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ABSTRACT

This article outlines the design and development of a
photometry-based image restoration system of near Earth
objects for use with 1 m class optical telescopes. Multi-
object adaptive optics is used to reduce the effects of at-
mospheric distortion for improved image resolution of
satellite and large debris objects, without the use of arti-
ficial beacons. Using wavefront measurements from sev-
eral background stars, a machine learning platform can
simplify tomographic reconstruction to estimate distor-
tion to improve the resolution of images of near Earth ob-
jects over a wide field of view, thus simplifying the need
for a complex tracking system and removing reliance on
laser guide stars.

Keywords: Space Situational Awareness; Adaptive Op-
tics; Optical Telescopes; Satellite Imaging.

1. INTRODUCTION

The increased participation of orbiting satellites from
new space aware countries, such as New Zealand and
Australia, have generated significant interest in firstly de-
tecting irregularities of orbiting extended objects, such
as low Earth orbit satellites [3] and secondly, in char-
acterising large pieces of space debris using photomet-
ric data [15, 26]. The need for enhanced resolution can
be achieved using adaptive optics (AO) [12, 38], which
can provide real-time compensation of atmospheric tur-
bulence, dramatically improving performance of ground-
based telescopes to rival that of space telescopes [33, 9].

Without adaptive optics, the resolution of ground-based
telescopes is limited by the severity of turbulence, charac-
terised by Fried’s coherence length, r0 [8]. A diffraction-
limited 1 m telescope can theoretically resolve a low
Earth orbiting satellite at 500 km down to 0.3 m. How-
ever, due to turbulence, where r0 is typically 5 cm at Mt.
John Observatory in New Zealand [20], the same tele-
scope would only be capable of resolving an area over
6m. For a geostationary satellite orbiting at 35,768 km,

the diffraction-limited resolution is 22 m, however reso-
lution through a 5 cm coherence cell would be 450 m.

To achieve such improvements, estimating optical aberra-
tions due to atmospheric turbulence is a key requirement.
Once acquired, such aberrations can be used to enhance
photometric data, in theory, to near diffraction-limited
performance. Natural guide stars (NGSs) or laser guide
stars (LGSs) can be used as beacons to measure distortion
near a target object. Based on a 5% probability of finding
a faint (mv = 12) or brighter NGS within 145µrad of a
target near the Galactic plane [19], LGSs can be placed
near a target, however, technical issues exist, such as the
cone effect, where multiple LGSs would need to be po-
sitioned to track an exoatmospheric object. Using sev-
eral background stars as natural beacons, we propose to
make use of atmospheric tomography to estimate turbu-
lence anywhere within the metapupil of a telescope over
a wide field-of-view. Our group specialises in wide field-
of-view imaging and low photon count wavefront sensor
designs. Employing this technology, we propose discon-
tinuous tracking of low Earth orbit satellites whilst mea-
suring the distortion function of several NGSs to improve
the resolution of photometric data over sequences of an
orbiting satellite’s trajectory.

Our simulations show that processing independent mea-
surements of turbulence in layers from each NGS is sim-
plified using a trained artificial neural network. A reser-
voir computer is a recurrent neural network that can be
trained with off-axis, anisoplanatic patches [8]. Wide-
field wavefront sensors provide NGS phase estimates
over a region that may contain a target object. Given a
priori position and trajectory knowledge of a satellite or
a debris field, subsequent tomographic evaluation using
reservoir computing and deconvolution can improve res-
olution. In this paper, we outline a tomographic method
to estimate low order aberrations which can be used to re-
store image and light curve data from extended orbiting
objects for detection and classification.

This paper is organised as follows. Firstly, a background
on satellite imaging and two approaches, i.e., lucky imag-
ing and adaptive optics for near Earth object and debris
detection is presented in the following section. A key
requirement for our proposed method is advanced wave-
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front sensor technology; this topic is outlined in Section
3 and includes multi-object sensing techniques. In Sec-
tion 4, a tomographic approach with machine learning
is discussed for estimation of the spatially varying point
spread function over a wide field-of-view. The applica-
tion of these approaches to improve image resolution of
near Earth objects using multi-object adaptive optics is
described in Section 5, and this includes image restora-
tion methodologies on extended objects, such as large
satellites and associated components, and space debris
objects over 1 m in length. Lastly, this article is con-
cluded in Section 6 and several projects are outlined that
comprise future work.

2. BACKGROUND AND METHODOLOGY

Telescopes can image orbiting or geostationary satellites
using reflected sunlight, and this can provide information
concerning the general shape of a spacecraft and stabil-
ity of flight. However, there are two problems using re-
flected sunlight for high-resolution imaging. Firstly, re-
flected light is quite different from light generated from
a point source, such as a star. Before reaching Earth, the
latter wavefront is virtually planar, whereas the former
scatters the wavefront, which results in a distorted im-
age. Thus, high resolution images required to show fine,
structural details are not possible using just reflected sun-
light, due to wavefront phase distortion induced by the
Earth’s turbulent atmosphere. An artificial LGS [25] can
be employed to generate a point source, however several
technical challenges exist: (i) LGSs need to be manoeu-
vred and placed within 15 arcseconds of an approaching
satellite [11], (ii) acquisition of low-order aberrations is
limited due to the cone effect [36], and (iii) the use of
LGSs is restricted in many regions and countries.

Secondly, the number of photons reflected from satellites
and space debris is typically very low. For example, since
the international space station (ISS) is so large, it can be
seen with the unaided eye. However, reflected light from
most geostationary satellites, particularly Cubesats, can
be several orders of magnitude less than this, and thus,
photon levels can be well below the noise floor of most
state-of-the-art image detectors. Adaptive optics [38],
which can partially correct for the effects of turbulence
by compensating the optical path of a telescope in real-
time, is an essential requirement. However, AO requires
a point source to measure turbulence very near a mov-
ing object [3]. Techniques, such as modal tomography
[8] can relax the on-axis (close separation) requirement
and extend what is known as the isoplanatic patch [32],
however NGSs offer a simplified alternative to LGSs, ef-
fectively negating the need for their generation, precise
placement, and a mechanism to provide manoeuvrability.

Figure 1. High resolution image of the ISS taken from Mt.
John University Observatory by Dr. Ian Griffin.

2.1. Lucky Imaging

For small aperture telescopes, lucky imaging can be used
in order to obtain a highly resolved image, which can
show more detail of a satellite. A lucky image is a short-
exposure of a point source object through a coherent cell
that passes between the object and aperture, and where
the RMS wavefront error of 1 rad, over the length of the
cell, which is equal to the diameter of the aperture. The
coherent length of cells can be characterised for an ob-
servation site; the parameter used is Fried’s coherence
length, r0 [8]. Variations over time results in performance
variation, where individual highly resolved images can be
selected for analysis. An example of a highly resolved
image of the ISS taken from the University of Canterbury
Mt. John Observatory by Griffin is shown in Figure 1.
This image was recorded on the 30 th July at 07:35 using
the 0.6 M Boller and Chivens telescope at prime focus us-
ing a Sony A9 camera with 1/4000 s exposure and12800
ISO. The A9 camera was set to“burst” mode, which took
20 frames per second in RAW image format.

From early work by Fried [7], the probability of a lucky
frame p(lucky), given a coherent cell size r0 and aperture
of diameter D, can be defined as,

p(lucky) ≈ 5.6 exp[−0.1557(D/r0)2]). (1)

A site profile has been performed at Mt. John Univer-
sity Observatory [20], which characterised the turbulence
profile by the refractive index structure constant, C2

n, and
determined Fried’s parameter to be r0 = 5 cm. Using this
parameter, and a telescope aperture of 1 m, the probabil-
ity of a lucky image is, p(lucky) ≈ 5.02 × 10−27. Thus,
for this site, the occurrence of a lucky frame would be an
extremely rare event. However, with careful selection of
highly resolved images, in addition to preprocessing, e.g.,
the shift and add method, a realisable and significant im-
provement in image resolution is possible. Hybrid meth-
ods, which include a combination of adaptive optics and
lucky imaging, have been used for general astronomical
imaging. [1].



2.2. Adaptive Optics

Adaptive optics comprises electrical, optical, and me-
chanical instrumentation and sensor technology, that,
when fitted to an optical telescope supported by a com-
puterised control system, can effectively reduce optical
aberrations caused by atmospheric turbulence. This is
achieved by effectively measuring the distortion using a
wavefront sensor, and either changing the optical path in
real-time using actuators and flexible mirrors, or estimat-
ing the short-exposure point spread function for correc-
tion of perturbed images using deconvolution. Given the
wealth of literature available in the field of adaptive optics
[32, 12, 38] only a brief overview of the main components
and our associated contributions will be given here.

A typical AO system can be described using the
schematic shown in Figure 2. The wavefront sensor
(WFS) provides measurements which are used by the
wavefront controller to estimate the instantaneous shape
of an incoming wavefront. Based on this estimate of the
wavefront, the wavefront controller calculates commands
to control the shape of a deformable mirror (DM). A DM
is a mirrored surface with an array of actuators attached
to the rear of a flexible mirror. The actuators allow the
shape of the mirror surface to be changed from planar.
If a conjugate of the wavefront shape measured for the
ground layer turbulence is output to the DM, the resulting
wavefront would emerge as highly corrected; only minor
high orders of aberrations would remain, in addition to
the upper layer turbulence perturbations, as shown in the
lower-middle of the schematic. Lastly, Figure 2 shows
two objects; one is a reference star, the other is a sci-
ence object. Typically, a bright point source reference is
used for wavefront measurements when there is insuffi-
cient photon flux from a faint science object. However,
to ensure the same wavefront is measured for the science
object, the angular separation between the reference and
object must be within the isoplanatic angle, θ0 [8]. The
next section will discuss our design of a geometric wave-
front sensor, which can measure wavefronts from multi-
ple objects, thus extending the isoplanatic angle.

3. MULTI-OBJECT WAVEFRONT SENSORS

A primary motivation for designing a multi-object wave-
front sensor is to capture simultaneous samples of atmo-
spheric turbulence over a wide field of view. Using atmo-
spheric tomography [29], the isoplanatic angle referred to
in Section 2.2 can be extended. To show how this can be
effectively used in the case of a space situational aware-
ness application, the schematic shown in Figure 3 extends
the top portion of Figure 2 discussed in Section 2.2.

In order to extend the anisoplanatic angle (the demarca-
tion of the resulting region is known as an isoplanatic
patch), the multi-object wavefront sensor shown in Fig-
ure 4 was developed and tested [42]. The aim of this
design is to capture multiple background stars over a
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Figure 2. A simplified overview of an adaptive optics sys-
tem. The wavefront controller reads measurements from
the wavefront sensor and computes commands to control
a deformable mirror. Control is performed in closed loop
to minimise wavefront perturbations.

wide field of view using a simplified method that sup-
ports two defocused images, i.e, the intra-focal and extra-
focal planes. The general configuration of this wavefront
sensor is similar to that of the curvature sensor, which
uses the second derivative of intensity measurements to
determine wavefront curvature [31, 39, 4]. However, the
method used to extract multiple wavefronts is based on
slope measurements and is referred to as the geometric
wavefront sensor [40]. The geometric wavefront sensor
has also been called a two pupil plane position wavefront
sensor or TP3-WFS [6].

Modifications were made to this sensor to simplify both
the physical arrangement over the optical path, specifi-
cally to accommodate multiple reference objects and tar-
get object over a wide field-of-view [42]. However, we
have also improved the performance of the original geo-
metric sensor through the use of signal processing meth-
ods, such as ridgelets and curvelet transforms [18], to re-
duce complexity of Radon transformations [28].

An example of multi-object wavefront sensing is shown
in Figure 5. Here, intra- and extra-focal pupil plane im-
ages of two Jovian moons are shown using two separate
cameras, each capturing two reference beacons. Both
high-speed cameras were synchronised and frames from
both cameras at 60 fps were labeled and streamed to sep-
arate computers for batch processing. Methods for ex-
tracting optical aberrations from each source depend on
the type of wavefront sensor used, and some preprocess-
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Figure 3. The single source adaptive optics system shown
in Figure 2 is extended here to a multi-object adaptive
optics system. The zonal regions of several isoplanatic
patches are shown and can be captured simultaneously
using a wide field of view camera. An example of two
temporal instances of a science object, i.e., at time t1 and
t2, as it moves in to and out of an isoplanatic region, and
with respect to three background reference stars, α, β,
and γ, is shown. A corrective wavefront to compensate
for localised turbulence at the location corresponding to
time t2 of a moving science object, would require a tomo-
graphic approach, which would use intra- and extra focal
images of all three sources taken simultaneously at time
t2.

ing is required. To obtain phase perturbations, curvature
sensors remove scintillation by subtracting the intra-focal
from the extra-focal image. Geometric sensors use both
images to map the slope of aberrations between pupil
plane images and the Radon transform to estimate the dis-
placement [23, 24].

The next section will discuss how a set of aberrations
from each reference source, in the form of Zernike poly-
nomials [32], can be combined to achieve high resolution
imaging of target objects by reducing the effects of tur-
bulence over anisoplanatic regions.

4. A TOMOGRAPHIC APPROACH WITH MA-
CHINE LEARNING

As discussed in Section 2.2, AO systems can provide im-
age improvement when a science object is within close
separation of a bright reference source, such as a natural
guide star or a laser beacon. However, such localised esti-
mation of a turbulent region (isoplanatic patch) for image

restoration of a science object can be extended by imag-
ing multiple reference sources and by applying tomo-
graphic processes. Somewhat ambitiously, multi-object
adaptive optics using atmospheric tomography has been
proposed for whole sky correction [30].

A brief overview highlighting atmospheric tomography
will be covered in this section, and corresponding ma-
chine learning methods for simplifying the tomographic
matrix will be outlined.

4.1. Atmospheric Tomography

Computerised tomographic imaging [14] is an extensive
topic and so only a summary of how modal tomogra-
phy for AO [29] has been integrated with spatiotemporal
modal estimation using known a posteriori source aber-
ration data will be covered in this section.

As first proposed by Tallon and Foy [36], the basic idea
is to use a posteriori estimates of turbulence aberrations
from multiple point source objects, such as background
guide stars α, β and γ shown in Figure 6, to determine
several isoplanatic patches. Based on known turbulence
profiles from site testing, the degree of covariance from
overlapping patches, in conjunction with the height of the
turbulence layer allows one to construct a covariance ma-
trix, known as the tomographic matrix [29]. Such matri-
ces can be solved to estimate turbulent modes in anisopla-
natic regions or patches, which provide an estimate of the
distortion perturbing the image of a target object, such as
ε.

Using only one reference, such as guide star γ, target ε
is limited to isoplanantic angle, θε,γ . However, by mea-
suring the turbulence over the three isoplanatic patches
(shown as circular disks projected as cylinders through
turbulent layers, L1 and L2) for each guide star, a tomo-
graphic matrix can be used to estimate turbulence patches
in spatial regions not directly referenced by a guide star.

4.2. Machine Learning for Computational Reduc-
tion

Given the large data ensembles generated that require
processing, an alternative to tomographic matrix compu-
tations was investigated. The structure chosen is a recur-
rent neural network, referred to in the literature as reser-
voir computing [34]. These stochastic-based networks
support a simplified training methodology, where only
the reservoir matrix is used in training to provide linear
mapping between input and output layers.

A reservoir computer (RC) [16] is currently used to pre-
dict a target object wavefront over wide separations. The
type of RC used is an echo state network (ESN) [13],
which is a form of a recurrent neural network [17]. Typ-
ically, ESN structures are configured for prediction, and
thus can be extended for training on spatiotemporal data
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[41, 42]. A process of mapping isoplanatic regions over
a wide spatial region, thus allowing the network to de-
termine the degree of correlation of a set of 4th order
Zernike coefficients in adjacent regions, was devised for
training for specific seeing conditions.

An adaptive approach will be required for the network to
maintain optimal performance over varying atmospheric
conditions [21]. In addition, extended hour angle obser-
vations will require additional compensation for higher
air mass. Our work considers how this compensation
can be achieved, possibility by increasing the number of
sources for high air mass observations under GPU accel-
eration. An ESN was implemented on a GPU for multiple
time-step prediction [44].

4.3. Anisoplanatic Imaging Model

In order to reduce computational complexity, an ESN is
using to replace the tomographic matrix referred to in
Subsection 4.2. In effect, the resulting network shown
in Figure 7 is used to learn spatiotemporal mapping and
is essentially used to estimate modal perturbations over
localised regions. The structure shown was used as a ba-
sis for our simulation model and is described in [46]. A
summary is given here.

Based on simulations [46] and refined laboratory experi-

ments [45], two short exposure images are captured over
a wide field that encompasses three or more source ob-
jects, corresponding to NGSs such as α, β, and γ in Fig-
ure 3. In the case of three sources, and at time period ∆t,
a set of noise impaired images comprising regions of in-
terest I11,2, I21,2, and I31,2 are used to estimate a set of N
Zernike polynomial coefficients, Z1, Z2, and Z3. Each
set, together with separation data φSep of a target object
ZT, turbulence profile C2

n, and regularisation and other
optimising factors are input to an ESN, which has been
trained on a similar profile. Spatiotemporal data and pa-
rameters are used by the ESN to estimate turbulence aber-
rations over an anisoplanatic region, AT, but within an
isoplanatic region to ẐT. Several hundred frames are pro-
cessed as turbulence is displaced over the aperture form-
ing a time-series for analysis. Lastly, Zernike polynomial
coefficient data is taken over the same time-period and
are used for comparison, forming a residual phase error.

Unlike the approach taken for atmospheric modal tomog-
raphy, the ESN method described here does not rely on
the construction of a correlation matrix of overlapping
pupil data from multiple source objects. The capability to
estimate the effects of turbulence, spatiotemporally, and
over a wide FOV, is inherently learnt by the ESN through
training.

Our method assumes Taylor’s frozen flow hypothesis
[37], which essentially states that turbulence will effec-
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tively remain “frozen” while passing over the aperture.
Short exposure images are acquired to form time-series
data; extracted using a multi-object wavefront sensor,
each source is separated into Zernike modes. In an exper-
imental study discussed in the next section, we demon-
strate how a trained reservoir computer can be used to
estimate Zernike modes over intersecting regions within
the meta-pupil when a series of similar turbulence condi-
tions are experienced from N natural guide stars.

5. HIGH-RESOLUTION SATELLITE IMAGING

Multiple object AO simulations using astronomical to-
mography and reservoir computing have been conducted
with angular separations, θT, of 5 < θT < 250µrad.
An average normalised MSE result for θT � θ0, e.g.,
θT = 156µrad, using 3 NGSs, 1.3 × 105 photons and
80 db read noise, was reduced to 0.37 of the open-loop er-
ror [42]. These simulations currently use batch process-
ing; training data is mostly generated by the simulator
but has also been supplemented by both laboratory and
field acquisitions. Structures based on a model, which
is described in the next subsection, will be formulated to
achieve optimal on-sky performance for high-resolution
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nomials ẐT employing a trained echo state network [46].

satellite imaging application.

5.1. Tomographic Mapping of Trajectories

A single, annotated, and inverted image frame of the Op-
tus D1 communications satellite, tracked against three



NGSs [27], is shown in Figure 8. This image shows

NGSβ

NGSα
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Fixed isoplanatic patch perturbing target, ǫ

Figure 8. Annotated satellite image of the Optus D1 satel-
lite with natural stars as background source objects.

the satellite or “target” object as black on a granular
light grey background, showing the effect of Gaussian
read noise. Three, fainter, natural guide stars are shown,
α, β, and γ. The satellite target is being tracked contin-
uously, and remains relatively fixed over several hundred
frames. The current frame shows all three background
stars and the target object at time t1. Subsequent frame
positions of each star show projected positions of α, β,
and γ references, highlighted in pink, green, and pur-
ple, respectively, at times t2, t3, t4, and t5. At each time
step a subsequent image captures wavefront perturbations
simultaneously from all guide stars and the target ob-
ject. The isoplanatic circular “patches” of each source
object are shown. These regions represent known a pos-
teriori perturbations caused by turbulence. Over each
updated, wide field-of-view image frame, captured at a
frame rate sufficiently high to minimise temporal decor-
relation of the changing atmosphere, are used by our
multi-object wavefront sensor to determine perturbations
from N background stars representing N isoplanatic re-
gions. The resulting data ensembles, used with site pro-
file characteristics [20], effectively map wavefront infor-
mation using a trained reservoir computer, over the trian-
gular regions shown, i.e., anisoplanatic regions [10], and
over each time-step.

Using variants of the K maximum sum, also known as
the bright spot algorithm [2, 35, 43], the brightest stars
within the frame and their positions can be determined.
This information allows an n-sided polygon to be con-
structed, where apexes are formed using n NGSs, and
comprises a set of brightest NGSs from each captured
frame. Each region can overlap adjacent regions thereby
encompassing a region of interest of a target object, or a
region where a target is suspected but cannot be detected
if below the noise floor due to low photon flux.

Preliminary studies of videos of satellites tracked over a
wide field-of-view [27], suggest that between 3 to 10 nat-

ural guide objects of upper limit magnitudes will be avail-
able. In terms of percentage of source sky coverage over
a reduced field-of-view, estimates based on magnitude,
either on- or off-axis from the Galactic centre, appear to
correlate with our preliminary estimates [19, 5].

5.2. Restoration Methods on Extended Objects

Distorted images of near Earth Objects taken from
ground-based astronomical telescopes resulting from at-
mospheric turbulence can be partially restored if the aber-
rations causing the distortion are known. The normalised
sum of aberrations forms the point spread function (PSF),
which, when deconvolved with a distorted image can par-
tially restore the image. Using perturbed natural, point-
source targets, we use atmospheric tomography in an
open-loop configuration to estimate the spatially variant
point spread function (SVPSF) for image restoration [41].
Thus, deconvolution from wavefront sensing can be ap-
plied, where a closed loop, low-order AO corrector can
be used to correct PSF tip/tilt displacement in real-time.

Using the SVPSF, we have investigated three widely
used image restoration methods: Tikhonov Regulariza-
tion, Lucy-Richardson and Weiner filtering, and com-
pared these methods [22]. Our analysis, using the full-
width at half maximum (FWHM) metric for curvature
and geometric wavefront sensors, were assessed from
continuous image data in an open-loop configuration.
Our results showed that the Lucy-Richardson method had
the best performance, in terms of improved FWHM of
the restored images for both curvature and geometric
wavefront sensors, when compared with the simulated
diffraction-limited image. However, the geometric sensor
underperformed the curvature sensor over larger propaga-
tion distances due to the assumptions of geometric optics
breaking down and stronger diffraction effects [4].

6. CONCLUSION AND FUTURE WORK

A simplified method which uses multiple background
stars over a wide field-of-view to improve resolution
within localised, isoplanatic regions of distorted LEO and
GEO images caused by atmospheric turbulence, has been
presented. Our proposed method has been simulated and
bench-tested in an open-loop configuration as part of a
multi-object adaptive optics system. This paper proposes
an adaptation of our method to improve the resolution of
satellite and space debris images. To achieve this how-
ever, the development of new methods for real-time, on
sky deployment will be required.

Further testing of our ridgelet-based geometric wavefront
sensor (Sect. 3) is required for on sky use. A method is
required to maintain relatively consistent irradiance pro-
files (Sect. 4) from natural point sources, which can
vary over several magnitudes, resulting in under and over-
exposed geometric slope measurements. We are cur-



rently developing a tip/tilt AO system which will comple-
ment our deconvolution from wavefront sensing (Sect. 5)
methods, where lucky imaging (Sect. 2.1) may provide
further refinement to achieve our ultimate goal of near
diffraction-limited resolution performance.
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