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ABSTRACT

A framework has been developed for deriving a unified
space object catalogue, from distinct and operationally
used source catalogues.

For combining complementary measurements, the
method of covariance intersection was investigated. As
many of the datasets concerned will have unknown gen-
eration parameters, an estimate of the orbital state and
it’s covariance, must first be obtained by refitting them to
a common force model. To up-scale this orbit determi-
nation process to whole catalogues, characteristic length
of update intervals (LUPIs), were explored for subclasses
of objects. It was found that high fidelity orbit classes
yielded the most representative and differentiable results
for this purpose. Using these optimised LUPIs, covari-
ance intersection is then performed for a GTO test case.

For this study, CSpOC Special Perturbation (SP) data and
JSC Vimpel data are considered, though the framework is
flexible to expansion.

Keywords: Space Catalogue; Orbit Determination; Space
Safety; Space Debris.

1. INTRODUCTION

Within the realm of space safety, access to accurate, up-
to-date and comprehensive orbital information of objects
that may pose a collision risk, as well as the space de-
bris environment as a whole, is fundamental in ensur-
ing the protection of in-space infrastructure. Unifying
such data from existing catalogues, based on individual
surveillance and tracking networks of different observa-
tional capabilities, would enable as extensive a set of ob-
jects as possible to be maintained. This may then be em-
ployed in space situational awareness activities, such as
collision avoidance, re-entry risk assessment and map-
ping of the future environment.

At ESA, these activities are conducted using orbital data
from ESAs Database and Information System Character-

ising Objects in Space (DISCOS), largely based on infor-
mation provided by the US Combined Space Operations
Centre (CSpOC). Data from external catalogues such as
this, are stored within DISCOS in the same frame and
format as their catalogue of origin [8]. This catalogue
independence allows new data sources to be easily incor-
porated, and has already been extended to include states
from JSC Vimpel Space Objects, which have been pro-
vided since 2014 [7] (Figure 1). The Vimpel dataset
includes highly eccentric and geosynchronous objects,
many of which are untracked by CSpOC. However, dif-
fering formats and unknown generation parameters pre-
clude the integration of all datasets into a single cata-
logue.

The aim of this work is thus to begin to develop a frame-
work for deriving a unified space object catalogue, from
distinct and operationally used source catalogues, to be
ultimately incorporated into DISCOS. For this study,
CSpOC Special Perturbation (SP) data and the aforemen-
tioned Vimpel data will be considered, though the frame-
work is flexible to further expansion.

For fusing data of different formats, frames and force
models, the method of covariance intersection (CI) is in-
vestigated. But first, an estimate of the orbital state and
a measure of it’s covariance must be obtained by refit-
ting the data to a common force model. To upscale this
process for whole object catalogue, representative orbit
determination (OD) controls for subsets of objects are ex-
plored, specifically that of the OD arc length, or length of
update interval (LUPI).

The set-up of the paper is as follows. Section 2 contains a
review of how different perturbative effects may be used
to characterise an orbit, and how this may be used to
define a binning methodology for optimising catalogue
maintenance. Information on the considered datasets and
any prior knowledge of their force models is then given
in Section 3, before a description of the optimisation pro-
cess used to determine optimal OD controls for the sub-
sets in Section 4. Once these have been established, a dis-
cussion of the fusion of correlated data using CI is given
in Section 5 via a test case.
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Figure 1. Evolution of absolute number of objects infringing upon GEO protected region [4]. Definitions of orbital
regions given in Table 3. Increase in object count in 2014 due to inclusion of Vimpel catalogue.

2. SATELLITE TAXONOMY

In order to simplify the OD process used during catalogu-
ing, space objects can be divided into groups that have
similar orbital properties. OD control parameters can
then be optimised for a representative class of objects,
rather than individually, resulting in a more manageable
and less computationally intensive process.

Satellites may be classified by the extent to which they
experience different perturbative effects, as this will di-
rectly impact the requirements for maintaining orbital
element sets. The perturbing effects acting on the or-
bital dynamics of an object are comprised within a force
model.

2.1. Force Models

The equations of motion of an object, which will be
solved by the OD process, are composed from models of
which forces act upon a satellite. At the most basic level,
the orbital dynamics are modelled by a Keplerian orbit,
dependent only on the central Earth gravity field. Ad-
ditional corrections to the force model, or perturbations,
include the following [10]:

• Non-spherical Earth gravity field: acceleration due
to asphericity of Earth’s geopotential. The gravity
field may be described by a series of coefficients,
Jn,m, derived from an expansion in spherical har-
monics of the Earth’s internal mass distribution.

• Third body perturbations: gravitational interactions
with the Sun, Moon, planets, asteroids as well as
relativistic corrections and lunisolar torques.

• Atmospheric resistance: drag, lift and binormal. De-
celeration due to drag resistance, the primary con-
tributing factor, may be described by,

~̈r = −1

2
CD

A

m
ρv2r ~vr (1)

where ~vr is the radial satellite velocity, A is the
frontal area of the satellite exposed to the particle
flux (thus requiring attitude knowledge), and M , the
satellite mass. Cd, the drag coefficient, describes
the interaction of the atmospheric constituents with
the satellite’s surface material. The combination of
these physical parameters, CdA/m, form the ballis-
tic coefficient. ρ is the neutral atmospheric density
at the satellite’s location, thus requiring modelling
of the properties and dynamics of the Earth’s atmo-
sphere, and therefore knowledge of solar and geo-
magnetic activity. On account of these many uncer-
tainties, the atmosphere model is the least consis-
tently modelled perturbation, and hence likely to be
the major difference in force models of alternative
catalogues.

• Solar radiation pressure (SRP): momentum im-
parted by the reflection or absorption of photons,

~̈r = −P�CR
A

m

~rs
r3s

(2)

where P� represents the solar radiation pressure, Cr
the radiation pressure coefficient (a measure of the
absorptivity of satellite surface), and A the effec-
tive surface area exposed to the solar radiation. ~rs is
the satellite position relative to the sun. Additional
corrections may include eclipse conditions, occulta-
tions, and shadow transits.



• Thrust forces: satellite imparted orbit, or attitude,
control.

• Minor perturbations: Earth radiation pressure
(albedo), Earth tides and relativistic effects.

So as not to unnecessarily exceed the accuracy of avail-
able tracking networks, force models typically only ac-
count for perturbations on the order of several centime-
tres, neglecting the above mentioned minor perturbations.

2.2. Classification Schemes

Typical taxonomic schemas focused on division by or-
bital regime or class, for example using Gabbard Classes,
in which bin in the apogee and perigee height of the orbit
in order to account for the effects of atmospheric drag. In
[2], groups are alternatively based on Two Line Element
set (TLE) mean motion, eccentricity and inclination.

This approach was extended in [5], [6] in which addi-
tional sub-divisons, based on the non-conservative forces
that affect the orbit, were introduced to capture further
differences in orbital maintenance properties.

In the low earth (LEO) and highly eccentric (HEO) or-
bital regimes, atmospheric drag is this primary additional
driver. Although characterisation by the geometric prop-
erties of the orbit alone accounts for differences in at-
mospheric density, ρ, the drag force affecting the orbital
motion of an object is also affected by it’s physical prop-
erties, CdA/m (Equation 1). To account for both of these
factors, a subdivision schema (Table 1) was introduced in
energy dissipation rate (EDR),

EDR = − 1

T

∫ s2

s1

~aD · d~s (3)

= −~aD · ~v (4)

where T is the time interval from point s1 to s2, d~s is
the differential arclength along the orbit, and ~aD is the
drag acceleration, which acts in the anti-velocity direc-
tion. EDR is a measure of the amount of energy being
removed from the orbit and, as such, the amount of atmo-
spheric drag that a satellite experiences. As ~aD follows
Equation 1, the EDR is dependent on both the physical
properties of the satellite, as well as the solar conditions
affecting ρ.

The EDR bins (Table 1) are spaced at an approximately
constant logarithmic separation in bin averaged state vec-
tor error [6]. They represent different levels of severity
for the atmospheric drag retarding force, with 0 including
satellites which experiencing no atmospheric drag, and
10, the most severe.

Higher drag bins are excluded for geostationary (GEO)
and medium earth orbit (MEO) satellites due to their

Table 1. EDR subdivision schema (aggregated from that
used in [5])

Bin EDR Bounds [W/kg]
0 0 ≤ ≤ 0.0006
1 0.0006 < ≤ 0.0020
2 0.0020 < ≤ 0.0090
3 0.0090 <

Table 2. Solar Radiation Coefficient bins as recom-
mended in [6].

Bin CrA/M Bounds [m2/kg]
0 0 ≤ < 0.014
1 0.014 ≤

altitude. In this regime, the principal non-conservative
force is that of SRP. A further subdivision for EDR bin
0 is therefore also introduced, analogous to that of atmo-
spheric drag, to account for SRP susceptibility. This is
given in Table 2. Here, P� and rs scale consistently so
only the physical properties of the satellite need to be ac-
counted for: CrA/m (Equation 2) [6].

The orbital regimes implemented in this work are taken
from the working Space Debris Office (SDO) definitions,
defined in Table 3.

3. SOURCE CATALOGUES

3.1. CSpOC Special Perturbation Data

The US Space Catalogue, generated using optical and
radar measurements from the Space Surveillance Net-
work (SSN), is maintained by CSpOC [9]. The Special
Perturbation (SP) ephemerides are obtained from a nu-
merical OD process, solved for a higher level force model
than that used for the generation of TLE sets. They are
provided daily, with each ephemeris spanning ∼ 4 days.

A different approach to the modelling of drag effects in
the force model is implemented, in the form of a Dy-
namic Calibration Atmosphere (DCA). This is part of
the High Accuracy Satellite Drag Model (HASDM) [12].
The DCA dynamically estimates ρ near real-time, di-
rectly from the SSN. In this process, drag information is
determined from tracking observations of a set of inactive
low-perigee calibration satellites.



Table 3. ESA orbital class definitions, with semi-major axis a, eccentricity e, inclination i, perigee height hp and apogee
height ha given in [km] and [deg] [4].

Orbit Description Definition
GEO Geostationary Orbit i ∈ [0, 25] hp ∈ [35586, 35986] ha ∈ [35586, 35986]
IGO Inclined Geosynchronous Orbit a ∈ [37948, 46380] e ∈ [0.00, 0.25] i ∈ [25, 180]
EGO Extended Geostationary Orbit a ∈ [37948, 46380] e ∈ [0.00, 0.25] i ∈ [0, 25]
NSO Navigation Satellites Orbit i ∈ [50, 70] hp ∈ [18100, 24300] ha ∈ [18100, 24300]
GTO GEO Transfer Orbit i ∈ [0, 90] hp ∈ [0, 2000] ha ∈ [31570, 40002]
MEO Medium Earth Orbit hp ∈ [2000, 31570] ha ∈ [2000, 31570]
GHO GEO-superGEO Crossing Orbits hp ∈ [31570, 40002] ha > 40002
LEO Low Earth Orbit hp ∈ [0, 2000] ha ∈ [0, 2000]
HAO High Altitude Earth Orbit hp > 40002 ha > 40002
MGO MEO-GEO Crossing Orbits hp ∈ [2000, 31570] ha ∈ [31570, 40002]
HEO Highly Eccentric Earth Orbit hp ∈ [0, 31570] ha > 40002
LMO LEO-MEO Crossing Orbits hp ∈ [0, 2000] ha ∈ [2000, 31570]
UFO Undefined Orbit
ESO Escape Orbits

3.2. JSC Vimpel Data

Since 2014, orbital data from a Russian object cata-
logue, maintained by JSC Vimpel Interstate Corporation
and Keldysh Institute of Applied Mathematics (KIAM)
(henceforth denoted as the Vimpel Catalogue), has been
made publicly available [7]. This encompasses orbital
data obtained from optical measurements (including the
International Space Observation Network (ISON)).

The primary focus of this catalogue is objects with or-
bital period exceeding 200 minutes. This regime, primar-
ily focussing on HEO and GEO objects, is tasked less by
the SSN and as such compliments the CSpOC SP cata-
logue. Object correlations between the two catalogues
are provided alongside the Vimpel data, and are addi-
tionally updated by a SDO internal correlation tool. At
present, around 500 of the ∼ 4500 Vimpel objects have
been correlated with TLE objects.

The Vimpel catalogue provides orbital and physical pa-
rameter estimates for each object at approximately 7
day intervals, including the effective area-to-mass ratio.
Ephemerides are additionally provided for objects with
sufficient orbital accuracy for the next 7 days. These are
generated using the Russian standard atmosphere model
GOST (R 25645.166-2004).

4. LUPI OPTIMISATION

As discussed in Section 2, the OD controls for the cata-
loguing process may be optimised for a similarly repre-
sentative group.

In previous studies, for each class, a recommended up-
date interval for the batch least-squares used during the
OD, and number of observations per day, was given to
maintain the accuracy of a given satellite element set [2],
[9]. However, in these cases, only a few observations
were available per day. Thus, the compromise between

reducing the covariance and having the capability to ac-
curately represent the dynamics, is different to that which
should be applied to ephemeris data, where (pseudo) ob-
servations are available roughly every 10 minutes.

As the observation frequency is set, we focus on the time
span of the batch least squares process, the OD arc length,
or LUPI.

4.1. Procedure

In the SDO, OD used for the purposes of generating con-
junction forecasts and collision risk estimates, is per-
formed independently from the SSN, using the ODIN
(Orbit Determination via Improved Normal Equations)
tool [1]. By effectively re-fitting, in an OD sense, to
ephemeris data, we obtain a measure of how well the
force model dynamics align. This was investigated with
increasing arc length, where the start of the ephemeris
was fixed to the start of the LUPI.

To identify the regime of arc lengths in which the OD
yields physical results, two limits must be accounted for:
a lower limit for which the state is still stabilising, where
only a few measurements are available; and an upper
limit where, in some cases, the state will drift away from
previous estimates. This trade-off is demonstrated in Fig-
ure 2. Here, the estimated sigma is unduly optimistic, as
it assumes that the force model differences may be de-
scribed by a normal distribution, and that the errors are
uncorrelated.

From this, we can determine the largest possible fit inter-
val which is well approximated by the ODIN dynamics.
However, this quantity may additionally be constrained
by a limiting requirement on the fit residuals.

The force model implemented by ODIN for this analysis
was as follows:

• Non-central gravity field using Joint Earth Gravity



Figure 2. Evolution of Cd and σ(Cd) with LUPI for NO-
RAD object 37875 (a Chinese Earth observation satel-
lite, in the high drag LEO regime). ‘Stable’ region repre-
sented in blue, and ‘drift’ in red.

model (JGM) 3 with degree, order 30× 30.

• Third body point-mass gravitation of the Sun and
Moon.

• NRLMSIS-00 air density model.

• SRP using the conical shadow model (umbra and
penumbra).

For the example of satellite RapidEye 1, for which SDO
provides a collision avoidance service using global posi-
tioning system data [11], the evolution of estimated pa-
rameters and RMS is shown in Figure 3. Ideally, for op-
erational use, the RMS should be limited to a few metres.
The usable set of LUPIs is therefore constrained between
approximately 5, after which the state stabilises, and 10
hours.

The objective of the optimisation procedure is thus to find
the largest possible OD arc before state drift, subject to
RMS constraints. The upper bound was investigated to
ensure that a viable LUPI would be available that ex-
ceeded the update frequency of the ephemerides.

For the procedure to be easily extendible to orbital
ephemerides with varied generation parameters, it is re-
quired to be as robust, and hence uncomplicated, as pos-
sible. A statistical certainty should also be assigned to the
optimal point, to allow for the identification of represen-
tative objects per bin. The procedure used is as follows.

To identify the lower limit, after which we assume the
state stabilises, the convergence of the sigma estimation
of the estimated elements (Keplerian orbital elements,

Figure 3. LUPI evolution with estimated true anomaly
and it’s corresponding sigma value, and maximum RMS
of the OD fit for RapidEye 1 GPS measurement data.
‘Stable’ region represented in blue, and initial stabilisa-
tion in red.

Cd, Cr) is exploited. The inflexion point of the sigma
decay is identified, and the region before is discounted.

To identify an upper limit, a univariate statistical test for
detecting outliers was implemented for the estimated or-
bital elements, residuals, and number of OD iterations re-
quired for convergence:

1. A Grubbs’ test, based on the Student t-distribution,
is performed over each dataset with null hypothe-
sis, H0, that no outliers are present. The statistic,
G, represents the largest absolute deviation from the
sample mean in units of the sample standard devia-
tion. The α for which H0 is rejected (when Equa-
tion 6 holds) for a given data point is stored before
the outlier is removed for the next iteration. N is the
number of data points, σ is the standard deviation,
and tα/2N,N−2 is the value of the t-distribution with
N − 2 degrees of freedom, and a significance level



of α/2N .

G =

max
i=1,...,N

|xi − x̄|

σ
(5)

G >
N − 1√
N

√√√√ t2α/2N,N−2

N − 2 + t2α/2N,N−2

(6)

2. In order to determine a metric for stability over all
variables, the data was discretised into LUPI bins
(typically spanning 1-2 orbital periods). Consider-
ing each variable individually, this allows for the
classification of drift or spike behavioural regions
over increasing LUPI (examples of this are given in
Figures 2 and 3). The α level with which the out-
liers were identified was summed over each bin. The
cumulative value of each LUPI bin, weighted over
all variables, could then be used. An absolute limit
on fluctuation size from which an outlier could con-
tribute was taken to be 10−5.

3. The upper limit of the dataset was constrained to a
limiting RMS.

4. The above metric gives a confidence measure as to
whether a region in OD arclength is stable. The
optimum LUPI (upperbound) is therefore taken as
the largest arclength with smallest summed signifi-
cance.

This optimal LUPI was could then be used to determine
the orbital and EDR classes of each object.

4.2. Results

The above procedure was implemented for the binning
definitions described in Tables 1, 2 for the ∼ 2000
SP payload objects, and Vimpel objects with available
ephemerides, in March 2018. The orbital regimes were
further refined to form the GEO (including GEO, EGO,
IGO, GHO, HAO), HEO (HEO, GTO, LMO), MEO
(MEO, MGO) and LEO (LEO), from Table 3.

Figure 4 shows the proportion of each binning regime
present in the datasets. As the EDR is a dynamic quantity
which depends on orbital and solar conditions, this rep-
resents a snapshot of the population. The median LUPIs
for each, annotated per bin, are generated from a post-
processed dataset. Objects were excluded where the OD
process did not properly converge (high level RMS ex-
ceeded), or where there was insufficient data for statis-
tical outlier analysis (rapid state drift). For both SP and
Vimpel, approximately 25% of the initial population was
filtered.

It would be expected that objects in the GEO regime
should obtain a better fit to the ODIN force model, due
to the simplified dynamics. Here, the altitude is such that

SRP effects dominate those of atmospheric drag. How-
ever, it was the aggregated GEO regime that had the most
varied distribution in LUPI. The orbital regimes were
therefore considered with a higher level of fidelity. The
resulting distributions are shown in Figure 5.

For Vimpel, the initial filtering mostly effected the IGO
regime, where 90% of objects were removed due to an
early drift in the Cr coefficient determination. HEO or-
bits suffered a 50% filtering due to high residuals, and for
LMO in the high drag regime, 26% of objects were re-
moved due to Cd drift. The remaining bin that appears to
need special investigation in Figure 5, is that of the EGO
regime. In this case, 10% of the population that survive
pre-processing, experience Cr drift at a later time, result-
ing in the long tail of the distribution.

The SP dataset was similarly affected in the cases of
LMO, HEO, and IGO. In the GTO and LEO high drag
regimes,∼ 30% are filtered due to early Cd drift. The ex-
tended tail in the GEO and EGO regions are again caused
by a remaining 19 and 13% for which Cr drift does not
occur early in the fitting.

A Kolmogorov-Smirnov test was then performed in pairs
to determine whether the LUPI intervals were statistically
different to each other. This was performed under the null
hypothesis, H0, that two independent samples are drawn
from the same continuous distribution. Bins in which less
than 10 data points were present were excluded. The dis-
tributions for the low drag regime are displayed in Figure
5, and the pairs for which H0 could be rejected with a
probability value of over 90% are discussed below.

For the Vimpel objects, the bin distributions of GEO and
EGO could be statistically discerned, as well as GTO
from HEO. MEO type distributions were indistinguish-
able with respect to any other orbit, as were any differ-
ences in drag regime.

For the SP payload objects, LEO could be differentiated
from all other main orbital regimes for EDR 0. GEO,
EGO and GTO were all also individually distinguishable.
However, no statistical difference was present between
high and low drag regimes for LEO. Only when LEO and
LMO were aggregated into a larger LEO grouping, did
the effects of EDR become detectable.

The same approach was applied to the SRP susceptibil-
ity (Table 2), for EDR bin 0. For both SP and Vimpel
data, neither was seen to be discernible between orbital
regimes. For the SP data, this may be explained due to
the emphasis on rocket bodies in the development of the
binning scheme [6].

To conclude, statistical testing shows that higher fidelity
orbital classes give more discernible results than using
EDR or SRP classes. Despite this, the median values per
bin are very similar, as they are robust to objects with Cd
or Cr drift, which are not removed during initial filtering.
This pre-filtering does not affect 75% of objects, and ad-
ditionally there is no single orbital regime which requires
special attention. It can be seen that the median LUPI



Figure 4. Histograms in EDR and orbital class bins.
Colour scaling represents the proportion of objects resid-
ing in each bin, and the annotated numbers indicate the
median optimised LUPI for that bin, having performed a
filtering on the data. ‘x’ denotes impossible regions, and
brackets are used to give results for bins with less than 10
data points. SP Payload objects (2147) with known mass,
minimum cross section > 1 m2 taken from the DISCOS
database. Vimpel objects (2422) with given ephemerides
released in the week of 19/3/18.

has a high dependence on the length of the dataspan: all
Vimpel objects have a dataspan of 168 hours; typical SP
spans are in the range of 115-135 hours.

5. CATALOGUE DATA FUSION

Once the state vector estimates and covariances have been
obtained for a given object over all associated datasets
(using their respective optimum LUPIs), they may be
fused to give a final cataloguable state. Covariance in-
tersection was chosen as the method for this fusion, as it
offers a simple approach to obtaining the optimal weight-
ings of each dataset.

Figure 5. Box plots for the distribution of optimum LUPI
when grouped by orbital class, for EDR 0. The uncer-
tainty box contains the 25th and 75th percentile, with the
median denoted by the horizontal blue line. Whiskers cor-
respond to the 10th and 90th percentile. Regions with less
than 10 data points were excluded.

5.1. Covariance Intersection

Covariance intersection (CI) is an efficient and exten-
sively used algorithm in the field of multi-sensor data fu-
sion as it does not require knowledge of cross correlations
between signal sources.

The process provides a general framework for data fu-
sion under uncertain conditions as it yields consistent es-
timates for any degree of cross correlation, and thus is
also applicable to the fusion of catalogues of unknown
generation parameters.

CI considers the intersection of two or more Gaussian
distributions, individually characterised by some mean,
x̄ and covariance P . The resulting fused mean and co-
variance is given by the following,



Pfused =

[
L∑
i=1

ωiP
−1
i

]−1

(7)

x̄fused = Pfused

L∑
i=1

ωiP
−1
i x̄i (8)

where w determines the weightings of the individual dis-
tributions under the constraints,

L∑
i=1

ωi = 1, ωi ≤ 0 (9)

w can be specified, or chosen such that the accuracy of
the resulting fused state outperforms that of the input pa-
rameters. This may be achieved by minimising an ap-
propriate cost function such as the determinant or trace,
Tr, of the fused covariance, to minimise the mean-square
error of the output [3], i.e.,

min
ωi

[Tr(Pc)] (10)

where a constrained optimiser can be used for higher di-
mensions to derive the optimal weighting coefficients.

The resulting estimate is a conservative upper bound that
has the advantage of being robust with respect to un-
known correlations, and also has a strictly non-increasing
covariance according to the chosen weighting.

5.2. Fusion of Correlated SP and Vimpel Data

The above approach is considered for the sub-set of ob-
jects for which both SP and Vimpel ephemerides are
available. To implement CI as an approach to the fusion
of the two datasets, the state vector estimations and co-
variances must be provided at same epoch.

The first problem to consider, is the artificial nature of the
covariance provided by the OD fitting process. Due to the
correlation of errors in the ephemerides, the covariance is
forcibly damped as the OD arc length increases.

One method to combat this effect would be to down-
sample the data. However, the differing number of mea-
surements in the two datasets, due to different measure-
ment frequencies and data spans, will nevertheless force
favour with the higher sampled set. To avoid this prob-
lem, a sample covariance for each object was derived over
several sets of ephemerides.

To ensure consistency between the two datasets, an OD
fit was first performed for each measurement file, using
the derived optimum LUPI for the object. This state was

then propagated seven days into the future, to account
for the shorter data span of the SP data. Only the set of
SP ephemerides closest to the original OD epoch of each
Vimpel set was considered. This introduces a secondary
issue, in the form of an intrinsic preference, as the com-
mon epoch will necessarily be closer to the original prop-
agation epoch of one dataset, usually the SP, rather than
the other.

The error at the overlapping epochs, where new data be-
comes available after the 7 day propagation, is then sam-
pled to generate a more realistic covariance. These co-
variances may then be applied to the optimisation prob-
lem in Equation 10 to derive an appropriate weighting for
the fusion. Subsequently, the process may be reversed to
find the sample covariance for the new fused state.

Here, the above methodology was applied to the GTO
rocket fragmentation debris (CZ-3C) (NORAD 39352,
Vimpel ID 066004) over a 6 month period.

The issues encountered with fitting to SP data in the at-
mospheric drag regime should be alleviated in the GEO
region as a result of a simplified force model. In this
regime, it is therefore expected that the residuals should
overlap well, as can be seen in Figure 6. It is difficult to
tell from this whether one set out-weighs the other due to
the shorter dataspan of the SP data, and whether the at-
mospheric effects in the perigee of the orbit are apparent.

The sample (1σ) covariance ellipses generated from the
datasets, and that of the resultant fused state, are shown
in Figure 7. In this case, the covariance from the consol-
idated state can be seen to exceed the SP data, despite a
heavy weighting towards it. However, an increase in co-
variance volume is not necessarily a negative result. A
small sample covariance indicates that the derived orbit
is self-consistent. As such, any persistent bias throughout
the measurement data or model would be unidentifiable
through the covariance. A fused state merely contains
more information, though a reference orbit, or third inde-
pendent source, would be required for any further knowl-
edge to be extracted.

6. CONCLUSIONS & FUTURE WORK

A framework was developed for deriving a unified space
object catalogue from data of different formats, frames
and force models. For this study, CSpOC Special Pertur-
bation (SP) data and JSC Vimpel data were considered.

For fusing complementary measurements, the method of
covariance intersection was investigated. First, an esti-
mate of the orbital state and a measure of it’s covariance
must be obtained by refitting data, from any given cata-
logue, to a common force model. To up-scale this pro-
cess for whole catalogues, representative LUPIs, for the
OD processing, were explored for subclasses of objects.
Binning schemas that account for differences in orbital
regimes, drag effects (arising from the physical proper-



Figure 6. OD residuals, in the RTN frame, for NORAD
object 39352, using both SP and Vimpel ephemerides,
with the common OD epoch denoted by a vertical line.

Figure 7. Sample covariance ellipsoids for SP data, Vim-
pel data and their cumulative fused state using measure-
ment data over a 6 month period for NORAD object
39352.

ties of the objects as well as that of the atmosphere, using
the EDR), and SRP effects, were implemented.

An optimal LUPI was calculated per bin, using a pop-
ulation of representative objects. These were obtained
by pre-filtering the data against state drift and OD non-
convergence, culminating in 75% of the original set. Sta-
tistical testing showed that higher fidelity orbital classes
give more discernible results than those which implement
EDR or SRP measures. Despite this, the median values
per bin were very similar, and no single orbital regime
stood out as requiring special attention. The resultant
LUPIs have a high dependence on the length of the data
span, which is a positive result for both SP and Vimpel
data, as the optimal span exceeds or approaches the data
update frequency, respectively.

Using this optimised OD control, covariance intersection
was then performed for a GTO test case. SP and Vim-
pel data, with similarly matching residuals, were fused
using derived sample covariances. However, in order to
perform an assessment of the increase in accuracy of this
resultant fused state, a reference orbit, or third indepen-
dent source, would additionally be required.

The ultimate aim of the work is to integrate fused states,
of complementary catalogues, into the DISCOS database.
This would allow reference populations for debris evolu-
tion models to be updated, which may be particularly per-
tinent to the GEO regime, as can be seen in Figure 1. In
future work, the framework should therefore be expanded
to consider other datasets and catalogues, such as that of
SP rocket bodies or laser ranging data.
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