
SCHEDULE OPTIMISATION ALGORITHM FOR TRACKING SENSORS

J. A. Siminski(1), T. Flohrer(1), and G. Sessler(2)
(1)Space Debris Office, ESA/ESOC, Darmstadt, Germany, Email: {jan.siminski,tim.flohrer}@esa.int

(2)Ground Station Systems, ESA/ESOC, Email: gunther.sessler@esa.int

ABSTRACT

Tracking sensors, e.g. radar or laser ranging systems,
are used to refine orbits of catalogued objects. A special
tracking request has to be submitted whenever a reduction
of uncertainty is required. This is the case for objects with
a close approach above a certain risk level or whenever an
object state gets uncertain to a level where it might drop
out of the catalogue. However, if a sensor continuously
runs to support a surveillance network to maintain a cat-
alogue, an efficient track scheduling algorithm becomes
important. As multiple objects can be seen simultane-
ously on the sky, decisions have to be taken which objects
are observed and which are reachable afterward consider-
ing a limited steering velocity. This work proposes to for-
mulate the track schedule optimisation as a longest path
problem for a directed acyclic graph (DAG). Each track
is modelled as a node of the graph and each edge connect-
ing the nodes is assigned with a weight, e.g. information
gain. The overall goal of the algorithm is to maximise the
sum of these weights. It is achieved by finding the path
through the graph with the largest overall weight. This
weighted longest path optimisation problem can be solved
in linear time for the special case of a DAG. The formu-
lation of the problem and the solution algorithm will be
presented along with an example schedule optimisation.

Keywords: scheduling, tracking sensors.

1. SCHEDULING PROBLEM

ESA, recognising the need to protect our critical infras-
tructure in space and on ground, has been undertaking a
Space Situational Awareness Programme with three seg-
ments: Space Weather, Near Earth Objects and Space
Surveillance and Tracking (SST) since 2009. It is in-
tended to broaden the activities to address all aspects of
space safety. Evolving SST towards Space Debris Moni-
toring, ESA will continue to address research and devel-
opment of hardware and software technologies, ranging
from sensors, sensor networking and data processing, ap-
plications, and standardisation. In this framework, track-
ing sensors are studied as means to provide high-accuracy
data for objects involved in high-risk conjunctions and as

a contribution to a sensor network. They are typically
used to perform follow-up observations of objects that are
already in the catalog or have been previously detected
by a surveillance sensor. This means that a schedule for
a tracking sensor contains predicted object passes instead
of viewing directions.

Given a catalog with object states one can predict all
visible passes for a defined time interval. The fi-
nite set of n observation opportunities is denoted with
(p1, p2, . . . , pn). The first possible acquisition time of the
pass pi is denoted as ta(i) and the loss of signal time te(i).
Objects can be observed multiple times within the predic-
tion interval.

Each observation pass provides an opportunity to update
the respective object orbit. The priority of a pass can be
determined by various factors [5, 4, 6, 3]. If the object
is predicted to have a close approach with an operational
satellite, it should be given higher priority. On the other
hand, if an object state is already well determined because
it has been recently seen by other sensors, it might re-
quire less observations from the tracking sensor. Another
modification is the incorporation of likelihood of detec-
tion into the weights, as e.g. shown in [5]. If a close
approach between two spacecraft without manoeuvre ca-
pabilities is detected, the participants must be tracked af-
ter the approach to discard a possible collision. The full
radar pass of the object may be split into subsegments,
as a single segment might provide enough new informa-
tion to update the target and obtain a sufficiently small
uncertainty estimate. For notational simplicity, a pi pass
can denote any kind of segment where an object can be
observed. The overall importance of the pass is defined
with a weighting function w.

The tracking schedule optimisation objective function is
then defined with

F (s) =
∑
i

w(si, s) (1)

where the sequence or order of scheduled object passes is

s = (s1, s2, . . . ) si ∈ (1, . . . n) (2)

and the sequence is subject to the following constraint

ta(si+1) ≥ te(si) + ∆t(si, si+1) , (3)

Proc. 1st NEO and Debris Detection Conference, Darmstadt, Germany, 22-24 January 2019, published by the ESA Space Safety Programme Office

Ed. T. Flohrer, R. Jehn, F. Schmitz (http://neo-sst-conference.sdo.esoc.esa.int, January 2019)



and
∆t(i, j) for i, j ∈ (1, . . . n) (4)

describes the time needed to point the sensor from the
state at the end pi to the first state of pass pj . The weight-
ing function w is not defined for a single pass si, but the
whole sequence. If an object appears multiple times in the
list of passes, the benefit of an observation can differ de-
pending on whether the object has already been observed
or not.

The sequence s of unknown length, which maximises the
objective function in equation (1), represents the optimal
schedule for the tracking sensor, i.e. sopt = argmaxF (s).
This sum maximisation in its general form is considered
as a NP-hard permutation problem, where the computa-
tion time grows exponentially with the number of pre-
dicted passes n. Typically, these problems are tackled
with heuristics or approximate algorithms [8].

2. DIRECTED ACYCLIC GRAPHS

The scheduling optimisation can be rewritten as a longest
path problem for a directed acyclic graph (DAG) G =
(V,E,W ) assuming certain simplifications. The usage of
DAGs for sensor schedule optimisation has already been
demonstrated e.g. in [1]. A DAG is an ordered structure
containing a finite set of edgesE and nodes V (also called
vertices). Each pass pi is a node in V = (p1, . . . , pn).
The edges E = (e1, . . . , em) are constructed to connect
the passes. They represent the movement or control from
one pass to the next. The weightsW = (w1, . . . , wm) de-
scribe the length of each edge. An edge is created between
pi and pj if the constraint from equation (3) if fulfilled, i.e.

c(i, j) = {i, j : ta(j) ≥ te(i) + ∆t(i, j)} . (5)

The graph is acyclic (it has no directed circuits) as we
cannot go back in time to observe an object and then reach
the current state again.

If a pass pj exists, such that c(i, j) and c(j, k) is fulfilled,
the edge between i and j is unnecessary as the sequence
(i, j, k) will always have a longer path than (i, k) assum-
ing positive edge weights only. The latter assumption is
valid, as observation passes can always be considered as
beneficial (positive weight) for the cataloguing and orbit
determination process. This assumption helps to reduce
the number outgoing edges of pi and thus the overall num-
ber of edgesm. Figure 1 illustrates the reduction of edges.

The path through the graph which maximises the sum of
weights along the edges is considered the longest. This
task is called longest path or critical path problem and is
very common in computer science or project management
for job or task scheduling. For a general graph, the solu-
tion is complex and considered an NP-hard problem as
well. However, for a DAG the solution can be found in
linear time, i.e. the algorithm terminates after a number
of steps in the order of O(n + m). The solution of the
longest path problem is equivalent to the maximisation

pi pj pk 

Figure 1. Removal of unnecessary edges in planning
graph.

of the objective function in (1), however, assuming that
the weights are independent of the selected sequence of
passes s. The inclusion of dependencies in the graph is
in principle possible by branching of subgraphs. The in-
clusion and its limitations will be discussed later in this
paper.

2.1. Algorithm

The algorithm to find the longest path has two phases.
First, the so-called acyclic ordering is found by sorting
the graph (called topological sorting). When predicting
the satellite passes, and filtering out feasible connections
between passes, this order can be directly established, i.e.
for every edge between pi and pj from the sorted list of
passes, it is guaranteed that i < j. The reader is referred
to textbooks such as [2, 9] for an implementation of topo-
logical sorting.

The longest path is then found as described in [2] and
summarised in the following. The longest path ending
in each node is computed by looking at all nodes of the
incoming paths. The values computed for the nodes of the
incoming paths are re-used. If no incoming paths exists,
the vertices path is initialised with 0. The algorithm gains
its efficiency due to the re-use of already computed quan-
tities (a method typically called dynamic programming).

2.2. Conditional weights

In order to account for conditional weights (different
weights depending on path), the graph can be extended
with a subgraph. The typical scenario would be a re-
observation of an object. Assuming that an object can be
observed multiple times, it might be favourable to down-
weight a pass if it is already observed at another time. The
subgraph would be created at each observation of the ob-
ject and then duplicate the nodes of the main graph until
re-observation. It would, however, then consider a differ-
ent weight for all edges pointing towards the next pass of
the object.

The number of combinations grows exponentially with
the number of multiple-times observed objects. Hence,



p1 

p2 

p3 p4 

p5 

p4 

Figure 2. Illustration of a new branch to account for
weight dependency. The pass p2 and p5 are both gener-
ated by the same object. The node p4 must be duplicated
in order to allow different edge weights depending on the
path.

the direct solution of it is not feasible and heuristics must
be used instead.

A simple and straight-forward way of implementing con-
ditional weights, is to split the prediction time interval
into segments with little or no re-observations of the same
objects (e.g. around 100 minutes). The path finding
is then performed over the first segment only and the
weights can be recomputed for the later segments. This
solution is suboptimal as a later pass of an object could
provide more information, but is discarded as the previ-
ous one was already selected. Another simple approach
is to find the optimal path over the whole prediction time.
For all multiple times observed objects, select the pass
along the optimal path with the largest weight and fix it,
i.e. remove all edges bypassing this vertex. Then recom-
pute weights for the other passes of the objects and repeat
the path finding over the whole arc. Lastly, evolutionary
algorithms (e.g. as described in [8]) can be used to find
better global solutions. The algorithms typically have to
be initialised with a guess. Further research should assess
how much these heuristics approaches can approximate
the optimal solution of the sensor scheduling problem.

2.3. High-priority pass requests

A high-priority pass, e.g. of an object which is about to
have a close encounter, is selected by splitting the graph
at the node. As already described in the section above, all
edges can be removed that bypass a specific node. This
way it is guaranteed that the longest path will traverse
through the requested point. An illustration of such a re-
quest is shown in figure 3.

2.4. Pass splitting

A special type of re-observation happens when an object
pass is split into pass segments. As written in the intro-
duction, this can help to increase the number of observed
objects. If the information content of a short arc is suffi-
cient for an orbit update, the sensor should prefer updating

p1 

p2 

p3 

p5 

p6 

p4 

p7 

p8 

Figure 3. Illustration of a high-priority request: the pass
p5 is used to split the graph, removing all edges bypassing
it and all other simultaneous passes.

another target over completing the full pass. If too many
subsegments are created, the problem becomes unfeasi-
ble to solve due to the amount of possible combinations.
Heuristics approaches could again be used to find an ap-
proximation to the optimal solution. However, splitting
a pass in two segments can be easily incorporated into
the DAG. The weight of the edge pointing from one seg-
ment to the other can be reduced to account for the already
gained information. The edges connecting other target
passes to the second segment should thus be larger. The
exact weight computation is outside the scope of this pa-
per. Typically, information gain (or improvement of co-
variance) is used to quantify the benefit of an observation
[6, 3].

3. SENSOR MOTION MODEL

The∆t function in equation (4) describes the time needed
for the sensor to point from one state to the other. The
state of the system is represented with two angles (e.g.
azimuth and elevation) and their time derivative (angular
rates). The sensor pointing is modelled with the equation
of motion

ϕ̇ = f(t, ϕ, u) , (6)

where ϕ is one of the angles and u describes the control,
e.g. servo-motor acceleration. For sake of simplicity, the
equation is only shown for one angle, but it could be ex-
tended to multiple angles.

If a linear motion model is assumed with instantaneous
acceleration and deceleration, the minimum time between
two pointing directions can be computed with

∆t(i, j) ≤ (ϕa,j − ϕe,i)

ϕ̇max
(7)

where ϕ̇max is the maximum slew velocity of the sensor.

A more advanced logic has been implemented, which
in addition to a maximum slew velocity also considers



a maximum acceleration. Given the initial conditions
(ϕi, ϕ̇i), the time-optimal control solution to reach the fi-
nal state (ϕj , ϕ̇j) can be analytically computed. The op-
timal position, velocity and acceleration profile for the
boundary value problem are shown in figure 4. The
minimum-time ∆t(i, j) is then used to find out if both
passes can be connected or not. The time can differ de-
pending on the selected observation strategy. One can ei-
ther reach the next target at a specified velocity to start
blind tracking (same pace as next target). Alternatively,
the sensor could wait for the target to appear (possibly
scanning a certain region above the horizon) and start
tracking once the object appears in the beam.

0.25

0.50

0.75

1.00

1.25

1.50

φ
[d

eg
]

0.0

0.1

0.2

0.3

0.4

0.5

φ̇
[d

eg
/s

]

0 1 2 3 4 5

Time [s]

−0.4

−0.2

0.0

0.2

0.4

φ̈
[d

eg
/s

2
]

Figure 4. Angular position, velocity, and acceleration
profile of the time-optimal control solution reaching the
state (ϕj , ϕ̇j) = (1.5, 0) (deg and deg/s) starting from
(ϕi, ϕ̇i) = (0.3, 0.1)

0.2 0.4 0.6 0.8 1.0

Detect. diameter at 1000 km

20

40

60

80

100

A
ve

ra
ge

no
.o

fo
bj

ec
ts

Figure 5. Average number of simultaneously detectable
objects depending on detectable object diameter at 1000
km distance.

4. TEST CASE

A tracking radar schedule is created in order to test the
algorithm and assess the runtime performance. The ficti-
tious radar is located in central Europe, and its detection
performance is varied to observe how the performance
scales with the number of trackable objects. The simu-
lated radar setup is described in table 1.

Table 1. Tracking radar setup

Parameter Value
Longitude 8.6◦

Latitude 49.8◦

Height 0 km
Min. elevation 20◦

Detect. diameter at 1000 km 0.1− 1 m
ϕ̇max 1 deg/s

Around 12000 low-Earth objects are propagated over a
time frame of 6 hours. Two-line elements from www.
space-track.org are used to initialise the object states.
The object diameters are extracted from the DISCOS
database [7]. An object is considered detected, if the di-
ameter is above the detection diameter at the observed
range. The simulation setup is equivalent to the setup ex-
plained in [10] (detection method is explained in more de-
tail there). In addition to a detection threshold, the max-
imum tracking velocity is used to filter out observations
that cannot be reached by the sensor. The passes are not
segmented for this simulation.

The resulting average number of objects visible at any in-
stance in the sky is shown in figure 5. The number of si-
multaneously visible objects is important as it determines
the width of the graph and increases the complexity of the
optimization problem.

The number of objects that have been observed multiple

www.space-track.org
www.space-track.org


times, increases the optimisation efforts as weights have
to reassessed. Figure 6 shows that this needs to be consid-
ered for prediction times over around 100min. Branching
off graphs to account for changedweights becomes unfea-
sible afterward and the heuristics as described above must
be used. The prediction time should be selected based on
possible feedback from a central scheduler in a surveil-
lance network, e.g. once new predictions are available or
new high-priority targets have been identified.

0 1 2 3 4 5 6

Prediction time [h]

0

500

1000

1500

N
o.

of
ob

je
ct

s

Figure 6. Number of multiple times observed objects for
a radar that can detect an object with diameter 0.1 m at
1000 km distance.

A simple weighting scheme is used for the demonstration
in this paper. Each pass is initially weighted with 1. If the
longest path contains multiple passes of the same object,
the first one is selected and all others nodes are weighted
with 0. Afterward the longest path is recomputed. The
result of the optimisation gives a longest path with 160
tracks and no object is re-observed.

Figure 7 shows the required runtime for different tested
radar performance values. The computation is performed
on laptop with 2.9 GHz Intel Core i5 CPU and 8 GBRAM
using the publicly available Python library pygraph. The
runtime is negligible in comparison with the time to pre-
dict the satellite passes (around 20 minutes). The latter
has to be computed for any kind of schedule optimisa-
tion and is therefore not considered in this analysis. In
an operational environment, the satellite orbits might be
propagated at the cataloguer level. They would be then
also used for close approach detection and other services.

The runtime is coupled with the number of edges and
nodes. Figure 8 shows the dependency of the size of the
graph on the detection capabilities of the radar. The fig-
ures also illustrate the dependence of runtime and graph
size on the number of simultaneously observed objects.
It should be noted that the prediction time scales the run-
time linearly as the graph width is not increased but just
its length.

0.2 0.4 0.6 0.8 1.0

Detect. diameter at 1000 km

0

2

4

6

8

R
un

tim
e

[s
]

Figure 7. Runtime depending on detected diameter at
1000 km distance.

0.2 0.4 0.6 0.8 1.0

Detect. diameter at 1000 km

103

104

105

106
N

o.
of

no
de

s/
ed

ge
s

Edges
Nodes

Figure 8. Number of graph edges and nodes depending
on detected diameter at 1000 km distance.

5. CONCLUSION

When structuring the optimal scheduling problem for a
tracking sensor as a DAG, it reduces to a simple longest
path search and can be solved with negligible compu-
tation time. DAGs offer a dynamic framework for the
scheduling of a sensor as part of a surveillance system.
Tracking requests for high-priority targets can be easily
included in the DAG to generate an updated plan.

Dynamic weights can be included, however, requiring
then a heuristic approach, i.e. the longest path is itera-
tively found while updating the dependent weights. The
method is shown to be efficient. More challenging cases
need to be tested using realistic weights, e.g. considering
the information gain. The results can then be compared
with solutions obtained with evolutionary algorithms to
assess how well the objective function is optimised.



REFERENCES

1. Augenstein, S. (2014). Optimal scheduling of earth-
imaging satellites with human collaboration via directed
acyclic graphs. Presented at AAAI Spring Symposium
on the Intersection of Rosbust Intelligence and Trust in
Autonomous Systems, Stanford, California, USA.

2. Bang-Jensen, J., Gutin, G. Z. (2008). Digraphs: the-
ory, algorithms and applications. Springer Science &
Business Media.

3. DeMars, K. J., Jah, M. K. (2011). Evaluation of the
information content of observations with application to
sensor management for orbit determination. Presented
at AAS/AIAA Astrodynamics Specialist Conference,
Girdwood, Alaska, USA.

4. Früh, C., Fielder, H., Herzog, J. (2017). Heuristic and
Optimized Sensor Tasking Observation Strategies with
Exemplification for Geosynchronous Objects. Journal
of Guidance, Control, and Dynamics, 41(5), 1036–
1048.

5. Gehly, S., Bennett, J. (2016). Incorporating Target Pri-
orities in the Sensor Tasking Reward Function. Pre-
sented at the AdvancedMauiOptical and Space Surveil-
lance Technologies Conference (AMOS), Maui, Hawaii,
USA.

6. Hinze, A., Fiedler, H., Schildknecht, T. (2016).
Optimal scheduling for geosynchronous space object
follow-up observations using a genetic algorithm. Pre-
sented at the AdvancedMauiOptical and Space Surveil-
lance Technologies Conference (AMOS), Maui, Hawaii,
USA.

7. McLean, F., Lemmens, S., Funke, Q., Braun, V.
(2017). DISCOS 3: An improved data model for ESA’s
database and information system characterising objects
in space. Presented at the 7th European Conference on
Space Debris, Darmstadt, Germany.

8. Price, K. V., Storn, R.M., Lampinen, J. A. (2005). Dif-
ferential evolution: a practical approach to global opti-
mization. Springer-Verlag Berlin Heidelberg.

9. Sedgewick, R., Wayne, K. (2011). Algorithms.
Addison-Wesley Professional.

10. Siminski, J.A. (2016). Techniques for assessing
space object cataloguing performance during design
of surveillance systems. Presented at 6th International
Conference on Atrodynamics Tools and Techniques
(ICATT), Darmstadt, Germany.


	Scheduling problem
	Directed acyclic graphs
	Algorithm
	Conditional weights
	High-priority pass requests
	Pass splitting

	Sensor motion model
	Test case
	Conclusion

