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ABSTRACT

One of the key challenges for catalogue maintenance of
space debris is to correctly correlate new measurements
to their originating objects. This paper describes a work-
flow to associate optical observations to object for which
a prior information is available in a robust manner. For
efficiency, observations are compressed into attributable
vectors and compared against known objects in the mea-
surement space. A pre-filter is used to early eliminate
non feasible candidates based on physical constraints and
on information theoretic metrics. Suitable candidates are
used in a Multiple Hypothesis Bayesian framework to
perform the association based on the highest likelihood.
The use of a Multiple Hypothesis Filter improves the ro-
bustness of the process for the case of ambiguous associ-
ation of closely spaced objects. Different pre-filter algo-
rithms are described. Results of applying this workflow
are shown for GEO and MEO targets.
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1. INTRODUCTION

The Space Surveillance and Tracking (SST) segment is
responsible for the detection and prediction of space de-
bris in orbit around the Earth to avoid the degradation
of space activities due to collisions. With this purpose,
the US Space Surveillance Network (USSN) maintains
a catalogue of more than 19000 Resident Space Objects
(RSO) [1]. The information of this catalogue must be up-
dated regularly by including observations coming from
external sensors (radar, optical, etc). This process of up-
dating the orbital information of catalogued objects is
also known as catalogue maintenance while catalogue
build-up refers to all the activities needed to include a
new object in the catalogue. The former will be the main
topic of this paper.

For catalogue maintenance the correlation process is criti-
cal. New observations must be linked together in the form

of a tracklet and correlated with the object that originated
them before attempting orbit determination. A common
problem in this process is the cross-tagging or the asso-
ciation of an observation to the wrong object, this is spe-
cially relevant for closely space-object or debris clouds
originated after a break-up. Cross-tagging will degrade
the orbital information for the object, increasing the risk
of operations and degrading the capability to re-observe
the object. In this paper, we propose a work flow for cat-
alogue maintenance that relies on the use of Multiple Hy-
pothesis Filter and probabilistic data association for the
correlation of optical observations.

This paper is organized as follows. First, the complete
workflow for catalogue maintenance is presented, to-
gether with a review of the basic concepts. Then, the al-
gorithm for tracklet to catalogue correlation using MHF
is described. Finally, some results using both simulated
and real data are shown for MEO and GEO objects.

2. BACKGROUND

Figure 1 shows the general workflow for catalogue main-
tenance for optical observations. Observations are gener-
ated by telescopes in the form of images. These images
must be processed by image processing algorithms to
produce the astrometry reduction, i.e. generate Right As-
cension and Declination measurements. Measurements
belonging to the same object in consecutive frames are
joined together in a tracklet in the tracklet building step.
While each single optical measurement provides only an-
gular information, from a tracklet we can derive the an-
gular rates in the form of an attributable vector in the
attributable compression step. The tracklet to catalogue
correlation step performs both the association and the or-
bit determination in a single step. Instead of trying to
correlate against the full catalogue of objects, a pre-filter
algorithm selects suitable candidates based on different
criterion to decrease computational time. All those track-
let not deemed correlated (UCT) are stored for further
processing.
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Figure 1. Catalogue Maintenance Workflow for optical
observations

2.1. Astrometry reduction and Tracklet building

The astrometry reduction step is performed by external
dedicated software. It must detect all the objects present
in the frame and compare them against the known star
background to extract angular information in the form
of Right Ascension and Declination. Even in tracking
mode (objects appear as points and start as trails), sev-
eral closely space objects can appear on the same image.
Figure 2 was obtained by the Airbus Robotic Telescope
(ART)[2] tracking one ASTRA satellite (2011-041A).
Another 4 satellites were detected in the same tracking
session (3 ASTRA satellites and ARABSAT-5C). A total
of 20 consecutive images were obtained for this tracking
session.

Figure 2. Optical observation of ASTRA satellites made
with ART on the 08-11-2018 in tracking mode. 4 ASTRA
satellites can be seen on the left of the images. On the
right, an extra satellite is detected.

In order to be able to derive rate information in the next
step, we must link together consecutive measurements
belonging to the same object to build the tracklets. The
tracklet building is performed by assuming linear motion
during the duration of the tracklet. The linear motion
assumption was found to be good enough for tracklets
spawning only a few minutes, typical duration of tracklets
obtained by sensors in survey mode. For longer tracklets,
a quadratic model might be used instead.

Initially all possible pairs of detections between two con-
secutive images are linked together as long as their angu-
lar velocity is below a predefined value to form candidate
tracklets. Detections from subsequent images are either
linked with pre-existing candidate tracklets if the fit to the
linear motion is below a predefined threshold or left un-
linked. After each frame, new candidate tracklets might
be created from unlinked detections (tracklet spawn), un-
feasible combinations might be deleted (tracklet pruning)
or tracklets might be closed if it they not been updated
during a predefined number of frames. It is assumed that
at least 4 observations must be joined together to obtain
a tracklet. This algorithm will also filter out any possi-
ble false detection coming from the image processing as,
in general, it will not be possible to consistently fit them
to the assumed linear motion. Figure 3 shows the result
of applying the tracklet building algorithm to the same
tracking session showed in figure 2. It was able to suc-
cesfully detect the 5 different tracklets on the images as
well as discard all the other point features detected in the
frame that do not belong to a RSO.
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Figure 3. Tracklets detected from a series of 20 consecu-
tive tracking images. All the points that do not belong to
a line are false detections.



2.2. Deriving attributable information

Each one of the tracklets can be mathematically ex-
pressed as an attributable vector z at time t0 with it as-
sociated uncertainty Cz.

{
z := (α, δ, α̇, δ̇),Cz

}
at t0 (1)

The use of attributable vectors has two advantages. First,
it extracts all the usable information from the tracklet
and second itcompress all the measurement into a single
point of time, decreasing the total number of propaga-
tions needed in the association step. Similar to the track-
let linking step, the attributable is extracted using either a
linear or quadratic motion model. A complete derivation
can be found in [3].

2.3. Coarse catalogue initialization from external
sources

When no a priori information is available in the form of a
catalogue (with state vector and uncertainty information),
tracklet to catalogue correlation might still be attempted
using publicly available Two Line Element (TLE) infor-
mation. TLEs do not have associated covariance infor-
mation, necessary for the algorithm proposed here. How-
ever, a coarse covariance might be estimated by analysing
the consistency of the TLE predictions over time. This
approach is suitable for a quick catalogue initialization
for correlation purposes but should not be used to of-
fer other services such as conjunction assessment. The
methodology described here follows [4]. A series of N
TLEs spawning between 15 days and one month for a sin-
gle satellite are obtained. The TLE corresponding to the
latest epoch will be used as the prime, defining the epoch
at which the covariance matrix is estimated. The rest of
TLEs are propagated using the Simplified General Per-
turbation 4 (SGP4) theory to the epoch of the prime TLE
and the residuals computing by differentiating the state
vectors. The covariance matrix Cx is then computed as
4.

δxi = xi − xprime i = 1, N − 1 (2)

m =

∑N−1
i=1 δxi

N − 1
(3)

Cxprime =

∑N−1
i=1 (δxi −m)(δxi −m)T

N − 1
(4)

2.4. Success metrics

The performance of the proposed algorithm will be eval-
uated using the 3 following metrics regarding whether the
correlation process was or successful or not:

• True positives. This is the total number of tracklets
corectly associated with their originating object.

• False positives. Number of tracklets associated with
a different object.

• False negatives. Number of tracklets not deemed to
be associated with any object that should have been
associated.

3. TRACKLET TO CATALOGUE ASSOCIATION
USING MULTIPLE HYPOTHESIS FILTERS

Bayes’ theorem describes the probability of the hypoth-
esis W given the measurements Y and the underlying
model M (dynamical and/or measurement model), also
known as the posterior density f(W |Y,M).

f(W |Y,M) =
f(Y |W,M)f(W,M)

f(Y,M)
(5)

The likelihood of the measurements f(Y |W,M) ac-
counts for the data noise while prior knowledge on the
hypothesis can be incorporated in f(W,M). Finally,
f(Y,M) is referred as the evidence. This term, plays an
important role in problems such as model selection [5].
However, it can be neglected when estimating W , as it
is independent of the parameters. Here will only act as
a normalization constant. This is the reason why it will
be neglected, together with the Model in the following
derivation.

f(W |Y ) ∝ (Y |W )f(W ) (6)

Translating this into the tracklet to object correlation do-
main, our hypothesis is that a certain tracklet belongs
to particular object ci while our measured data is the
attributable vector z. We can assess the probability of
each catalogued object ci given an attributable vector as
the product of the probability of having observed the at-
tributable vector if it belonged to the catalogued object
times the prior knowledge on object probability f(ci).

f(ci|z) ∝ (z|ci)f(ci) (7)

In the most simple case, each object is modelled with
the same probability, neglecting the effect of the prior.
However, we can introduce different criteria to model this
prior that will allow us to early discard part of the cata-
logued objects e.g. visibility checks,orbital regions, etc.
For the simple case, the probability of a given tracklet
belonging to a catalogued object is proportional to the
probability of the catalogued object having produced the
measured attributable:



f(ci|z) ∝ f(z|ci) (8)

The next step is how to assess the likelihood of the mea-
surements f(z|ci). The catalogued objects are modeled
as a multivariate normal distribution with mean x and co-
variance Cx in the state space while the attributable vec-
tor is another multivariate normal distribution with mean
z and covariance Cz in the observable space. In order
to compare these two functions, we must select a com-
mon reference. As there is not enough information in a
single tracklet to extract a complete orbital solution, the
observable space is the most suitable reference frame for
this comparison. Using the non linear function 9 that es-
timates the observables from the state vector and suitable
methods such as the unscented transformation [6] we can
transform the density function of the catalogued object
from the state space to the observable space. The re-
sult would be the modelled attributable vector z̃, which
is again a normal multivariate distribution.

z = h(x) (9)
x,Cx −→ z̃,Cz̃ (10)

The probability of a given catalogued object having pro-
duced the measured attributable can be modelled as the
difference between the measured attributable vector and
the modelled attributable ∆zi, two independent normally
distributed random variables. In [5, 72-73] it is proven
that this difference is given by the convolution between
both density functions, which is equal to another normal
distribution for the particular case where both of them are
normal distributions.

f(∆zi = z− z̃i) =

∫ ∞
−∞

f(z′)f(z′ + ∆zi)dz
′

= N (∆zi,0,Cz + Cz̃,i) (11)

The likelihood of the measurements given the object ci is
then modelled with this normal distribution1 combination
of the observed attributable and the modelled attributable.
The goal of the tracklet to object correlation is finding
the object ĉi, between the set of candidate objects, that
maximizes this likelihood.

ĉi = arg max
ci

N (∆zi,0,Cz + Cz̃,i) (12)

Instead of maximizing the normal distribution, we can
minimize the negative algorithm, which will simplify the
posterior analysis of the function.

1N (x|µ,Σ) = 1√
det(2πΣ)

exp
−1
2

(x−µ)T Σ−1(x−µ)

ĉi = arg min
ci

− ln f(z|ci)

= arg min
ci

1

2
{ln [det 2π(Cz + Cz̃,i)] +

(z− z̃i)
T (Cz + Cz̃,i)

−1(z− z̃i)
}

(13)

Analysing equation 13, one can interpret the first term as
a term to prune large uncertainties i.e. the information
about the catalogued object is not reliable enough while
the second term is a statistical distance between two dis-
tributions [7].This only yields the most probable object.
There still is to be addressed the case when none of the
catalogued objects have produced the measurements. For
that case the algorithm will still produce a correlated ob-
ject between all the possible candidates. The next step
is then to analyse if the difference ∆zi is in a statisti-
cally significant part of the distribution that can be done
using the Mahalanobis distance. The square of the Maha-
lanobis distance is just a quadratic form of the normally
distributed variable ∆zi. As probed in [8, 57-58], this
distance should follow a χ2 distribution of nz degrees of
freedom, where nz is the size of the variable ∆zi (4 in the
case of optical attributables). This property can be used
to stablish threshold values based on significance levels
of the χ2 distribution.

The main drawback of this algorithm is that several ob-
jects might be below the association threshold, especially
for the case of formation-flying satellites. This drawback
can be overcome by using Multiple Hypothesis Filters
(MHT) [9].

Each one of the candidate objects passing the test is trans-
formed into a single hypothesis with their a priori weights
given by 14.

w−i =
N (∆z−i ,0,Cz + C−z̃,i)∑v
j N (∆z−i ,0,Cz + C−z̃,j)

i = 1, .., v (14)

The a priori states and covariances x−, C−x for each of
the hypothesis are updated with the measurements of the
tracklets using any filtering algorithm to obtain the up-
dated states x+, C+

x . The weights are updated by 15

w+
i =

w−i N (∆z+i ,0,Cz + C−z̃,i)∑v
j N (∆z+i ,0,Cz + C+

z̃,j)
i = 1, .., v (15)

Only the object with the highest weight after the update
is associated. What is more, the algorithm already pro-
vides with an updated state and covariance matrix for the
associated object that can be used to update the catalogue
for future associations, improving the robustness of the
overall process.



3.1. Pre-filter

The described algorithm requires to propagate the states
and covariances of all the objects in the catalogue until
to the epoch of the attributable vector. For large cata-
logues, this is one of the most time consuming operations.
Here we proposed to use a pre-filter step to avoid unnec-
essary propagations of non suitable candidates reducing
the search space. The use of the pre-filter algorithm is
specially interesting for real time processing of observa-
tions.

This pre-filter checks have been developed with the goal
of been computationally cheap to compute and to include
enough safety margin in the assumptions made to avoid
discarding that might be suitable candidates for correla-
tion. Two pre-filter scores have been used for this results:

1. Angular velocity bounds. The relative angular ve-
locity can be derived from the angular rates of the
attributable vector. By assuming that the object is
observed at zenith distance at either the perigee or
the apogee, maximum and minimum values for the
angular velocity can be used to discard non feasible
candidates without any propagation.

2. Line of Sight. Checking the visibility between the
ground-station and the object necessary needs to
take into account the uncertainty around the state
vector, requiring the propagation of the full covari-
ance for each object. For that reason, here only it
is checked if there is direct Line of Sight (LOS) be-
tween the object and the observer. With this sim-
plification, only the state vector needs to be prop-
agated. Other simplified visibility checks might be
included as, for example, if the LOS is close enough
to the actual pointing of the sensor. The definition
of ”close enough” should again be considered with
enough margin to avoid discarding the originating
object. For this test we have defined close enough as
10 times the width of the FoV.

For real-time catalogue maintenance, a full visibility
check taking into account the uncertainties of the objects
could be performed offline and stored before the observa-
tion starts to be used as a further pre-filter step.

3.2. Full correlation algorithm

The full correlation algorithm us shown in algorithm 1.
The algorithm starts after the tracklet building step, ex-
tracting the attributable information for each one of the
tracklets. For each tracklet, only pre-filter extracts only
the suitable candidates that will be propagated (both state
and covariance) to the attributable epoch. This step can
be parallelized to reduce computational times.

Algorithm 1 Tracklet to object correlation
for all new tracklets do

Extract Attributable vector at t0
for all Objects in Catalogue do

Check pre-filter constraints
for all Pre-filtered objects do

Propagate state vector and covariance to t0
Extract Modelled Attributable
Mahalabonis Distance
if Mahalabonis ≤ threshold then

Generate hypothesis
end if

end for
end for
if Number hypothesis ≥ 0 then

for all Hypotesis do
Update state, covariance and weight

end for
Correlate the hypothesis with the highest up-

dated weight
else

Tracklet is Uncorrelated
end if

end for

4. EXPERIMENTAL RESULTS

4.1. Simulated data

The proposed algorithm has been applied to produce
tracklet to catalogue correlation using simulated data. A
single ground-based observed, with characteristics sim-
ilar to ART 2 is simulated in surveillance mode taking
measurements of MEO and GEO targets. The surveil-
lance strategy is a fence-like scenario, with two declina-
tion stripes close to the Earth shadow that are sequentially
scanned by the Field of View. The surveillance pattern
can be seen in figure 4 while table 1 shows the main char-
acteristics of the simulated observed.

Figure 4. Surveillance set-up. Two declination stripes,
with several fields per stripe close to the shadow of the
Earth.



Table 1. Survey strategy characteristics

Fields per stripe 5
Frames per field 10
Frame period 10 s
FOV 2.15◦ x 1.43◦ s
Latitude 38.216◦
Longitude -6.627◦
1-Sigma Sensor Noise 0.5”

The sample population simulates break-up scenarios to
generate closely-space observations. The break-up will
be simulated simply by adding a Gaussian distributed
random component in the velocity with a 1-σ standard
deviation of 2 m/s, generating a cloud of closely space ob-
jects. The objects will be defined using public TLEs and
the initial uncertainty will be extracted following section
2.3. 239 objects, with altitudes between 30000 and 40000
kms and visible from the simulated sensor are selected
as the base objects, generating a total of 2390 ”break-
up objects” to simulate. The break-up is simulated at
2018-11-07T15:00 and a the following night is used to
generate observations. A total of 1449 tracklets with be-
tween 4 and 10 observations are generated. 50 Monte
Carlo runs of this scenario were performed, yielding in
total 72450 tracklets to correlate in the full simulation.
Figure 5 shows some of the simulated tracklets (in green)
and the break-up objects projected in the measurement
space (in red).
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Figure 5. Generated break-up clouds and tracklets. In
green it is shown the attributable vector for the generated
tracklet. In red are shown some of the simulated break-up
objects with their associated uncertainty projected in the
measurement space.

Real world behaviour is simulated by using two differ-
ent force models for propagation and introducing random
errors in the state vector of the catalogued objects. One
force model is used to generate the measurements and a
second simplified model for the tracklet correlation and
orbit determination.

Table 2. Force Model use for measurement generation
and for correlation

Force Measurement
Model

Correlation
Model

Gravity Field GGM02C 15x15 GGM02C 8x8
Atmospheric
Drag

DTM-2013 DTM-2013

Solar Radiation
Pressure

Cannonball
model

Cannonball
Model

Mon and Sun
Gravity

On, Legendre
Expansion

On, First Order
Taylor Expan-
sion

The results of the tracklet to catalogue correlation can be
seen in figure 6. Here it is depicted the temporal evolu-
tion of the tracklets against the declination. In green are
represented all those tracklets correctly associated, in red
those associated with a different object (false positives)
and in black is shown those that were not associated any
object (false negatives). In average of the 50 Montecarlo
runs more than 80% of the tracklets were successfully
correlated for this challenging situation. The segregated
results are shown in table 3.

Table 3. Average results of the tracklet to catalogue cor-
relation for the 50 Montecarlo

True Positives False Positives False Negatives

80.82% 16.81% 2.37%
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Figure 6. Results of the tracklet to catalogue correlation
using synthetic data. Green dots represent correctly cor-
related tracklets (true positives), red dots false positives
and black dots false negatives.

4.2. Real data

The algorithm has been successfully applied to real world
data for closely space objects. An observation campaign
was conducted the night 2018-11-08 where object 2011-
041A (ASTRA 1N) was tracked at the beginning and end



of the night, but several objects appear in the images (as
depicted in figure 2). In total, 5 objects were always vis-
ible in the same frame, both at the beginning and end of
the night.

Figure 7. The Airbus Robotic Telescope (ART).

The full workflow was applied, from the tracklet building
step up to the tracklet to catalogue correlation using mul-
tiple hypothesis filters. Again, an initial catalogue was
derived using the procedure depicted in 2.3. The same
force model as the one used for the synthetic data case
was used. The correlation results are shown in table 4.
Tracklets 1-5 belong to the tracking session at the begin-
ning of the night while tracklets 6-10 are from the same
objects at the end of the night.

Table 4. Results of the tracklet to catalogue correlation
using real world measurements. In bracktets is shown the
percentage of objects deemed as possible candidates from
the total catalogue used as input

Tracklet Origin
(COSPAR)

Pre-filter
candidates

Total
Hypothesis

1 2007-016A 193 (1.16%) 3
2 2011-041A 188 (1.14%) 1
3 2011-049B 186 (1.13%) 1
4 2006-012A 182 (1.10%) 2
5 2008-057A 182 (1.10%) 1
6 2007-016A 185 (1.13%) 1
7 2011-049B 191 (1.16%) 1
8 2011-041A 181 (1.10%) 1
9 2008-057A 180 (1.10%) 1
10 2006-012A 179 (1.09%) 1

Applying the described algorithm, we were able in all
cases to successfully associate the tracklet. What is more
interesting, the pre-filter mechanism is able to discard al-
most 99% of the candidates before the actual correlation
is attempted, avoiding the costly propagation of the co-
variance matrix for most of the objects in the catalogue.
In the tracklets at the beginning of the night (1-5), two
or three candidates pass the threshold imposed by the χ2

distribution on the Mahalanobis distance for some cases,
that might lead to ambiguous associations. The use of
Multiple Hypothesis Filters improves the robustness of
the process by making sure only the most suitable can-
didate would be associated. As the orbit determination
is performed in the tracklet association step, the uncer-
tainty associated to each one of the catalogued objects is
reduced and, at the end of the observation (time between
tracklets approximately 5 hours) only one candidate ob-
ject is selected as hypothesis for each tracklet.

5. CONCLUSIONS

This paper describes a complete workflow to produce the
association of tracklets to objects for which state and un-
certainty information is available. A tracklet building al-
gorithm, based on simplified linear motion is described..
The tracklet buildind algorithm not only produces the ini-
tial linking needed to extract the attributable vector but it
is also able to detect and discard false detections coming
from the image processing software. A simplified method
to produce a coarse initial catalogue of objects based on
TLE consistency analysis is introduced that might be use-
ful when no other source of information about the uncer-
tainty (i.e. a real catalogue) to produce the tracklet asso-
ciation is available. The algorithm is based both on the
use of the Mahalanobis distance for threshold gating as
the likelihood function to initiate a Multiple Hypothesis
Filter scheme. The algorithm was successfully applied
for a simplified simulated case of a break-up in GEO and
MEO regimens as well as tested with real data coming
from the Airbus Robotic Telescope. The accuracy and
uncertainty of the initial catalogue plays and important
role in the correlation process, as it will determine the
total number of hypothesis to start the MHF. Next steps
would include testing the algorithm after a real catalogue
build-up, instead of estimating a coarse initial uncertainty
from TLE consistency analysis, as well as integrating it
with tracklet to tracklet correlation algorithms.
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