
EFFICIENT ESTIMATION AND DECISION-MAKING METHODS FOR SHORT TRACK
IDENTIFICATION AND ORBIT DETERMINATION

A. G. Tartakovsky, A. E. Kolessa, A. P. Ivanov, A. P. Lukyanov, and V. A. Radchenko

Space Informatics Laboratory, Moscow Institute of Physics and Technology, Moscow, Russia, Email: agt@phystech.edu;
kolessa.ae@phystech.edu; atner.ivanov@phystech.edu; lukianov.ap@mipt.ru; rad4enko.v.a@mail.ru

ABSTRACT

Detection and tracking of near-Earth space objects with
telescopes involve sparse data, i.e., the observations re-
lated to a specific object of interest are collected only for
a small fraction of the object’s orbit revolution, which is
referred to as a short arc. The time-separation between a
series of successive observations of the same object can
be very large (a week or even more). The challenge is
to estimate orbit parameters for a single track and then
to improve this estimate based on a few data sets, say,
fusing two tracks. Our paper addresses the problem of
identification and fusion of several short optical tracks
of near-Earth space objects, as well as the problem of
estimation of parameters of the corresponding orbit di-
rectly from these tracks in the absence of a priori in-
formation on the object’s orbit. The popular approach
to solving these problems is based on admissible regions
of orbital parameters, which is typically computationally
demanding. A new, purely statistical method for solv-
ing these problems is proposed. This method includes a
novel algorithm of estimation of orbit parameters based
on two time-separated tracks and an optimal joint track
identification-estimation-fusion rule, i.e., the decision-
making rule on whether the tracks belong to the same
object or not that also simultaneously estimates param-
eters. An important feature of the developed algorithm
is that it allows one to find the global minimum of the
objective function instead of localizing local minima.

Keywords: Admissible Regions, Detection and Tracking,
Iterative Weighted Least Squares Method, Joint Hypoth-
esis Testing and Estimation, Orbit Determination, Short-
Arc Tracks Identification.

1. INTRODUCTION

The paper addresses the problem of identification and
fusion of several short optical tracks of near-Earth non-
maneuvering space objects, as well as the problem of es-
timation of parameters of the corresponding orbit directly
from these tracks in the absence of a priori information
on the object’s orbit. A popular approach to these prob-

lems is based on the regions of admissible values of the
orbital parameters (see, e.g., [6, 8–10, 15, 18]). The pre-
dicted admissible region for the first track is compared
to the admissible region for the second track, and if they
intersect, the decision is made that the tracks belong to
the same space object, and the region of their intersec-
tion is used for refining the estimate. However, if the
time interval between tracks is long, admissible regions
have the form of extended ravines of complex shape with
transverse dimensions many orders of magnitude smaller
than the longitudinal dimensions, which makes it diffi-
cult to obtain a reliable and accurate estimate. Also, this
approach is computationally demanding.

In the present paper, we exploit a completely different,
purely statistical approach that does not require admis-
sible regions of orbital parameters. This approach is
based on the two novel methods developed by Kolessa
et al. [13]. The first is a decision-theoretic approach to
the problem of joint identification-estimation-fusion of
tracks that allows one to obtain an optimal Bayesian hy-
pothesis test for testing the hypothesis that tracks belong
to different objects against the hypothesis that tracks be-
long to a single object. If the hypothesis test makes a
decision that the tracks belong to the same object they
are fused and the refined estimate of the object’s param-
eters is formed based on the novel nonlinear estimation
algorithm, also developed in this paper. To build the lat-
ter algorithm the results obtained in [12] for a single track
are extended to the case of two short tracks, showing that
the weighted least-squares criterion for finding the opti-
mal estimate of the orbital parameters based on two short
tracks has several extremes. Thus, to solve the estimation
problem correctly it is important to localize the global
minimum rather than local ones. For completeness, we
provide a detailed description of all ideas and algorithms
developed in [12, 13].

The results of experiments with real data show very high
efficiency of the developed methods. In fact, the experi-
mental study proves that the accuracy of estimation of the
orbit based on two or three time-separated tracks is close
to potentially achievable.
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2. ALGORITHMS OF ORBIT DETERMINATION

2.1. A Single Track Problem

We begin with describing an algorithm of estimation of
a space object orbit based on angle-only measurements
in one observation session, i.e., from a single track. This
problem was considered in a number of works. The first
results were obtained by Legendre [14] and Gauss [11].
Chang [4] proposed an algorithm based on independent
smoothing of the measurements of each of the two an-
gular coordinates by a polynomial of the appropriate de-
gree. Estimates of the unknown range and radial veloc-
ity are found as the roots of the transcendental equation
connecting these parameters with the angular coordinates
and their derivatives. Smoothing the measured angular
coordinates with polynomials (but not based on the dif-
ferential equation of motion) leads to a loss of potential
accuracy and, in a number of cases, the transcendental
equation has no real roots, which makes it impossible to
obtain an estimate of the orbital parameters. In [4], this
method was used to form the initial approximation and
then refine it by an iterative least-squares method. The
analysis in [4] shows that in the general case it is not pos-
sible to ensure a stable convergence of such an iterative
process. In this subsection, we describe the method for
the initial determination of orbits, which refines the algo-
rithm proposed in [12].

Introduce the following notation that will be used
throughout the paper. A track of the space object is the
sequence (

α̂t, δ̂t, τt

)
, t = 0, 1, . . . , n− 1, (1)

where α̂t and δ̂t are the measurements of the angle co-
ordinates α(τt) (right ascension) and δ(τt) (declination),
respectively, corresponding to the time moment τt. The
range d(τt) from a telescope to an object is not mea-
sured. Write X(τ∗) for the state vector of the space ob-
ject equation of motion corresponding to some point in
time τ∗. This vector contains k components, which cor-
respond to vectors of location and velocity of the object
in the geocentric fixed Cartesian system TEME (TrueE-
quatorMeanEquinox). If necessary, the state vector may
also include components that characterize the space ob-
ject inhibition in the atmosphere and the effect of solar
radiation on its motion. The law of the space object mo-
tion is determined by the equation of the prediction of the
state vector to an arbitrary time τ :

X(τ) = f(X, τ − τ∗). (2)

Measured angular coordinates are functions of the state
vector X:

α(τt) = α(X(τt)) = α(f(X, τt − τ∗)), (3)
δ(τt) = δ(X(τt)) = δ(f(X, τt − τ∗)), (4)

t = 0, 1, . . . . The following model for the measurements
of the angular coordinates (observations) is used:

Y (t) = h(X, τt) + εt, (5)

where

h(X, τt) = [α(f(X, τt − τ∗)), δ(f(X, τt − τ∗))]T ,
εt = (εαt , ε

δ
t )
T , for t = 0, 1, . . . , n− 1,

(6)

εαt and εδt are measurement errors, Y is the observed ran-
dom variable, and its observed (measured) value is de-
noted by y(t) = (α̂t, δ̂t)

T . Hereafter T denotes trans-
pose. Using the notation

Y =
[
Y T (0), . . . , Y T (n− 1)

]T
,

y =
[
yT (0), . . . , yT (n− 1)

]T
,

ε =
[
εT (0), . . . , εT (n− 1)

]T
,

h(X) =
[
hT (X, τ0), . . . , hT (X, τn−1)

]T
(7)

the combined vector of measurements can be represented
in the vector form

Y = h(X) + ε. (8)

Assume that the measurement error ε has a normal dis-
tribution with mean zero and diagonal covariance matrix
W = σ21l, where the variance σ2 of the average error in
the measurement of angular coordinates is unknown (1l
stands for the unit matrix). We impose the following con-
straint on the admissible values of the state vector of the
space object motion:

X ∈ Ω ⊂ Ek, (9)

where Ek stands for the k-dimensional Euclidean space.

Based on the observed value y of the random vector Y , it
is required to estimate x̂ of the orbit state vectorX , which
is optimal in the sense of the Gauss–Markov criterion:

J(x̂) = min
x∈Ω

J(x), (10)

where
J(x) = [y − h(x)]T [y − h(x)], (11)

as well as to find the posterior covariance matrix of the
estimation error Γ = E[(X − x̂)(X − x̂)T |Y = y].

Unfortunately, in the case of a short track, it is impossible
to construct an initial approximation for the iterative least
squares method, ensuring its convergence to x̂ that deliv-
ers the minimum of the optimality criterion (11). This
is due to the essential “ravineness” of the objective func-
tion (11). In addition, the application of an iterative least
squares method with one initial point makes it difficult
to take into account the a priori constraint (9) on the ad-
missible values of the state vector, which is necessary to
construct a proper confidence region.
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Consider first fixed range orbit estimation, that is, the
problem (8)–(11) for a fixed hypothetical range d0 from
the telescope to the object with an additional constraint

αTX = d0 + êT0 xs, (12)

where αT = (êT0 , 0, 0, 0), ê0 = e(α̂0, δ̂0) is a unit vec-
tor, directed from the telescope to the object, and xs are
the coordinates of the telescope. The goal is to find an
estimate x̂(d0) of the state X for a given range d0.

Fixing the hypothetical range d0 from the telescope to
the object and using [12], we first obtain the initial con-
ditional estimate x̃(y|d0) of the state vector X . Then lin-
earizing equation (8) with respect to the estimate x̃(y|d0)
and applying the least squares method with the restriction
(12) gives the following estimator:

x̂(d0) = x̂LSE + Γ̂LSE α
(
αT x̂LSE − a

)
αT Γ̂LSEα

,

where

Γ̂LSE =

[(
∂h(x̃(y|d0))

∂x

)T (
∂h(x̃(y|d0))

∂x

)]−1

,

x̂LSE = x̃(y|d0)

+ Γ̂LSE

(
∂h(x̃(y|d0))

∂x

)T
(y − h(x̃(y|d0)))

and a = d0 + êT0 xs (cf. [1]).

Finally, consider the most practical case when the range
is not known but belongs to some interval, which can
be calculated based on physical and tactical conditions.
The function x̂(d0) allows us to determine such interval
(dmin, dmax) that x̂(d0) ∈ Ω. This makes it possible
to reduce the nonlinear problem of minimizing the ob-
jective function (11) in a multidimensional space under
constraints x ∈ Ω to the minimization problem in one-
dimensional space:

J(x̂(d̂0)) = min
d0∈(dmin,dmax)

J(x̂(d0)). (13)

The solution of this minimization problem can be ob-
tained, for example, by Brent’s numerical method [2].
The estimate x̂(d̂0) is refined by the iterative least squares
method

Γ̂i+1 =

[(
∂h(x̂i)

∂x

)T (
∂h(x̂i)

∂x

)]−1

,

x̂i+1 = x̂i + Γ̂i

(
∂h(x̂i)

∂x

)T
(y − h(x̂i)).

Iterations are performed with the initial condition x̂0 =

x̂(d̂0) and terminated when the condition

|J(x̂i+1)− J(x̂i)| 6 δ or i > imax (14)

is satisfied, where the constant δ determines the accuracy
of the result and imax is a maximal admissible number of
iterations.

The value of x̂i+1 (obtained when condition (14) is satis-
fied) is a solution to the problem (10)–(11), i.e., x̂(d0) =

x̂i+1, and the matrix Γ̂ = Γ̂i+1 is the covariance estima-
tion error matrix normalized to an unknown variance σ2

of measurement error. Notice that both the estimate x̂ and
the normalized matrix Γ̂ do not depend on the unknown
σ.

The average error (over the track) σ2 in the measurement
of angular coordinates is estimated as

σ̂2 =
J(x̂)

2n− k
(15)

and the covariance matrix of the estimation error has the
form Γ = σ̂2Γ̂.

Obviously, J/σ2 has the standard chi-squared distribu-
tion with 2n− k degrees of freedom, χ2

2n−k. Hence, the
confidence region (ellipsoid) containing the state vector
X with required significance level β is given by the in-
equality

Ell(x̂,Γ|β) = {X : (X− x̂)TΓ−1(X− x̂) 6 c2}, (16)

where the constant c = cβ , depending on the prescribed
significance probability β, is found from the equation

Fk,2n−k

(
c2

2n− k

)
= β, (17)

where Fm,N (x) is the Fisher distribution function,

Fm,N (x) =
Γ
(
N+m

2

)
Γ
(
N
2

)
Γ
(
m
2

) ∫ x

0

um/2−1

(1 + u)(N+m)/2
du.

Taking into account the a priori constraint (9), the confi-
dence region Ω̂ for the state vector has the form:

Ω̂ = Ω
⋂
Ell(x̂,Γ|β). (18)

The developed single-track estimation algorithm was
tested based on the tracks of the objects of Space Sta-
tion, Atlas 5 Centaur R/B, Beidou 3M8, observed from
Moscow, Russia with a telescope with angular accuracy
1
′′

and a measurement acquisition period of 5 sec. The
parameters of the orbits of these objects are given in Ta-
ble 1, where the ID is the NORAD catalog number, P
is the perigee, A is the apogee, I is the inclination, and
T is the period. In Tables 2–4, we give dependence on
the time of observation of the root-mean-squared estima-
tion errors (RMSE) of position σpos and velocity σvel of
the object as well as the number of turns of the virtual
object’s spiral.
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Table 1. Analyzed Orbits
No. ID P (km) A (km) I T (min)
1 25544 409 415 51.6o 92.7
2 42916 4520 34816 25.9o 697
3 43246 21520 21550 55.0o 773

Table 2. Object 25544
T (sec) σpos (km) σvel (m/sec) N

20 13.67 84.85 2.571
30 5.50 34.41 1.583
60 1.07 6.86 0.368
120 0.19 1.22 0.066
200 0.05 0.35 0.019
300 0.02 0.15 0.008

2.2. Estimation of Orbit Parameters Based on Two
Time-Separated Tracks

2.2.1. The Problem

Consider two tracks of the same object

(α̂0,t, δ̂0,t, τ0,t), t = 0, 1, . . . , n0 − 1,

(α̂1,t, δ̂1,t, τ1,t), t = 0, 1, . . . , n1 − 1,

obtained by one or different telescopes at one or differ-
ent orbital turns, possibly on different observation nights.
For the sake of simplicity, the tracks are numbered in de-
scending order of their duration in time.

Using notations (1)–(8), we consider the state vector
X0 = X(τ0,0) to define the motion of the object and the
following equations for the combined measurable vectors

Y0 = h0(X0) + ε0, Y1 = h̃1(X0) + ε1, (19)

where h̃1(X0) = h1(f(X0, τ1,0 − τ0,0)), Gaussian mea-
surement errors ε0 and ε1 are uncorrelated, and their co-
variance matrices have the diagonal form W0 = σ2

01l and
W1 = σ2

11l. Variances σ2
0 and σ2

1 of the average (over
tracks) errors of measurements of angular coordinates are
unknown.

Introduce notation:

y = (y0, y1)T , Y = (Y0, Y1)T ,

H0(X0) = [h0(X0), h̃1(X0)]T ,

Y = H0(X0) + ε, W =

[
σ2

01l 0
0 σ2

11l

]
. (20)

Based on the measurement y of the random vector Y ,
we have to obtain the fused estimate x̂0 of the orbit state
vector X0, which is optimal in the sense of the Gauss–
Markov criterion:

J(x̂0) = min
x0∈Ω

J(x0), (21)

Table 3. Object 42916
T (sec) σpos (km) σvel (m/sec) N

200 114.6 38.2 0.989
300 48.8 16.1 0.415
600 9.5 3.0 0.080
900 3.9 1.2 0.032
1200 2.1 0.6 0.016
2000 0.7 0.2 0.005

Table 4. Object with Norad Number 43246
T (sec) σpos (km) σvel (m/sec) N

300 1060.8 159.93 2.457
600 121.3 18.24 0.420
900 45.7 6.84 0.155
1200 21.3 3.18 0.072
2000 5.3 0.79 0.018
3000 1.6 0.24 0.005

where

J(x0) = [y −H0(x0)]T Ŵ−1[y −H0(x0)], (22)

Ŵ =

[
σ̂2

01l 0
0 σ̂2

11l

]
,

and σ̂2
0 , σ̂2

1 are the estimates of the average variances of
error measurements constructed for each track indepen-
dently according to the formula (15). It is also required
to determine the posterior covariance matrix of the state
vector error estimates.

While at first glance the problem of minimizing the cri-
terion (21) is the same as the problem of estimating the
state vector based on a single track (i.e., finding the global
minimum of criterion (10)), this is not correct. Indeed,
as discussed in [13], there is a fundamental difference
due to a long time interval between the measurements
of the first and second tracks and a long-term prediction
f(X0, τ1,0 − τ0,0) necessary for describing the connec-
tion of the second track with the state vector X0. The
details are spelled out in the next subsection.

2.2.2. An Optimal Estimate

Suppose that for the first track, i.e., based on the mea-
surement y0, we calculated an estimate x̃0 of the state
vector X0 and a covariance matrix of estimation errors
Γ̃0 that determine the confidence ellipsoid Ell(x̃0, Γ̃0|β)
covering the state vector X0 with the desired significance
probability β. Let us represent the matrix Γ̃0 in the block
form

Γ̃0 =

[
Γx,x Γx,ν
ΓTx,ν Γν,ν

]
,

where each block has the size 3 × 3. Components with
indices x correspond to object location and components
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Figure 1. Spiral of the virtual object x0(u).

with indices ν correspond to velocity. Transforming the
blocks Γx,x and Γν,ν to the diagonal form by using or-
thogonal matrices Sx and Sν ,

Λx = STx Γx,xSx, Λν = STν Γν,νSν .

and using the orthogonal matrix

S1 =

[
Sx 0
0 Sν

]
the matrix Γ̃0 can be written as

Γ′0 = ST1 Γ̃0S1 =

[
Λx STx Γx,νSy

STy ΓTx,ν Λν

]
.

Suppose that at the position i, i of the matrix Γ
′

0 there is
a maximal diagonal element Λxi,i, corresponding to the
coordinate space, and at the position j + 3, j + 3 – the
maximal diagonal element Λνj,j . There exists an orthogo-
nal matrix S2, which by means of the transformation

Γ′′0 = ST2 Γ̃0S2 = ST2 S
T
1 Γ̃0S1S2 = ST Γ̃0S

represents the matrix Γ′0 in such a form that (2× 2)-sub-
matrix of Γ′′0 , formed by elements located at the inter-
section of rows and columns with numbers i and j + 3,
becomes orthogonal. In this case, the components i and
j + 3 of the vector X ′′0 = STX0, which variations give
the greatest contribution to the change in the state vector
X0 when it is extrapolated, become independent.

The vector X ′′0 has normal distribution with mean x̂′′0 =

ST x̂0 and covariance matrix Γ′′0 = SΓ̃0S
T . The con-

fidence ellipsoid corresponding to the matrix Γ
′′

0 in the
space of locations is most elongated along the axis i.

Let the vector x′′0(u) be formed from the vector x̂′′0 by
adding to its i-th component the parameter u. The point

x′′0(u) corresponds to a k-dimensional point x0(u) =

Sx′′0(u) in the ellipsoid Ell(x̃0, Γ̃0|β).

Now, we find the interval umin 6 u 6 umax of the ad-
missible values of the parameter u, within which, firstly,
the i-th component of the vector x′′0(u) belongs to the
confidence interval(

x̂
′′(i)
0 − γ

√
Γ
′′(i,i)
0 , x̂

′′(i)
0 + γ

√
Γ
′′(i,i)
0

)
with the desired probability β and, secondly, the vector
x0(u) corresponds to the physically realizable orbit.

For an orbit given by the vector x0(u), one can determine
the revolution period T (u) = T (x0(u)) and, in particu-
lar, find T1 = T (umin) and T2 = T (umax) .

A virtual object with the state vector x0(u) with a predic-
tion for an interval of time ∆τ = τ − τ0,0 will make
N(u) = ∆τ/T (u) revolutions around the Earth (the
number N(u) is not an integer). When the parameter u
changes within the interval [umin, umax], the state vec-
tor xE(u,∆τ) = f(x0(u),∆τ) moves in a coordinate
space along a spiral (see Figure 1) with the number of
revolutions N = |N1 − N2|, where N1 = ∆τ/T1 and
N2 = ∆τ/T2.

Using formulas (3) and (4), we can calculate the cor-
responding angular coordinates α(u, τ1,t) = α(xEt (u)),
δ(u, τ1,t) = δ(xEt (u)), where

xEt (u) = f(x(u), τ1,t − τ0,0).

Angular discrepancy

ρ2
1,t(u) = [α(u, τ1,t)− α̂1,t]

2 + [δ(u, τ1,t)− δ̂1,t]2

as a function of the parameter u, periodically (with
a spiral period) takes the minimum values since the
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point xEt (u), moving in a spiral as the parameter u
changes, periodically approaches as close as possible to
the bearing beam, determined by the angular measure-
ment (α̂1,t, δ̂1,t). The minimum value of the residual
ρ2

1,t(u) is different for different turns of the spiral. The
total quadratic residual for the second track has the same
dependence of change on u:

ρ2(u) =

n1−1∑
t=0

ρ2
1,t(u).

Simulations show that 1/T (u) ≈ η · u, where η is a cer-
tain proportionality constant. This approximate formula
allows us to calculate the period T (u) of the function
ρ2(u). Once we know the period T (u), it is possible to
determine the intervals

(u
(k)
min, u

(k)
max), k = 0, 1, . . . ,K − 1

where the corresponding local minimum of the quadratic
discrepancy for the second track is located. However,
the discrepancy for the first track remains practically un-
changed, since the point x0(u) is located in the confi-
dence ellipsoid Ell(x̃0, Γ̃0|β).

Thus, for a long time-interval between tracks, the quality
criterion (21) has several extremes, the number of which
increases with the increase of the interval between tracks.
As a result, it is incorrect to use an iterative least-squares
method with a single initial approximation for construct-
ing an optimal estimate, which at best can converge to
one of the local minima of the criterion (22). Hence, the
problem of finding a global minimum of the criterion (22)
becomes challenging. It is considered in the next subsec-
tion.

2.2.3. Finding the Global Minimum

Taking into account the analyzed features of the op-
timality criterion (22) for finding its global minimum,
the following algorithm is proposed in each interval
(u

(k)
min, u

(k)
max).

First, by using the method of mathematical optimization
BRENT we find the value u = ûk providing a local min-
imum of the residual

ρ̂k = ρ(ûk) = min
uk
min6u6u

k
max

ρ(u) (23)

as well as the corresponding state vector x(k) = x(ûk).

Second, we determine a locally optimal estimate x̂(k)

(within the interval (u
(k)
min, u

(k)
max) under consideration)

using the Kalman iterative filter:

Γ
(k)
i =

(
Γ̃−1

0 +B
(k)
i

T
Ŵ−1B

(k)
i

)−1

. (24)

x̂
(k)
i+1 = x̂

(k)
i +

Γki

[
B

(k)
i

T
Ŵ−1

(
y − h(x̂

(k)
i )
)

+ Γ̃−1
0

(
x̃0 − x̂(k)

i

)]
,

(25)

where B(k)
i = ∂H0(x̂

(k)
i )/∂x, with the initial condition

x̂
(k)
0 = x(k). Iterations are terminated when the condition(

x̂
(k)
i+1 − x̂

(k)
i

)T (
x̂

(k)
i+1 − x̂

(k)
i

)
6 δ

is satisfied, where δ is the prescribed estimation accuracy.
The values of x̂(k) = x̂

k)
i+1 and Γ(k) = Γ

(k)
i+1 are taken

as a state estimate and a covariance matrix of estimation
errors, respectively.

Third, we calculate the local minimum of the objective
function (22), J (k) = J(x̂(k)).

After repeating the described sequence of operations for
k = 0, 1, . . . ,K − 1, the number of the revolution k∗ =
arg mink J

(k) is determined, and the estimate x̂0 = x̂(k∗)

and the covariance matrix Γ0 = Γ(k∗) are selected as the
optimal estimate of the state vectorX0 and the covariance
matrix of the estimation error constructed from two tracks
in terms of criterion (21).

3. IDENTIFICATION AND FUSION OF TRACKS
FROM DIFFERENT OBSERVATION SES-
SIONS

It is natural to formulate the problem of identification of
tracks as belonging to the same or different objects as the
problem of testing the hypothesis H0 that both tracks be-
long to the same object whose orbit is determined by the
state vectorX0 corresponding to the time instant τ0,0 ver-
sus the alternative hypothesis H1 that two tracks refer to
different objects whose orbits are determined by the state
vectors X1,0 and X1,1 corresponding to the time instants
τ0.0 and τ1,0.

Under these hypotheses the models for the observations
are different. Specifically, under the hypothesis H0, the
observation model has the form (20), i.e.,

Y = H0(X0) + ε,

and under the hypothesis H1, the observation model has
the form

Y = H1(X1) + ε, (26)

where

Y = (Y T0 , Y
T
1 )T , X1 = (XT

1,0, X
T
1,1)T ,

H1(X1) = (hT0 (X1,0), hT1 (X1,1))T , ε = (εT0 , ε
T
1 )T .

Observing the value y of the random vector Y we have
to make a decision on which of the hypotheses is true
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and construct the estimate x∗0(y) of the vector X0 when
accepting the hypothesis H0 or the estimate x∗1(y) of the
combined state vector X1 when accepting the hypothesis
H1.

For developing an optimal track identification algorithm
we consider a Bayesian joint hypothesis testing and or-
bit estimation approach, assuming that we are given prior
densities pi(xi) of states Xi and prior probabilities πi =
Pr(Hi) of hypotheses Hi, i = 0, 1. Write δ(z) for a Dirac
delta-function. Introduce the loss function

Lj,i(zj , xi) =

{
c if i 6= j

c[1− δ(xi − zi)] if i = j
(27)

which characterizes losses due to the decision Dj =
(j, zj) that the hypothesis Hj is true and the estimate zj is
used for the stateXj (j = 0, 1) when the hypothesis Hi is
correct and xi is a correct value of the state Xi (i = 0, 1).
The value of c > 0 is a loss due to a wrong decision and
inaccurate estimation.

For i = 0, 1, define the posterior densities of the states
Xi given Y = y

pXi|Y (xi|Hi, y) =
pY |Xi

(y|Hi, xi)pi(xi)∫
pY |Xi

(y|Hi, xi)pi(xi)dxi
.

Using the standard decision-theoretic approach it can be
shown [13] that, under the loss function (27), the optimal
Bayesian joint track identification-estimation-fusion rule
D has the form:

D =

{
D1 = (1, x∗1) if Λ(y) > 1−π1

π1

pX0|Y (x∗0 |H0,y)

pX1|Y (x∗1 |H1,y)

D0 = (0, x∗0) otherwise
,

(28)
where

Λ(y) =

∫
pY |X1

(y|H1, x1)p1(x1)dx1∫
pY |X0

(y|H0, x0)p0(x0)dx0
(29)

is the likelihood ratio and

x∗i = arg max
xi

pXi|Y (xi|Hi, y), i = 0, 1 (30)

are maximum posterior estimates (see [13] for the de-
tails).

Note that the optimal identification-estimation rule (28)–
(30) solves the problem of hypothesis testing and orbit
estimation jointly and allows for the fusion of two tracks
of the same object observed in different sessions in an op-
timal way. In general, the threshold in this rule is random
(depends on the accuracy of estimation).

Under the linear approximation relative to the point x̂i,
where x̂0 is calculated by the method described in Sec-
tion 2.2 and components x̂1,0, x̂1,1 of x̂1 = (x̂T1,0, x̂

T
1,1)T

are calculated as in Section 2.1, we have

Hi(xi) ≈ bi +Bixi, (31)

where

Bi =
∂Hi

∂xi
(x̂i).

Under this approximation the likelihood functions
pY |Xi

(y|Hi, xi), i = 0, 1 are Gaussian

pY |Xi
(y|Hi, xi) = ϕ

bi+Bixi,Ŵ
(y),

where

ϕµ,W (x) =
1√

(2π)k|W |
exp

{
−1

2
(x− µ)TW−1(x− µ)

}
denotes density of the k-dimensional normal distribution
with the mean µ and covariance matrix W .

For i = 0, 1, introduce the following notation

µi = (BTi Ŵ
−1Bi)

−1BTi Ŵ
−1(y − bi),

Fi = (BTi Ŵ
−1Bi)

−1,

Ri(y) = (y − bi −Biµi)T Ŵ−1(y − bi −Biµi), (32)

∆(y) = R0(y)−R1(y). (33)

Assume that the prior densities pi(x) = ISi
(x)/Vi of the

states Xi, i = 0, 1 are uniform on hyperballs Si with vol-
umes Vi = δV̂i, where V̂i are some positive finite num-
bers and δ > 0. Hereafter IS(x) stands for the indicator
function of the set S, i.e., IS(x) = 1 if x ∈ S and 0 oth-
erwise. It can be shown [13] the optimal identification-
estimation rule under the aforementioned linearization
and as δ → ∞, that is, when the priors become im-
proper uniform on hyperballs with infinite volumes is of
the form:

D =

{
(1, µ1) if ∆(y) > T

(0, µ0) otherwise
, (34)

where ∆(y) is defined in (33) and

T = 2 log

(
V̂1

V̂0

1− π1

π1

)
. (35)

Therefore, the hypothesis H1 is accepted when the dis-
tance ∆(y) between the objective functions becomes rel-
atively large.

It turns out that threshold T does not depend on the data.
For practical purposes, it is better to determine this con-
stant threshold based on the given probability of error. To
this end, note that the statistic ∆(Y ) can be represented
in the form

∆(Y ) = εT Ŵ−1[B0(BT0 Ŵ
−1B0)−1BT0

−B1(BT1 Ŵ
−1B1)−1BT1 ]Ŵ−1ε.
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It can be shown that the statistic ∆(Y ) under the hypoth-
esis H0 is distributed according to the chi-squared distri-
bution χ2

k with k degrees of freedom, where k is the di-
mensionality of the vector X1. Therefore, the probability
of misidentification P(accept H1|H0) is

PI = P {∆(Y ) > T |H0} = 1− γ(k/2, T/2)

Γ(k/2)
,

where Γ(n) is a Gamma-function with n degrees of free-
dom and γ(n, t) is the lower incomplete gamma function.
This relation allows us to find the probability of false ac-
ceptance of the hypothesis H1 as a function of threshold,
PI(T ), which in turn allows for finding the threshold to
guarantee the required probability of false identification.

An alternative approach usually used in practice is solv-
ing hypothesis testing and estimation problems separately
and applying the generalized likelihood ratio test, which
is based on thresholding the generalized likelihood ratio
statistic [16]:

supx1
pY |X1

(y|H1, x1)

supx0
pY |X0

(y|H0, x0)
≷ C,

where threshold C does not depend on the accuracy of
estimation. The latter popular test is not optimal.

The experiments with real data and simulations show that
the developed identification-estimation algorithm guar-
antees reliable identification and orbit estimation even for
highly separated tracks. Table 5 shows one of the results
of estimation of orbit parameters based on two tracks sep-
arated by 24 hours for the same objects with NORAD cat-
alog numbers 25544, 42916, 43246, for which Tables 2–4
in Section 2.1 illustrate accuracy based on a single track.
Comparing the data in Table 5 with that in Tables 2–4
allows us to conclude that the root-mean-squared errors
of estimation of both position and velocity significantly
decreased after fusion of two tracks.

Table 5. Accuracy of estimation for objects with Norad
Numbers 25544, 42916, 43246 based on two tracks

Object T (sec) σpos (km) σvel (m/sec)
25544 120 0, 003453 0, 046
42916 600 0, 061263 0, 039
43246 1200 0, 045443 0, 017

4. ADDITIONAL EXPERIMENTS

In addition, we performed an extensive analysis for a
number of space objects moving in different orbits such
as highly elliptical orbit (HEO) satellites without notice-
able deceleration in the atmosphere and with deceleration
in the atmosphere, as well as low-Earth orbit (LEO) satel-
lites without a noticeable deceleration in the atmosphere
and with a noticeable deceleration in the atmosphere.

Here we present results only for one but challenging case
of a HEO space object with an apogee of 19, 000 km and
a perigee of 360 km, for which deceleration in the at-
mosphere is noticeable. This object is not in the NORAD
database. For the analysis, three tracks of this object were
selected, obtained over a 30-day period with telescopes
of the UN ORT network, located in Blagoveshchensk
and Ussuriysk (Russia). Three tracks were observed:
Track 1 (November 07, 2018, Blagoveshchensk), obser-
vation range 14, 000 km, observation duration 52 sec;
Track 2 (November 20, 2018, Blagoveshchensk), obser-
vation range 14, 000 km, observation duration 80 sec;
Track 3 (December 7, 2018, Ussuriysk), observation
range 19, 000 km, observation duration 125 sec.

The quality of the identification-estimation algorithm was
evaluated by the average of the angular discrepancy nor-
malized to the total number of measurements for all
tracks (empirical standard error of measuring the angu-
lar coordinates):

σ̂(x) =

√
[y − h(x)]T [y − h(x)]∑K

i=1 ni − k
, (36)

where ni is the number of measurements for the ith track
and K is the number of fused tracks. Also, for each an-
gular measurement, we determined the values of the lon-
gitudinal and transverse (relative to the direction of the
velocity vector) deviation (in km) of the estimate of the
position of the object from the bearing beam (direction
from the telescope to the object determined by the mea-
sured angles).

Two experiments were performed. In the first experiment,
to build the orbit we fused two short tracks – Track 1 (52
seconds) and Track 2 (80 seconds), obtained by a tele-
scope in Blagoveshchensk with an interval of 13 days.
The empirical standard angular error (defined in (36))
was 1 arc-second, which is the best one can do since
it is comparable with the telescope measurement angu-
lar errors. The longitudinal and transverse deviations of
the orbit from each measurement obtained over the in-
terval of 40 days are shown in Figure 2. Since it is im-
possible to estimate the area-to-mass ratio for two sepa-
rated tracks, the error outside the estimation interval in-
creases quadratically due to atmospheric deceleration and
reaches a value of 220 km by the end of the three-week
test interval. In the second experiment, Track 3 of du-
ration of 125 seconds, obtained on December 7 with a
telescope in Ussuriysk, was added to the previous two
tracks. The empirical standard angular error (36) was 1
arc-second. Longitudinal and transverse deviations are
depicted in Figure 3. It can be seen from the figure that
the area-to-mass ratio was estimated satisfactorily and
there is no quadratic increase in the prediction error. The
deceleration in the atmosphere is predicted 2 weeks ahead
relative to the end of the orbit estimation interval with an
error less than 30 km along the orbit, that is, much more
accurately than without estimating the area-to-mass ratio
obtained from two tracks.

Therefore, the results of experiments allow us to conclude
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Figure 2. Longitudinal and transverse deviations of the orbit from measurements when fusing two tracks.

Figure 3. Longitudinal and transverse deviations of the orbit from measurements when fusing three tracks.

that even for tracks as short as 40 − 60 sec separated by
very long intervals (2−3 weeks) the proposed estimation
algorithm consistently finds the global minimum of the
objective function having several dozens of local minima.

5. CONCLUSION

We have described in detail a novel approach recently de-
veloped by Kolessa et al. [13] for identification of short
time-separated optical tracks of an unknown near-Earth
space object as well as for fusion of these tracks. This ap-
proach guarantees a nearly optimal (under assumed con-
ditions) joint identification-fusion-estimation. The algo-
rithm not only identifies the tracks as belonging to a sin-
gle unknown object in an optimal manner (with a mini-
mal probability of erroneous identification), but also esti-
mates the parameters of the object orbit extremely accu-
rately. At the same time, the algorithm is computationally
simple. Fusion of two tracks on a regular laptop typically
does not exceed 0.5 seconds.

The experimental results based on real data from UN
ORT allow us to conclude that the accuracy of the or-
bit estimation based on the developed algorithms is ex-
tremely high and close to potentially achievable, even for
very short tracks separated by 2 weeks and more. The ex-
periments also show that even with very long pauses be-
tween observation sessions (up to 2−3 weeks) and tracks
obtained on a short orbit arc (40 − 60 sec), the proposed

estimation algorithm is robust and consistently finds the
global minimum of the objective function that has up to
several dozens of local minima.
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