk is added to the measurement co-
variance matrix.

The Kalman Gain K(e)
k is calculated (Equation 28) by

the quotient of equations 27 and 26.

K
(e)
k = P̄

(e)
xy,k

(
P̄

(e)
yy,k

)−1

∈ R6×6 (28)

Finally, the propagated ensemble Z̄k is updated by Equa-
tion 29 incorporating the Kalman Gain, the perturbed
measurements, and the transformed ensemble matrix.

Ẑk = Z̄k +K
(e)
k

(
y
(e)
k − Y

(e)
k

)
(29)

A possibilitiy to update the covariance matrix that was
proposed by [35] is

P̂ k = P̄ k −K(e)
k P̄

(e)
xy,k. (30)

Unfortunately, this method leads to a erroneous calcu-
lation of P̂ k because certain variances could be neg-
ative. Another consideration was to use Equation 19
that was applied in the measurement update of the UKF.
Thus, the right-hand side term was substituted by the term
KkP ykyk

KT
k yielding to Equation 31. The following

equation was applied within the test to update the covari-
ance matrix.

P̂ k = P̄ k −K(e)
k P (e)

ykyk
K

(e)T
k (31)

The updated covariance matrix P̂ k is not used in the next
filtering step as an input. Instead, the updated ensemble
is reutilised, and will be propagated according to the de-
scribed procedure. The updated covariance matrix is cal-
culated from scratch using only the deviations induced
through the propagation and process noise.

3. TEST OF FILTERS

In this section, the testing scenario is firstly outlined to
which the filters are applied. Then, the settings of the fil-
ters are shown that contain the initialization of the filters,
and the selection of the process and measurement noise.
Lastly, the results of the variation of the parameters are
outlined.

3.1. Testing scenario

The filters are tested using a software that provides a sim-
ulation environment for Space Surveillance and Tracking
(SST) purposes, the Radar System Simulator (RSS) [20].
It is being developed with the goal to be able to study and
evaluate different SST setups, from the sensor to the cat-
alogue generation. The simulation software is made of
five tools [13]:

• MWG: Measurement generation

• SMART: Orbit determination algorithms

• PROCOR: Processes coordination

• CAT: Catalogue statistics

• CAMP: Catalog Maintenance and Pass prediction
tool



The measurement generator simulates different kinds of
radar systems. It uses a radar performance model sup-
plied by the Fraunhofer FHR in order to be able to cre-
ate detections with three different operational modes of
radars in the SST context:

1. Mechanical Tracking,

2. Electronic Tracking, and

3. Surveillance.

The model regards the location of the simulated sensor as
well as several performance influencing parameters, such
as the transmit energy, wavelength, gain, pulse repetition
frequency, pulse duration and the 3 db opening angle of
the beam, loss rate, false alarm probability, assumed mea-
surement noise, and pulse integration settings. Within
this paper the first mode (mechanical tracking) is used
without any integration technique. The MWG is used to
simulate the detections with applied uncertainties to the
state based on the definition of the range and angular res-
olution capability of the simulated tracking radar. The
measurement generator simulates the ground based sen-
sors and space based objects on a millisecond basis as
needed for the pulses of the radar. The numerical prop-
agator NEPTUNE is used to extrapolate the state vector
of the RSO over a given timeframe and create chebyshev
polynomials [3]. Based on chebyshev polynomials the
states are interpolated for each pulse. The output from
the MWG is information in the form of a noisy obser-
vation state: range (R), range-rate (RR), azimuth (Az)
and elevation (El), runtime corrected time of the detec-
tion and the signal-to-noise-ratio (SNR). The values as
well as information about the radar sensor are transferred
to a database, where multiple measurements of the same
RSO during a single pass over the sensor are grouped into
tracklets.

The second tool SMART (Sophisticated Module for
the Analysis of Radar Tracklets) is used to perform
orbit determination on the tracklets in the database.
SMART retrieves the corresponding measurements from
the database and processes them. Different techniques
are available to process measurements. For the case of
no a priori knowledge of the RSO (no prior state vector
in the database) two initial orbit determination algorithms
have been implemented:

• Gibbs,

• Herrick-Gibbs,

• Preliminary orbit determination method docu-
mented in the Goddard Trajectory Determination
System (GTDS).

The methods are based on [38] and [23] and have been
implemented and tested in [32] and [14], respectively.
When SMART processes a known RSO, usually a state
vector is already available in the database which can be

used in the statistical orbit determination. Four methods
have been implemented [6, 12, 20]:

• Weighted Least Squares (WLS),

• Extended Kalman Filter (EKF),

• Unscented Kalman Filter (UKF) and

• Ensemble Kalman Filter (EnKF).

Given many incoming tracklets from a sensor PROCOR
(Process Coordinator) is able to utilize multiple SMART
instances in order to process the orbital information in
parallel. Furthermore through PROCOR, measurement
filters can be enabled and settings can be passed to the
SMART instances in order to optimally process the sen-
sor measurements. In a simulation environment these set-
tings can also be determined using the PROCOR tool.
The last tool in the chain CAT (Catalogue Analysis Tool)
can compare the achieved accuracy for individual RSOs,
processed with various settings in the database against
the truth that is known from the measurement generator.
Thus knowledge can be gained which sensor and which
settings are preferable in order to optimize the data in the
catalogue.

The test of the filters requires the knowledge of the un-
certainty of the available measurements. Otherwise, it is
hardly possible to decide, whether the filter provides the
correct solution. RSS is able to procure these data. So
it is possible to compare the filtered data with the exact
orbit.

The tested orbit is a nearly circular, sun synchronous low
Earth Orbit (LEO). The orbit parameters are:

a = 7150 km

e = 0.0012

i = 98◦

The simulated radar is the Tracking and Imaging Radar
(TIRA) in Germany. For the tests, 100 tracklets were
used, which cover an overall period of approximately two
weeks. Before the filtering process is started, the mea-
surements from the first tracklet are used to calculate the
initial state vector (within IOD) and to calculate the co-
variance matrix (by WLS).

The filter is tested varying three types of data. Firstly, the
EnKF is tested while varying scaling parameter γ to in-
flate the covariance matrix. Then, the number of ensem-
ble members (section 3.3.2) is varied. This test should
show how many ensembles are needed to ensure a stabil-
ity of the filter and converging results. In the third test, the
number of measurements is varied (section 3.3.3). The
latter test comprises the comparison of EnKF with the
UKF.



3.2. Filter settings

3.2.1. Initial state vector and covariance matrix

The initial state vector X0 is provided in RSS by the
Gibbs or Herrick-Gibbs algorithm within the initial or-
bit determination (IOD). These IOD algorithms require
the usage of three measurements, where the position vec-
tors are used to obtain the full state vector, because the
telescope or radar data usually does not provide the rates
of the azimuth and elevation. Nevertheless, the IOD does
not contain the generation of the initial covariance ma-
trix P 0. To obtain the covariance matrix, a least squares
algorithm is applied on the next available measurements
within the first tracklet. This method minimizes the er-
ror among the solution and the measurements. Using
the minimized errors, the covariance matrix is calculated.
The determination of the initial state vector and initial co-
variance matrix are already implemented parts of RSS.

3.2.2. Generation of initial Ensemble

The initial ensemble is generated using the initial covari-
ance matrix P 0 for the sampling of the ensemble mem-
bers Zi,0. The sampling points are calculated [7] by

Zi,0 = Sni + x0 with ni ∼ N (0, 1) . (32)

ni ∈ R6 denotes a vector that contains randomly chosen
values with mean 0 and standard deviation 1. The matrix
S is calculated using P 0 and Equation 3. The number
of ensembles is chosen variably depending on the testing
scenarios that are described in the following.

3.2.3. Model for propagation

The model F is used to propagate the state vector. Within
the scope of this work, the numerical propagator NPI
Ephemeris Propagation Tool with Uncertainty Extrapola-
tion (NEPTUNE) is applied [3]. This propagator is able
to integrate the acceleration due to different perturbations
(gravitational and atmospheric perturbations, solar radia-
tion pressure, third body perturbations, albedo as well as
solid and ocean tides). NEPTUNE has a high accuracy
but, similar to other numerical propagators, NEPTUNE
is computationally expensive. Due to this drawback, the
perturbation sources, except the geopotential, are deacti-
vated. Regarding the ratios of the perturbations at the or-
bit altitude defined for the test case, the geopotential has
the most influence on the calculation for different sources
[26]. According to that, the geopotential has an impact
that is several orders of magnitude higher. The degree of
the geopotential is set to 6. So J6 perturbations are con-
sidered.

3.2.4. Process noise

The modeling of the process noise Qk is challenging be-
cause different sources of perturbations have to be con-
sidered. These sources are for example the geopotential,
atmospheric density/drag, solar radiation pressure, third
body perturbations, and tides. The modeling of these
sources was not performed within this paper. Instead, a
constant process noise was assumed to be

Qk =


σ2
x 0 0 0 0 0

0 σ2
y 0 0 0 0

0 0 σ2
z 0 0 0

0 0 0 σ2
dx 0 0

0 0 0 0 σ2
dy 0

0 0 0 0 0 σ2
dz


with

σ2
x = σ2

y = σ2
z = 5 · 10−4 km2

σ2
dx = σ2

dy = σ2
dz = 1 · 10−11 km/s2.

3.2.5. Measurement noise

The calculation of measurement noise Rk is done by
SMART based on the signal-to-noise ratio SNR of the
considered radar. A root-means-square error is assumed

σ(M,SNR) =
M√

2 · SNR
, (33)

where the radars basic resolution M and the SNR per
detection is considered to get an estimate of the detection
uncertainty. The resulting standard deviation is depicted
by σ. For high SNR values a level-off is assumed, where
the resolution is not further improved and remains con-
stant even though the SNR is rising. The threshold is
SNRRef and leads to a constant σref :

σ(M,SNR) =


M

√
2 · SNR

, if SNR < SNRref

σref , if SNR ≥ SNRref

.

(34)
The reference values for M , σref and SNRref are listed
in Table 1. A constant value for the SNR was not applied
as the SNR varies in dependence of the objects position
within the radar cone. Figure 6 shows the SNR for the
first used tracklet. The closer the object approaches the
cones center, the higher the SNR becomes.

Table 1. Reference Values for M , σref and SNRref .
Range Az. & El. Range Rate

M 758 m 0.0032◦ 632 m/s
σref 12 m 0.2545◦ 10 m/s
SNRref 33 dB 35 dB 33 dB

The deviations of the rates of azimuth and elevation can-
not be stated because they are not measured by the con-
sidered radar. Hence, the value for the uncertainty az-
imuth and elevation is assumed to be very high (σ2 =
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Figure 6. Signal to Noise ratio for the first available
tracklet.

10100). The consequence is that these values, calculated
by the dynamical model, are accepted instead of using
the observed rates. As a result the measurement noise is
represented using the matrix:

Rk =


σ2
R 0 0 0 0 0
0 σ2

Az 0 0 0 0
0 0 σ2

El 0 0 0
0 0 0 σ2

RR 0 0
0 0 0 0 10100 0
0 0 0 0 0 10100

 .
(35)

Alternatively, a measurement vector with the lower di-
mension measurement y ∈ R4 could be used, instead
of setting the azimuth and elevation rate to zero. As a re-
sult, the measurement noise matrix and covariance matrix
would have the dimension R4×4, and the Kalman Gain
the dimension R6×4. In the used filter algorithms, this
simplification was not applied to keep the possibility us-
ing larger measurement vectors in further simulations.

3.3. Variation of parameters

The variation of different parameters should show,
whether the EnKF is able to improve noisy measurements
in comparison to the UKF. Moreover, it will be investi-
gated if the filters are working stably and if they diverge
using different data. It has to be taken into consideration
that the total number of measurements per tracklet differs
as the crossing trajectories among object and the radars
cone are not the same. The number of measurements
coincides with the SNR and radial distance, and thus,
the frequency by which the measurements are obtained.
For the tests, a specific number of measurements were
selected from the complete measurement range of each
tracklet. The currently used algorithm does not choose
the measurements randomly from the tracklet. Instead,
the selected measurements are evenly distributed dis-
tributed along the respective detection range. Thus, dis-
tance between each measurement of the chosen amount
is the same but differs for different tracklets. It has to be

regarded that the distance of last measurement of a track-
let and the first measurement of the subsequent tracklet is
approximately one orbital revolution. The iteration pro-
cess is not re-initiated for every tracklet in the range of
100 tracklets.

The position and velocity errors are described as the ab-
solute value of the errors in the directions U, V, and W.
The errors are the difference between the updated (trans-
formed) state vectors and the real measurement. Thereby,
the shown errors are describes using different quantiles
(90 %, 95 %, and 99 %). Hence, the quantiles state an up-
per threshold below which the resulting errors, calculated
at every filtering iteration, are regarded in the evaluation.
By this step, large errors that result at the beginning of an
iteration loop, and thus the converging process, are omit-
ted.

3.3.1. Varying the scaling parameter γ

Within the first test, the scaling parameter γ was varied.
This parameter inflates (or deflates) the covariance ma-
trix of the propagated state vector modifying the residues
among ensembles and its mean. Here, the residues are
multiplied with the scaling parameter within a range of
0.8 . . . 1.2 (80 % . . . 120 %). In contrast to [10], where
the covariance matrix is inflated by 1 %, this test varies
the scaling parameter within a higher range. The reason
is that the propagated ensemble is sophisticated by the
process noise, and thus the residues depend also on the
latter. Consequently, choosing a smaller process noise
could yield to the same result as if choosing a lower scal-
ing parameter. The following settings were chosen for
this test:

• Scaling parameter γ: 0.8 . . . 1.2

• No. ensembles N : 50

• No. measurements: 200

Figure 7 and Figure 8 show that the position and velocity
error increases for a very low and a very high γ. Look-
ing at the quantile of 99 %, the minimum position error
(871 m) is obtained using γ = 0.95. Nevertheless, for
the 90 % quantile, the minimum position error moves to
smaller scaling parameters (402 m at γ = 0.9). In con-
trast, the position error for the 90 % quantile is not at a
minimum.

It can carefully be concluded that the convergence rate
is lower for smaller scaling parameters, and thus the am-
plitude of errors is larger. But the amplitude of errors is
lower after the filter has converged. If the scaling factor
is further decreased below γ = 0.8, the filter begins to
diverge. As the ensemble is not recalculated, the deflat-
ing of covariance matrix (by reducing the residues of the
ensembles) is having an effect on every subsequent itera-
tion. Apparently, the covariance matrix is becoming too
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Figure 8. Velocity error in UVW varying the scaling pa-
rameter γ.

low by which the state vector is over- and measurements
are underestimated.

In the case of an higher scaling parameter, the filter is
diverging above an value of γ = 1.2. Despaired to the
higher position error at γ = 0.8, the position error at
is by several orders of a magnitude lower. Viewing at
Figure 8, the velocity error is showing a large increase
of the velocity error at low but at high scaling factors as
well having an error of 231 m/s (99 % quantile). Due to
the large velocity error, the filter begins to diverge.

Also here, the increased residues of the ensembles af-
fects the subsequent iterations. Nevertheless, the filter
has less information to correct the velocity residues as a
large variance in the measurement noise was applied to
the azimuth rate and elevation rate. Hence, due to the

scaling parameter γ, the residues are steadily increased.
It can be assumed that the velocity error can not be cor-
rected as fast as needed because of the applied variances
of azimuth rate and elevation rate. A similar behavior is
also discussed in section 3.3.3.

3.3.2. Varying number of ensemble members

The EnKF is using a set of sampled ensembles, whereas
the number of ensembles is freely selectable. So, the be-
havior of the EnKF is tested for a various number of en-
semble members. The parameters are:

• Scaling parameter γ: 0.95

• No. ensembles N : 5 . . . 200

• No. measurements: 200

The resulting position error is shown in Figure 9. In the
test runs, where the ensemble size was N = 5, the fil-
ter was not able to follow the measurements. The fil-
ter diverged after several tracklets. Here, the position
error increased steadily and reached a value of approx-
imately 45.0 km (Figure 9) using a 95 % quantile. The
velocity error reached a value of 2.2 km/s (Figure 10).
Nevertheless, these errors can not be interpreted as fixed
values as the stopping criterion of the filtering process
is freely choosable. It is evident that a low, or improp-
erly distributed number of ensembles is not able to map
the uncertainty correctly, hence, the filter is diverging. In
other words, if the ensembles are not properly distributed
(in contrary to the sigma points), a wrong uncertainty is
mapped. In the former application fields of the EnKF
mentioned in the introduction, the sample size is several
orders higher and the uncertainties can be mapped cor-
rectly using just a simple randomizer.
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Figure 9. Position error in UVW varying the number of
ensemble members.



A stable filtering process was achieved with N = 10 or
more. The EnKF achieved in the first stable test a position
error of 929 m (95 % quantile). Above an ensemble num-
ber of 25, an increase of the ensemble number did not re-
sult in an steady decrease of the error. The position error
varied within a range of 467 m to 510 m. The minimum
was obtained using an ensemble number of N = 175.

The error of the velocity vector is shown in Figure 10.
Here, the filter showed a stable behavior equivalently for
N ≥ 10 and better convergence above 25 ensembles as
well. The velocity errors are located within 2.19 m/s to
3.41 m/s for a 95 % quantile.
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Figure 10. Velocity error in UVW varying the number of
ensemble members.

3.3.3. Varying number of measurements

A high number of measurements is often not available or
it differs for specific RSOs. In this test, it will be inves-
tigated, whether the EnKF is able to handle a different
number of measurements per tracklet for a RSO. In con-
trast, the detection time among each measurement of the
respective tracklet decreases with increasing number of
measurements. The number of ensembles is held con-
stant. As the previous test has shown, the filter is sta-
ble for N ≥ 10. To ensure that the filter remains stable
within this test, the ensemble number is slightly increased
to N = 25. The parameters are:

• Scaling parameter γ: 0.95

• No. ensembles: N = 25

• No. measurements: 15 . . . 1000

Within this test, the results of the EnKF are compared
with the UKF using the same values. A covariance matrix
scaling is not proceeded for the UKF.

The position error using the EnKF decreases with an
increasing number of measurements from 600 m at 15
measurements to 468 m at 750 measurements for a 95 %
quantile (Figure 11). The filter diverges using 1000 mea-
surements per tracklet (having lower distances among the
measurements). Additionally, a further simulation de-
scribed by EnKF∗ was performed applying an increased
velocity process noise that resulted in an larger position
error. But, the errors are firstly approaching a similar
value of both EnKF simulations for all quantiles. Sub-
sequently, at approximately 400 measurements, the error
becomes larger with decreasing measurement distance.
The filter (EnKF∗) diverges at 750 measurements.
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Figure 11. Position error in UVW of EnKF and UKF
varying the number of measurements. The EnKF test
using an increased velocity process noise is shown by
EnKF∗.

In contrast, the UKF yields to substantially lower position
errors than the EnKF of 285 m with 15 measurements and
200 m with 1000 measurements. But the UKF is not di-
verging for the maximally applied number of measure-
ments. Having a lower number of measurements up to
200, both filter show a non steady character for all quan-
tiles.

In contrary to the position error, the velocity error (Fig-
ure 12) becomes larger for an increasing measurements
number, and thus lower distances among each measure-
ment. This behavior is visible for both filters. So, in de-
pendence of the applied test parameters, a lower measure-
ment number has to be preferred to achieve a low velocity
error.

The velocity error of the UKF is by one order of a mag-
nitude lower than the error of the EnKF. Using 15 mea-
surements the velocity error amounts to 0.39 m/s in con-
trast to 1.13 m/s reached by the EnKF (95 % quantile
and lower velocity process noise). Increasing the num-
ber to 750, the velocity errors increase to 0.59 m/s and



0.1

1

10

100

1000

0 250 500 750 1000

No. of Measurements per Tracklet / −

U
V

W
 V

e
lo

c
it
y
 E

rr
o

r 
/ 

m
/s

Quantile 90 %  95 %  99 %  

Applied Kalman Filter EnKF EnKF* UKF

UVW Velocity Error varying the No. of Measurements per Tracklet

Figure 12. Velocity error in UVW of EnKF and UKF
varying the number of measurements. The EnKF test
using an increased velocity process noise is shown by
EnKF∗.

4.43 m/s for UKF and EnKF, respectively. Thus, the er-
ror of the EnKF is by far larger as determined for the
position error. Nevertheless, the velocity error of the
EnKF using 1000 measurements increases to a value that
is again several orders of magnitude larger. As previously
mentioned, the filter is diverging at this point. Looking
at the test EnKF∗, the filter is diverging at 750 measure-
ments.

The comparison of both process noise simulations shows
that the usage of a larger velocity process noise yields
to larger errors (in position and velocity). This is un-
expected as a larger process noise should yield to lower
errors. Repeating, the error is calculated by the differ-
ence of updated (transformed) state vector and real mea-
surement. Having a larger process noise, the propagated
state vector has to be less trustworthy by which the mea-
surement has to be taken more into account. However,
within the assumed measurement noise, the azimuth rate
and elevation rate variance was set to a large value to con-
tinually trust the model. As already mentioned in sec-
tion 3.3.1, by this method, less information is available
to correct the velocity. Apparently, the velocity compo-
nents within the state vector can not be corrected prop-
erly. The velocity error is larger over the whole mea-
surement width. Moreover, the velocity error is added up
for every available measurement due to the continually
added constant process noise. Consequently, the velocity
error has an impact on an increased position error, which
is visible in Figure 11. Further simulations have to be
performed to substantiate these statements.

3.3.4. Time effort of calculations

The calculation time of each filtering step for the UKF
and EnKF is strongly dependent on the used propagator.
Because a numerical propagator, instead of an analytical
propagator, was used, the propagation of the state vectors
took the most time. In comparison to the propagation
time, the calculation time of the remaining processes is
significantly lower. Consequently, the calculation time
increases approximately linear with every state vector
that has to be propagated. In the case of the UKF, 13
sigma points, and in the case of the EnKF, the arbitrary
number of ensembles has to be propagated. So the
effort of the EnKF can be lower, but in most cases, the
calculation time was higher (e.g. the processing of 130
ensembles took the tenfold time).

It should be mentioned, that the filtering process was not
parallelized. The substantially higher calculation time of
the EnKF can be decreased at least by a parallelization of
the propagator. This is possible for the UKF as well.

4. CONCLUSION

Within this paper, the basics of orbit determination us-
ing the UKF and EnKF were shown. The EnKF was
implemented into the simulation environment RSS and
compared against the UKF in the last proceeded test. In
the first test, the scaling parameter γ was varied to in-
flate or to deflate the covariance matrix. For low scaling
parameters, the convergence time apparently was higher,
but the position and velocity errors were lower when the
EnKF has converged. Having a large scaling parameter,
the EnKF is diverged.

The second test comprised the variation of ensemble
members. When a low number of ensembles (lower than
10) was used, the EnKF has diverged. The reason was
mostly a poor distribution of the ensembles, and thus, the
uncertainty could not be mapped correctly.

The variation of the number of measurements per track-
let showed, that the position error of the EnKF and UKF
decreases with increasing number of measurements. In
contrast to the position error, the velocity error has in-
creased for both filters, which is mostly resulting due to
the assumed measurement noise. Nevertheless, the posi-
tion and velocity error of the UKF was significantly lower
than the error of the EnKF.

The time effort of both filters can vary tremendously. So,
the most time consuming process was the time update of
every sigma point or ensemble member. Thus, the overall
time effort can approximately be scaled linear depending
on the number of states that have to be propagated.

The test showed that it is possible to apply the EnKF in
OD having noticeably larger errors in comparison to the
UKF. Further tests have to be performed to investigate the



influence of the process and measurement noise Modifi-
cations can be applied to improve the EnKF as well. For
example, the usage of another sampling method for the
generation of the ensembles and the random error, which
was added to the propagated state vector and measure-
ment, is conceivable. So, the impact on the behavior of
the EnKF and the resulting error can be researched.
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