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ABSTRACT 

The development of space technology and the growth of 
the number of missions since the beginning of the Space 
race has caused a serious problem. The uncontrolled 
spread of space debris that jeopardises active satellite 
networks has posed several challenges to routine space 
operations. In this sense, building/populating and 
updating a catalogue of man-made space objects is a 
mission of vital importance that requires great accuracy 
and computational efficiency. 

In this context, it was more than fifty years ago that the 
development of algorithms to determine the visibility of 
artificial satellites was extended allowing progressively 
improve the accuracy of their results and the computation 
time required. 

The topic of this task is to analyse the visibility problem 
and to test the efficiency of different types of existing 
approaches by using a visibility tool developed in python. 
Starting from the basic concepts, the resolve originates 
with the simplest study “geometrical propagation”, 
where the movement of the satellite is governed solely by 
the Keplerian motion. From this point, it will be possible 
to increase the difficulty of the problem and continue this 
work in the future by understanding how perturbations 
affect the satellite visibility. 

1 INTRODUCTION 

The typical satellite visibility problem consists of 
determining the rise and set times, and from these values 
the viewing periods of an Earth-orbiting object, referred 
to an Earth-fixed ground station tracking sensor, is 
computed. 

Traditionally, the resolution of this problem has been 
done using the numerical approach, also conventionally 
called brute force method. This procedure starts with the 
initial values of the satellite ephemeris according to 
which its trajectory in the orbit is evaluated at certain 
instance and check if the longitude and latitude falls 
under the station visible cone. Although this method is 
the most accurate in its results, its main drawback is that 
it requires a great computational effort. The 

computational cost arises from evaluating thousands of 
intermediate orbital positions and the subsequent 
transformations of the elevation, azimuth and distance 
values with respect to the fixed position of the ground 
station to determine if the satellite is visible or not. This 
clout increases significantly when working with several 
satellites simultaneously. With the aim of overcoming 
this disadvantage, especially undesirable for onboard 
real-time mission planning, many researchers have 
developed rapid algorithms for determining the visibility 
periods sacrificing accuracy by virtue of computational 
speed. 

 

Figure 1. Satellite trajectory in an ECI system. 

In this way, the algorithms applied to this task are divided 
into three categories: numerical, already mentioned; the 
analytical ones, faster than the previous but with the 
detriment of results accuracy and the semi-analytical 
ones that combine the advantages of the previous ones. 

Escobal was one of the first authors to develop a 
successful analytical method when he formulated a 
closed form solution for unrestricted visibility periods of 
satellites orbiting an oblate Earth (Escobal, 1963) [1]. 
The proposed approach consisted in transforming the 
geometry of the satellite propagation into a single 
transcendental equation as a function of eccentric 
anomaly for each moment of time. 
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Other authors more recently have studied this problem by 
applying different approaches that are also successful. 
For example, Lawton solved the problem by using an 
unrestricted function by means of Fourier Series 
(Lawton, 1987) [2]. While this method is valid only for 
circular or nearly circular orbits and not being effective 
for elliptical orbits, because the function developed is not 
periodic. Also, Mai and Palmer presented a coarse-to-
fine refinement strategy examining the closest satellite 
ascending pass over the ground station latitude (Mai and 
Palmer, 2001) [3]. 

Alfano presented a numerical method that employ a fast 
determination of the rise and set time using the line of 
sight corrected for an oblate Earth, technique called 
parabolic blending (Alfano, 1992) [4]. Subsequently, Ali 
exposed a solution based on approximating the ground 
trace of the satellite during an interval of the order of in-
view period, by a great circle arc. And recently, Han 
developed another new numerical method that 
significantly reduces computation time using self-
adaptive Hermite interpolation algorithm (Han, 2016) 
[5]. 

These methods show different approaches to the problem 
of determining the visibility periods for obtaining 
different grades of precision in the results and multiple 
execution times depending on the assumed hypotheses. 

2 THEORETICAL CONCEPTS INVOLVED 
IN THE RESOLUTION OF THE TASK 

Ground station to satellite visibility periods are typically 
determined by evaluating Earth centered inertial position 
vectors of the site and the target object.  

2.1 Two-body Problem 

As in other astrodynamics problem, the two-body 
problem serves as the starting point for more complex 
studies. In this initial approach Newton’s law of 
gravitation provides the means to find the components of 
the force if only gravity affects the body, i.e. no 
perturbations are considered. According to these 
premises the two-body equation can be formulated as 
follow,  

�̈� = −
𝜇
𝑟' �̂� (1) 

2.2 Kepler’s Equation and Problem 

Kepler´s equation allows determining the mathematical 
relationship between the time and angular displacement 
throughout the orbit. Specifically, the time of flight 𝑡, or 
the mean anomaly 𝑀, from the perigee to certain value of 
eccentric anomaly.  

𝑀 = 𝐸 − 𝑒 sin𝐸 = 𝑛(𝑡 − 𝑡2) (2) 

Which resolution requires the application of some 
numerical analysis method to solve the transcendental 
equation in terms of the eccentric anomaly. 

 
Figure 2. The eccentric anomaly of point A. 

Two types of problems arise from Kepler’s Equation: 

- Measure the time to travel between two points 
of the orbit. 

- Find a future location given the last known state 
vector at certain epoch and the time increment. 

This second task is called propagation, which is a 
fundamental key piece in the resolution of satellite 
visibility periods 

2.3 Satellite State Representations 

To define the state of the satellite in space it is necessary 
to specify six quantities that are collected in many 
equivalent forms. There are two typical ways of 
expressing these initial parameters: 

- The state vector, associated with the position 
and velocity of the satellite at a given initial 
epoch. 

- An element set which defines the shape and 
orientation of the orbit at a given time that are 
called orbital elements. 

The Keplerian orbit is normally specified by a set of six 
orbital elements 

[𝑎, 𝑒, Ω, 𝑖, 𝜔, 𝜈] (3) 

Where the semi-major axis [𝑎] and the eccentricity [𝑒], 
describe the orbit size and shape. The right ascension of 
the ascending node [Ω], the inclination of the orbit [𝑖] and 
the argument of perigee [𝜔], define the orbit plane 



 

orientation. And finally, the true anomaly [𝜈] (or other 
expression of the anomaly), determines the satellite’s 
current angular position relative to the perigee. 

Currently, the data format of the most widespread 
satellite state representation is the Two-Line Elements 
(TLE) set. TLE data is used as input files for propagate 
the trajectory of satellites and space debris orbiting the 
Earth. Also, it is used as source for Simplified General 
Perturbations (SGP) and Simplified Deep Space 
Perturbations (SDP) models.  

2.4 Coordinate Reference and Time Systems 

One of the first requirements for describing an orbit 
through certain satellite state representation is to define a 
consistent and relevant reference system. 

 
Figure 3. Relationship between Geocentric and 

Topocentric systems. 

In practice, the choice of the right coordinate frame can 
substantially reduce the complexity of the given problem.  

The main difficulty affecting the visibility problem is the 
fact that the ground station and the propagated satellite 
states are referred in different coordinate systems. 

2.4.1 Earth-based systems 

The necessary knowledge in geodesy about shape, size 
and gravity field, allows to specify the correct location of 
ground stations through the appropriate coordinates. In 
this context, a basic problem for the treatment of the 
position of the station as input of the algorithms is the 
conversion between geocentric and geodetic coordinates. 

In the algorithms for determining visibility, it is common 
to convert between geocentric parameters, referred to 
Earth-Centered Inertial System (ECI), Earth-Centered 
Earth Fixed (ECEF) and Topocentric Horizon Coordinate 
System (SEZ), which finally allows to express the 
elevation angle results for a given satellite, ground station 
and epoch.   

The precision in the time conversions is of vital 
importance for the application of this type of algorithms 
due to the high speed of the satellites, where an error of 
one second assumes a position difference of the order of 
kilometres.  

2.5 Geometrical Problem 

Generally, this problem involves relating coordinates of 
the satellite in space with its projection point on the 
surface or subsatellite point and the fixed coordinates of 
a ground station. 

In this way, it is possible to define the angular 
relationship between the Earth-orbiting object, the 
ground station and the Earth Center. In Fig. 4, this 
relationship can be observed in the case of the 
approximation of a spherical Earth. 

 
Figure 4. Geometrical problem. 

3 SATELLITE VISIBILITY PERIOD 
COMPUTATION TOOL 

The objective of this tool is to compute the period of 
visibility of satellites and compare the effectiveness, 
accuracy of results and computational time, applying 
each one of the three methods presented: analytical, 
numerical and semi-analytical. 

The visibility tool has been developed in Python using 
some procedures from existing algorithms from each one 
of the three referred methods. Fig. 5 shows an outline of 
the organization of the tool. 

  
Figure 5. Scheme of the visibility tool. 



 

It starts from a main menu in which the first step available 
is to adjust in the CONFIG file the program's according 
to the desired study parameters: satellite TLE data, 
ground station coordinates and epoch.  

After setting the initial configuration, in the MAIN 
function it is possible to select each one of the sub-tools 
available for the computation of the visibility periods 
(numerical, analytical or semi-analytical) or to plot the 
visibility graphics. Once the run is completed, it provides 
the value of execution time, which makes it easier to 
compare the fastness of the results obtained. The steps in 
the implementation of each algorithm are explained in the 
subsections below. Meanwhile, Figs. 6, 8 and 10 show 
the conceptual differences between the three methods. 

3.1 Numerical 

Among other authors it has been used as reference some 
procedures developed by D. Vallado (Vallado, 2013) [6]: 

 
Figure 6. Scheme of a numerical method. 

- Ground Station 
 

<𝜙>?, 𝜆, ℎBCCD → 𝑟FG,HIHJK 
 

The first task is, starting from the geodetic 
coordinates, to determine the ground station 
vector in ECEF system using the auxiliary terms 
of oblateness of the Earth. 
 

- Satellite  
 

(𝑟HIL, �⃗�HIL, Δ𝑡 → 𝑟(𝑡)HIL, �⃗�(𝑡)HIL) 
 

Starting from the state vector referred to Earth- 
Centered Inertial System and defining an 
arbitrary step time, the integration is made along 
all the points of the trajectory of the orbit. In the 
implementation of the algorithm a step of 1s has 
been taken. 
 
(𝑟HIL, �⃗�HIL, epoch → 𝑟HIHJ, �⃗�HIHJ) 
 

The next step is to convert the state vector to 
Earth Centered-Earth Fixed System referred to 
the epoch of observation. 
 

- Solve the Geometrical Problem at each time 
 

T�⃗�HIHJ(𝑡) = 𝑟HIHJ(𝑡) − 𝑟FG,HIHJ(𝑡)V 
 

The next step of the algorithm is to implement 
the loop to calculate the position vector referred 
to the station for each instant of time. 
 
<�⃗�GHW(𝑡) = [𝐸𝐶𝐸𝐹	𝑡𝑜	𝑆𝐸𝑍]	�⃗�HIHJ(𝑡)K 
 

The transformation matrix is applied to express 
the position vector in the topocentric reference 
system South-East-Zenith. 
 

^𝜌(𝑡) = |�⃗�GHW(𝑡)|			; 		𝑒𝑙(𝑡) = sinbc
𝜌d(𝑡)
𝜌(𝑡) e 

 

Finally, in topocentric coordinates it is possible 
to decompose the components of the vector and 
calculate the distance and the angle of elevation. 
Thus, the rise and set point with zero elevation 
angle can be verified. In Fig. 7, the elevation 
angle for the next case study is shown: 
 
- Satellite data: 

• 𝑎 = 9701.13	𝑘𝑚 
• 𝑒 = 0.0078478 
• 𝑖 = 111.84° 
• Ω = 180° 
• 𝜔 = 0° 
• 𝑇 = 0	𝑠 

 
- Ground Station data: 

• 𝜙>? =		36.4616 N  
• 𝜆 = 	6.2055	W 
• ℎBCCD = 0	𝑚  

 
- Epoch: 00h 00m 00s - January, 1st 1980  

 

 
Figure 7. Elevation angle versus time. 

3.2 Analytical 

The algorithm presented by P. R. Escobal [1] has been 
taken as the main reference to represent this type of 
procedure. 



 

 
Figure 8. Scheme of an analytical method. 

The fundamental part of this approach is the formulation 
of an equation, which is called controlling equation, and 
in which the eccentric anomaly is considered as an 
independent variable. This equation integrates the 
geometric conditions of propagation and allows 
determining the rise and set point through its roots. It also 
determines the visibility periods of the satellites 
according to condition 𝐹 > 0. 

It is necessary to solve this equation for each complete 
revolution of the satellite. In Fig. 9, the controlling 
equation for the first revolution of the same example used 
previously is graphically represented. 

 
Figure 9. Graphic representation of the controlling 

equation versus the eccentric anomaly. 

3.3 Semi-Analytical 

The semi-analytical method combines the positive 
aspects of the numerical, its accuracy and also the 
analytical rapid computation time. 

The procedure followed for its application is as follows: 

- Apply the selected analytical method to find 
estimated values of Rise and Set.  

- From this central value, an increment of time is 
defined to calculate values before and after. 

- Finally, the numerical method is applied in the 
environment of the previous values to determine 
the definitive Rise and Set values. 

 
Figure 10. Scheme of a semi-analytical method. 

 

3.4 Visibility Cone and Ground Track 

In addition, a specific tool has been developed in order to 
represent the projection over the terrestrial surface of the 
visibility cone of certain ground station, Fig 11. And also, 
the ground track of the satellite along successive steps 
according to the parameters of the example of the 
following paragraph, Fig 12.  

 
Figure 11. Projection of the visibility cone at ROA 

station for LAGEOS 1. 

 
Figure 12. Ground track of LAGEOS 1. 

 

 



 

4 RESULTS 

As a use case for the tool, it has been computed the 
visibility periods of an object from a ground station at a 
given epoch. 

The results obtained for the LAGEOS-1 TLE data and the 
position of the Laser Tracking Station of the Royal 
Observatory of Spanish Navy in San Fernando are 
gathered in Tab. 1. So that, the geometrical problem 
responds to the following inputs: 

- Satellite data (from TLE): 
• 𝑎 = 12271.19	𝑘𝑚 
• 𝑒 = 0.0044 
• 𝑖 = 109.84° 
• Ω = 137.53° 
• 𝜔 = 329.02° 
• 𝑀x = 30.78°	 

 
- Ground Station data: 

• 𝜙>? =		36.4616 N  
• 𝜆 = 	6.2055	W 
• ℎBCCD = 0	𝑚  

 
- Epoch: 00h 00m 00s - October, 1st 2018 

 
 

Numerical Analytical Semi-Analyt. 

1st Rise 1y20z31{ 1y17z46{ 1y20z31{ 

1st Set 2y30z55{ 2y27z25{ 2y30z55{ 

2nd Rise 4y37z16{ 4y36z16{ 4y37z16{ 

2nd Set 5y43z7{ 5y46z18{ 5y43z7{ 

3rd Rise 11y47z46{ 11y45z54{ 11y47z46{ 

3rd Set 12y42z10{ 12y47z45{ 12y42z10{ 
 

Table 1. Results comparison of the three methods 

Computation time observed: 

- Analytical (evaluated for 12 days): approx. 2 s 
- Numerical (evaluated for 1 day):    approx. 30 s 
- Semi-An.  (evaluated for 1 day):     approx. 4 s 

 

5 FUTURES IMPROVEMENT IN 
DEVELOPMENT 

In addition, while is taking place the submission of this 
paper some improvements continue with the work 

started. Among others are to develop polar plots of 
azimuth/elevation that allow the user to make a 
presentation of the situation more clearly and develop a 
code to allow the ingestion of a TLE catalogue to 
compute the visibility periods for all objects from a 
ground station. Multiple possibilities of progress would 
be enabled from this last one, such as the elaboration of 
satellite density maps. 

All this set of improvements could define a complete 
visibility solution for a specific ground station. 

6 USE CASES OF THE ALGORITHMS 

The application of this kind of algorithm opens up to 
prefiltering objects for correlation in observation 
processing within a cataloguing system, also the 
implementation and improvement of them would enable 
the standardization of formats and the optimization of 
results with high accuracy and little processing time. 
Likewise, it would ease the stations scheduling, 
deploying more automated procedures, as well as sensor 
tasking applied by the Expert Centres when coordinated 
observation campaigns. As a particular application to a 
use-case in a SLR network, the visibility outcomes 
derived from the algorithm implementation would allow 
to improve the development of the high-level design and 
the architecture of a future Laser Tracking and 
Momentum Transfer Network. 
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