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ABSTRACT

Most of the algorithms and methods used in the field
of Space Surveillance and Tracking (SST) assume that
the orbital uncertainty of space objects is accurately
described by a multivariate Gaussian (normal) distri-
bution. However, it is well-known that being the space
dynamics highly non-linear (especially in a Cartesian
representation of the orbital state vector), the normal
distribution assumption does not hold for a long time in
the absence of new information/measurements.
This paper aims to quantify this long time by means
of Multivariate Normal (MVN) statistical tests applied
to Monte Carlo simulations. Moreover, an analytical
method is proposed for determining the departure from
Gaussianity that consists in monitoring the distance
between the uncertainty distribution propagated by
linear and non-linear techniques. Monte Carlo and
analytical approaches are compared showing a good
agreement. This provides an efficient method to assess
the Gaussianity validity time of the propagation of orbital
uncertainties.
A direct application of this method is to use the Gaus-
sianity validity time as a threshold in the splitting
criterion for a Gaussian Mixture Model representation.

Keywords: Gaussian distribution; Gaussianity break-
down; statistical tests; State Transition Tensor; Gaussian
mixture models; uncertainty propagation.

1. INTRODUCTION

Space Surveillance and Tracking (SST) aims to study
and monitor resident space objects (RSO) and maintain
the information about them within a catalogue. This in-
cludes the detection, tracking, cataloguing and identifi-
cation of RSO, along with the analysis of the resulting
catalogue for providing services such as collision risk as-
sessment and reentry predictions. In many of the aspects
of SST, the accuracy and realism of the object state uncer-
tainty play an essential role. Measurements data associa-
tion, performance of sensor tasking, correct estimation of
probability of collision, to name a few examples, would

fail or degrade severely if the orbital uncertainty is inac-
curately represented.
The general assumption is that this state uncertainty can
be represented by a multi-variate normal (MVN) distri-
bution. However, in the frame of SST, the scarce of mea-
surements due to a great number of space objects to track
and the limited sensor resources leads to the necessity of
propagating the uncertainty during long periods of time
(several orbital periods). The intrinsic non-linear dynam-
ics of space objects along with long propagation times
yield to the breakdown of the Gaussianity assumption,
and, therefore, a single MVN is no longer a valid rep-
resentation of the probability density function (PDF) of
object state.
This work examines the validity time of the MVN repre-
sentation in a twofold manner. Firstly, the use of statis-
tical tests to evaluate the departure from MVN assump-
tion of the uncertainty distribution in Monte Carlo (MC)
simulations. The importance of the coordinates system
for preserving the Gaussianity is evaluated with statistical
tests, comparing the results when a Cartesian or Equinoc-
tial representation of the orbital state vector is employed.
Secondly, the effect of non-linearity is assessed by the
comparison of orbital PDFs propagated with linear and
non-linear methods. The measure of distance between
both PDFs is evaluated with the scale-invariant Hellinger
distance [19]. Linear propagation is performed with the
usual State Transition Matrix (STM), whether the non-
linear propagation makes use of higher order terms of the
Taylor series linearization in the form of a State Transi-
tion Tensor (STT).
Both procedures are combined in order to link the depar-
ture from MVN representation to the importance of non-
linear effects in the dynamics. Hence, it is possible to
define a threshold value in the Hellinger distance that ac-
counts for the Gaussianity validity time, reducing in that
way the computational effort associated to MC simula-
tions.
One possible application of the threshold value in the
Hellinger distance is to use it as the value that triggers
the splitting mechanism for a Gaussian Mixture Model
(GMM) representation. The GMM will represente accu-
rately the uncertainty distribution when a single Gaussian
representation no longer holds. Finally, a practical exam-
ple of GMM propagation is given using the splitting cri-
terion defined in this work.
All the developments presented in this paper have been
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implemented in Scilab, using the Celestlab toolbox 1.
The outline of the paper is structured as follows. Section
2 presents the MVN statistical tests, analyzing simula-
tions with the selected methods : Henze-Zirkler [6] and
Royston-92 [15]. Section 3 is devoted to the description
of different methods of uncertainty propagation, with a
special focus on the linear propagation through the State
Transition Matrix, and its extension in the non-linear
regime with the use of State Transition Tensor. Section
4 presents the Hellinger distance as a metric to measure
the dissimilarity between two PDFs, and compares the
results with respect to the statistical tests. Section 5 dis-
cusses about GMM, the splitting process and an efficient
criterion to trigger it. Finally, some concluding remarks
are given.

2. MULTIVARIATE NORMALITY STATISTICAL
TESTS

There exists a large number of statistical tests for detect-
ing the deviation from the MVN assumption. In [13]
there are reported around 50 tests. They are usually di-
vided in four groups as follows:

• Goodness of fit techniques, where the sample is
compared to the empirical distribution function such
as the Kolmogorov-Smirnov test,

• Skewness and kurtosis based techniques, that ex-
ploit the asymptotic distributions of the multivariate
skewness and kurtosis to develop the test [12],

• Consistent and invariant techniques, this class of
procedures proofs mathematically its consistency
typically by using the empirical characteristic func-
tion, and

• Graphical and correlational approaches, like the
quantile-quantile (Q-Q) plot [5].

In reviews and comparative analysis, there is no test that
outperforms the rest uniformly, but, on the contrary, it
is recommended to perform several tests to assess MVN
departure. In this work, apart from graphical consider-
ations, two statistical tests are selected : Henze-Zirkler
(HZ) which is part of the group of consistent and invari-
ant techniques and Royston-92 (R92) as a representative
of goodness of fit techniques. The latter is an extension of
the univariate Shapiro and Wilk test [16] that is found to
be among the more powerful tests for detecting the nor-
mality breakdown in univariate cases [17].
A comprehensive set of simulations is reported in [2]
comparing the performance of different tests. HZ test
possesses good power 2 across the various multivariate

1CelestLab: CNES space mechanics toolbox for mission analysis:
https://atoms.scilab.org/toolboxes/celestlab/

2The power of a statistical test is defined as the probability that it
will reject a false null hypothesis. In our case, the probability that a
non-MVN distribution is rejected, see Table 1.

Table 1: Error types in a statistical test.

Null hypothesis is
True False

Statistical No reject True negative Type II error
test Reject Type I error True positive

decision (power)

distributions analyzed : T, uniform, Pearson type II and
Khintchine distributions. There are two aspects in which
R92 outperforms the HZ test : performance for a small
sample size, and a higher power when considering multi-
variate normal mixtures.

2.1. Type I error rate simulations

Different simulations have been carried out to character-
ize the performance of both tests. This is the case of Type
I error rate simulations where we want to assess that a
MVN distribution will not be rejected by the statistical
test. In all the simulations hereafter a significance level of
5% is used. Figure 1a shows the results for a simulation
where the sample size is small, containing only 25 parti-
cles in a 3-dimensional space. In accordance to [2], HZ
test is unable to achieve the nominal significance level,
whether R92 test converges rapidly to 5% value. Another
example is presented in Figure 1b, in which the number of
particles in the sample is 1000 defined in a 6-dimensional
space. In this case, both methods perform similarly and,
after an initial transitory period up to 5000 MC samples,
they converge to the significance level value, as expected.

2.2. Type II error rate simulations: space mechanics
examples

In order to assess the power of a statistical test, one needs
to draw a sample from a distribution other than the null-
hypothesis. In our case, that means that we need to draw a
sample from a non-MVN distribution. The methodology
followed in this study is directly linked to the uncertainty
propagation problem in space mechanics. An initial un-
certainty distribution is drawn from a MVN distribution.
In this work, the MVN distribution is defined with the
position uncertainty values estimated for the Two-Lines
Element (TLE) catalog. See [3] for details on the TLE
catalog accuracy analysis used as example in this paper.
These (rounded) values are reported in Table 2.
Two reference orbits are considered, both circular and
equatorial, one in the Low Earth Orbit (LEO) at 770 km
of altitude and the other in the Geostationary orbit (GEO).
It is important to note that we transform those errors into



(a) Each sample is a population of 25 particles following a
MVN distribution of dimension 3.

(b) Each sample is a population of 1000 particles following
a MVN distribution of dimension 6.

Figure 1: Type I error rate (in percent) as a function of the number of Monte Carlo samples for R92 and HZ tests.

the Equinoctial elements space 3, with the following lin-
earized expressions, valid for circular orbits:

σa = σQ,

σM = 2 atan(σS/(2a)).
(1)

Drawing the sample distribution from the equinoctial ele-
ments uncertainties induces an associated uncertainty on
the velocity, in such a way that our sample distribution
remains in the circular orbit regime.
Each point of the Monte Carlo sample distribution is
propagated independently with unperturbed two-body
dynamics. We apply the statistical tests at each time step
of the Monte Carlo simulation to analyze the evolution of
the normality of the distribution. The analysis of the nor-
mality departure is completed and verified with the aid of
graphical methods.
The statistical test is applied to the position uncertainty
distribution. For every statistical test simulation pre-
sented in this study the same configuration is used : 5000
Monte Carlo simulations containing 1000 particles (in
coherence with the converged state observed in Figure
1b). In Figure 2a we can see the evolution in the case
of the GEO orbit as a function of the number of orbits.
At the beginning (the first two orbits) both tests remain
around 95%, which corresponds to the significance level,
meaning that the propagated distribution is still normal.
From the second orbital period, the type II error of HZ
begin to decrease until 4.5 orbital periods have passed
where the value reaches zero. At that point, HZ test says

3Equinoctial elements (a, ex, ey , hx, hy ,M) are defined as fol-
lows:

• Semi-major axis : a,

• Eccentricity vector ē = (ecos(ω + Ω), esin(ω + Ω)),

• Inclination vector : h̄ = (tan(i/2)cos(Ω), tan(i/2)sin(Ω)),

• Mean longitude : λM = M + ω + Ω,

where ω, Ω and M are the argument of the perigee, the right ascension
of the ascending node and the mean anomaly, respectively

the distribution is definitely no longer Gaussian. R92 test
presents a similar behavior but shifted in time around 1
orbital period. Observe that the R92 test evaluates the de-
parture from normality starting at 3.5 orbital periods, and
it states that the distribution is no longer Gaussian after
5.5 orbital periods. This feature is maintained in all the
simulations carried out indicating that the HZ test is more
sensitive than R92 to the first signs of departure from nor-
mality.
As we have already mentioned, additional information
can be obtained by graphical methods. In particular, we
represent in Figure 3 the evolution of the uncertainty PDF
for different time steps. It is worth noting that two orbital
periods after the initial time looks like an unperturbed el-
lipse which is in coherence with both statistical tests that
point the distribution to still be Gaussian. On the other
hand, when 5 orbital periods have passed the banana-like
shape appears clearly. At that moment, the type II error
rate for HZ is already 0% and that of R92 test is around
20%. Both methods are indicating the non-Gaussianity
of the PDF (R92 with some delay with respect to HZ
results). If the application is to detect the first signs of
the departure from normality, with the objective of split-
ting the PDF in a GMM to keep an accurate representa-
tion of the uncertainty, that point is already too late since
the distribution is distorted compared to the linear (and
Gaussian) propagated uncertainty. The transition phase,
between the orbital periods 3 and 4, is the interval that
undergoes this departure from normality. Observe that at
3 orbital periods the PDF is barely distorted and at 4 or-
bital periods it is evident that the PDF begins to be bent.
That time corresponds to values of HZ approaching 0%
and to R92 values beginning to diverge from 95%.
In the LEO case (see Figure 2b) a similar behavior is
found, pointing out a departure from normality around
5 orbital periods after the initial time. Therefore, we can
state that starting from a TLE-like accuracy, the orbital
uncertainty expressed in Cartesian coordinates maintains
the Gaussianity during 4 and 5 orbital periods in the case



of circular GEO and LEO orbits, respectively. Note that
these values are optimistic in the sense that the dynamics
only comprise two-body motion.
The degree of linearity of the dynamics of a system de-
pends on the reference frame and type of coordinates of
the state vector representation [10]. For example, carte-
sian coordinates applied to the elliptic motion of space
objects around the Earth makes the governing equations
of motion highly non-linear. However, other represen-
tations such as Equinoctial elements partly linearize the
dynamics contributing to the preservation of the Gaus-
sian assumption in the uncertainty propagation for longer
time. The same Monte Carlo simulations for GEO and
LEO cases are performed expressing this time the state
vector in Equinoctial elements instead of Cartesian coor-
dinates. Results of the statistic tests (see Figures 2c and
2d) show a remarkable lengthening of the time interval
in which the Gaussian distribution remains valid for the
uncertainty PDF representation. Indeed, in the GEO case,
the validity of the Gaussian assumptions passes from sev-
eral days to several years; and, in the LEO case, from
several hours to several months, on the hypothesis of two-
body dynamics.

3. UNCERTAINTY PROPAGATION

Uncertainty propagation is a challenging field of study,
especially in orbital mechanics where dynamical systems
present a highly nonlinear behavior. In [11] an exten-
sive review of different methods for propagating uncer-
tainties can be found. Apart from solving directly the
Fokker-Planck equation, that gives the true evolution of
the PDF but it is not feasible in a realistic orbital mechan-
ics problem, the two most widely used methods are the
linear propagation and the Monte Carlo simulations (see
subsection 2.2 for the latter). These are opposite meth-
ods, since the former is computationally efficient but it
quickly lacks of precision in nonlinear systems; and the
latter provides high-precision results but at the expense of
a higher computational effort. Between these two meth-
ods, there is a variety of nonlinear techniques that can be
categorized in three groups:

• Sample-based methods: This type of techniques,
that comprises also the Monte Carlo simulations,
generates a set of samples representing the initial
uncertainty, propagates these samples individually,
and then reconstructs the propagated uncertainty. In

Table 2: Initial orbit and position uncertainty.

Orbital Semi-major Radial σQ Along-track σS
regime axis (km) (m) (m)
LEO 7148.1 100 470
GEO 42164.5 360 430

that way, the dynamics (propagator) is considered
as a black box, and we refer to this kind of methods
as non-intrusive. Methods, others than MC simula-
tions, strives for choosing efficiently the samples in
order to reduce the computational effort. Unscented
transform [9] and Polynomial Chaos Expansion [8]
are examples of these techniques.

• Dynamics-based methods : These methods ap-
proximate the dynamics around the nominal trajec-
tory based on a Taylor series expansion, and used
this simplified dynamics in the propagation of un-
certainties. The Taylor series can be built up either
with the computation of high-order partial deriva-
tives forming State Transition Tensors (the nonlin-
ear analogy to state transition matrix) [14, 4], or by
means of Differential Algebra techniques [18].

• PDF-based method : This approach aims to repre-
sent the PDF in such a way that the effects of nonlin-
earity in dynamics are reduced in the propagation.
This is the idea of Gaussian Mixture Models [1].
A Gaussian mixture is a weighted sum of Gaussian
density function that can represent any PDF as accu-
rate as desired by increasing the number of Gaussian
kernels in the mixture. Propagation of each individ-
ual Gaussian PDF is less affected to errors due to
nonlinearities, and the overall GMM function can
represent the true evolution of the uncertainty with
high-accuracy.

Propagation schemes used within this study are further
detailed hereafter.

3.1. Linear Propagation - State Transition Matrix

Being x the state vector of a space object that undergoes
a dynamical evolution described by the governing equa-
tion:

ẋ = ~f(x), (2)

where dot denotes derivative with respect to time. The
evolution of a small error δx in the state vector can be
approximated to the first order (linearization) as :

ẋ + δẋ = ~f(x + δx) ' ~f(x) +
∂ ~f(x)

∂x
δx. (3)

Using Eq. 2, this expression is simplified to:

δẋ ' ∂ ~f(x)

∂x
δx = F δx. (4)

Being the small error a quantity dependent on time (δx =
δx(t)), we can approximate it with a Taylor series expan-
sion in time:

δx ' δx0 + δẋ0(t− t0) ' δx0 + F δx0(t− t0), (5)



(a) GEO - Cartesian (b) LEO - Cartesian

(c) GEO - Equinoctial (d) LEO - Equinoctial

Figure 2: Type II error rate (in percent) as a function of the number of orbits. R92 (blue line) and HZ (black line)
statistical tests results are displayed. Dashed light blue line represents the significance level for a MVN distribution. The
initial orbital uncertainty associated to each orbit is defined in Table 2

where δx0 corresponds to the small error at the initial
time, t0. Then, we arrive to a linear matricial expression
relating the small error at two different times:

δx ' (I + F (t− t0))δx0 = Φδx0, (6)

where Φ is the State Transition Matrix. Considering a
two-body dynamical model expressed in equinoctial ele-
ments, F is a 6x6 matrix with all elements zero except
F 61 = −3µ1/2/(2a5/2).
If we consider an unbiased initial perturbation δx0 fol-
lowing a MVN distribution of covariance P0, we can de-
fine the linear evolution of the uncertainty with the evo-
lution of the mean and covariance:

• Mean : m = E [δx] = ΦE [δx0] = 0, since
E [δx0] ≡ 0 from the unbiased hypothesis.

• Covariance : P = E
[
δx δxT

]
− mmT =

ΦE
[
δx0 δx

T
0

]
ΦT = ΦP0ΦT

3.2. Nonlinear Propagation - State Transition Ten-
sor

This nonlinear propagation is the extension of the STM
approach when considering higher order terms of the
Taylor series expansion. We will consider hereafter up
to the second term of the expansion, but generalization to
higher order terms is straightforward. Einstein notation
is used for convenience. The dynamics of small perturba-
tions (Eq. 4) becomes:

δẋi '
∂fi
∂xk1

δxk1
+

1

2

∂2fi
∂xk1

∂xk2

δxk1
δxk2

=

Fi,k1
δxk1

+
1

2
Fi,k1k2

δxk1
δxk2

, (7)

where the superspript (2) refers to second order deriva-
tion. The mapping of perturbation from initial to final



Figure 3: Evolution of the position uncertainty in the equatorial plane. The axis are aligned with the principal axis of
the linearly propagated covariance. Probability density is computed from 200 Monte Carlo simulations containing 500
particles. Dashed black line corresponds to the 3-sigma value ellipse of the position covariance.

time (Eq. 6) is modified to:

δxi ' Φi,k1
δx0

k1
+

1

2
Φi,k1k2

δx0
k1
δx0

k2
=

2∑
p=1

1

p!
Φi,k1...kp

δx0
k1
. . . δx0

kp
(8)

where the superscript (0) refers to initial conditions and
Φi,k1k2

≡ Fi,k1k2
is a tensor of second order that can

be represented, in our problem, with a 6x6x6 hyperma-
trix. For two-body dynamics expressed in Equinoctial el-
ements, this hypermatrix is completely empty except for
one term : Φ611 = 15µ1/2/(4a7/2). Generalization for
higher order terms of the two-body dynamics gives:

Φ6,1, . . . , 1︸ ︷︷ ︸
p times

= (−1)p
(2p+ 2)!

22p+1(p+ 1)!

µ1/2

a(3+2p)/2
(9)

The nonlinear evolution, up to second order, of the initial
perturbation δx0 = N

(
0, P 0

)
is given by:

mi =

2∑
p=1

1

p!
Φi,k1...kp

E
[
δx0

k1
. . . δx0

kp

]
=

1

2
Φi,k1k2

P 0
k1k2

. (10)

Pij =

2∑
p=1

2∑
q=1

1

p!q!
Φi,k1...kpΦj,l1...lq

E
[
δx0

k1
. . . δx0

kp
δx0

l1 . . . δx
0
lq

]
−mimj

=Φi,k1
Φj,l1P

0
k1l1 −mimj+

1

4
Φi,k1k2

Φj,l1l2 [P 0
k1k2

P 0
l1l2 + P 0

k1l1P
0
k2l2+

P 0
k1l2P

0
k2l1 ]

(11)

Note that, in contrast with the linear evolution, there is
a non-zero mean, that is to say, the mean value of the
perturbation is deviated with respect to the reference tra-
jectory.

4. SIMILARITY METRIC BETWEEN DISTRI-
BUTIONS

In probability theory, there are different functions to mea-
sure the similarity or closeness between two probability
distribution functions. On one hand, we have the distance
metrics, d, that are measures satisfying four conditions :

1. non-negativity (d(p, q) ≥ 0, where p and q are the
two PDFs),

2. identity of indiscernibles (d(p, q) = 0→ p = q),



3. symmetry (d(p, q) = d(q, p)) and

4. the triangle inequality (d(p, r) ≤ d(p, q) + d(q, r),

where r is a third PDF. On the other hand, we have
weaker notions of the distance metrics, as, for example,
the divergences that only satisfy the first two conditions
defining a positive-definite function. Examples of the
latter are the Kullback-Leibler divergence or, its gener-
alization, the Rényi divergence [20]. In this study, the
Hellinger distance metric is used.

4.1. Hellinger distance

The Hellinger distance, in a given space state Υ, is de-
fined as follows:

dH(p, q) =

[
1

2

∫
Υ

(p(x)
1
2 − q(x)

1
2 )2dx

] 1
2

. (12)

The above expression can be simplified to:

dH(p, q) =

[
1−

∫
Υ

p(x)
1
2 q(x)

1
2 dx

] 1
2

= [1−BC]
1
2 ,

(13)
where BC is the Bhattacharyya coefficient. In the
case that both p and q are MVN distributions (p =
N (x;mp, Pp) and q = N (x;mq, Pq)), the Bhat-
tacharyya coefficient gets reduced to:

BC =
|Pp|

1
4 |Pq|

1
4

|P̄ | 12
exp

(
−1

8
∆mT P̄−1∆m

)
, (14)

where P̄ = (Pp + Pq)/2, ∆m = mp − mq . This
distance is bounded and it can take values in the range
0 ≤ dH ≤ 1, where the value dH = 0 indicates two iden-
tical distributions and, on the contrary, the value dH = 1
points to two completely dissimilar distributions. One of
the interests for using this distance is its scale-invariant
nature. This will facilitate the choice of a threshold value
representing the time when nonlinear terms become non-
negligible in the uncertainty propagation (see Section
2.2).

4.2. Comparison between Hellinger distance and
statistical tests for MVN

In this section we are going to compare the evolution of
the Hellinger distance, computed from the uncertainties
propagated linearly and non-linearly with the STTs, and
the evolution of the statistical tests, computed from the
Monte Carlo simulations. The former is a rapid computa-
tion from the analytical expressions presented in Section
3 for the two-body dynamics, and the latter is a time ex-
pensive computation but applied to the most realistic rep-
resentation of the uncertainty PDF which is the Monte
Carlo sample (see Section 2). The objective is to de-
rive a relationship that allows us to confidently use the

Hellinger distance as a measure of Gaussianity break-
down.
Figure 4 shows the statistical tests values as a function
of the square of the Hellinger distance. This is possi-
ble as both functions are monotonic with respect to time.
Different initial uncertainties in position have been as-
sessed. The index in the cases reported in Figure 4 re-
fer to these different initial uncertainty factors: an index
”11” means that the same values as in Table 2 have been
used (so the same case of Figure 2c), and index ”12”
means that the same uncertainty in the radial position is
used but the double for the along-track uncertainty, and so
on. It is worth noting the remarkable similarity of the re-
sults obtained for the different cases. Thus, we can state
that there is a clear relationship between the normality
breakdown observed in the Monte Carlo simulations, and
the analytical analysis where the importance of the non-
linear terms contained in the State Transition Tensor is
assessed via the Hellinger distance. In other words, the
non-linearity effects captured by the Hellinger distance
represent a high-fidelity measure of the departure from
normality detected in the MC simulations. In this way, it
is possible to use this Hellinger distance instead of MC
simulations for estimating the departure from normality,
with the advantage of a considerable gain in computa-
tional time. With the help of graphical methods, the value
d2
H = 0.005 is set hereafter as the threshold value for the

departure from normality.
Having set the threshold value, we can rapidly explore
different cases of initial uncertainty to perform a para-
metric study on the departure from Gaussianity. Figure
5 presents such a study, where the initial uncertainties in
both directions are varied between 300 m and 3 km. We
recover the value of the case presented in Figure 2c as a
point between the level curves of 2000 and 3000 orbital
periods. In two-body dynamics expressed in Equinoctial
elements, the main driver of non-linearity comes from the
evolution of the mean anomaly with respect to deviations
in the semi-major axis, that is to say, the position uncer-
tainty on the radial direction drives the non-linearity, and,
hence, the departure from normality. This fact is observed
in Figure 5 as the constant decrease of the orbital periods
before Gaussianity breakdown when we move rightwards
(increasing σa). One passes from around 24000 orbital
periods with (σQ, σS) = (300 m, 300 m) to 24 orbital pe-
riods with (σQ, σS) = (3000 m, 300 m), that is to say, a
decrease of three order of magnitudes in the Gaussianity
validity time caused by an increase of one order of mag-
nitude in the radial direction uncertainty.
It is worth noting that the level curves in Figure 5 are such
that an increase of initial uncertainty in an arbitrary direc-
tion does not lead invariably to a shorter validity time of
the Gaussian assumption. Observe that we can follow a
level curve, which is line of constant time for Gaussianity
breakdown, by increasing the position uncertainty in both
directions. In other words, the size of the uncertainty is
not the only factor that plays a role in the evolution of the
normality of the distribution but also the aspect ratio of
the associated ellipse.



Figure 4: Type II error rate (in percent) as a function of
the square of the Hellinger distance computed from linear
Vs STT propagation. R92 (degradation of blue lines) and
HZ (degradation of gray lines) are displayed.

Figure 5: Contour plot in the GEO case representing the
number of orbital periods before the departure from nor-
mality as a function of the initial position uncertainties in
the radial and along-track directions.

5. GAUSSIAN MIXTURE MODEL

In the propagation process, when the uncertainty distribu-
tion begins to depart from normality, another PDF other
than a single MVN distribution shall be used to ensure
an accurate representation. One candidate, which is a di-
rect extension of the Gaussian distribution, is the Gaus-
sian mixture model. A GMM is a weighted sum of single
MVN components:

p(x) =

n∑
i=1

wiN (x;mi,P i) , (15)

where n is the number of components of the mixture and
wi the weight of each component. These weights shall be
all positive and sum to one in order Eq. 15 to be a valid
PDF. For a sufficient number of components, we can ac-
curately approximate many complex distributions.

Table 3: Five-Component Splitting Library.

i wi µi σ

1 0.076322 -1.689973 0.442256
2 0.247442 -0.800928 0.442256
3 0.352473 0.0 0.442256
4 0.247442 0.800928 0.442256
5 0.076322 1.689973 0.442256

The procedure that converts a single MVN into a Gaus-
sian mixture is called splitting. This splitting mecha-
nism should be integrated into the uncertainty propaga-
tion scheme and, therefore, we need a simple and effi-
cient splitting criterion that monitors the validity of the
Gaussian assumption for each MVN component.

5.1. Splitting methodology

The splitting of a MVN distribution is simplified if we
make use of the solution of the univariate standard nor-
mal distribution. The univariate case is reduced to a con-
strained nonlinear optimization problem that we do not
need to solve every time but only once. Thus, we can
speak of splitting libraries which are the solutions of this
optimization problem. In this work, we use a splitting li-
brary [1] that divides the Gaussian distribution into five
components (see Table 3). The number of components in
the Gaussian mixture is dependent on the desired accu-
racy of the sum approximation [7], the use of five com-
ponents in this work is only an example.
The multivariate case can be solved in several ways de-
pending on the direction(s) of splitting. We are going to
apply the splitting in one direction corresponding to the
direction of maximal uncertainty (the eigenvector asso-
ciated the largest eigenvalue of the covariance matrix).
The procedure for splitting the multivariate distribution
N
(
x;m0, P 0

)
is as follows (see [1] for further details):

1. P 0 = V ΛV T , where V the eigenvector matrix and
Λ the eigenvalue diagonal matrix,

2. mi = m0 +
√
λkµivk, where mi is the mean of

the ith component, λk the largest eigenvalue, vk the
eigenvector associated to λk and µi is taken from the
splitting library (see Table 3),

3. Λi = diag
{
λ1, . . . , σ

2λk, . . . , λn
}

, where σ is
taken from the splitting library,

4. Pi = V ΛiV
T , where Pi. is the covariance matrix of

the ith component (see Eq. 15).



(a) Monte Carlo simulation : 100 samples with a population
of 15000 particles each sample

(b) Propagated Gaussian mixture distribution with 5
components split at t = 39.5 orbits.

Figure 6: Uncertainty distribution after 200 orbital periods propagation. PDFs are plotted in the principal axis of the
linearly propagated covariance in the semi-major axis - mean anomaly plane.

5.2. Splitting criterion

The splitting criterion that we propose is to moni-
tor the evolution of the Hellinger distance between
the uncertainty distributions propagated linearly and
non-linearly with the STTs and to trigger the splitting
mechanism when that distance equals the threshold value
d2
H = 0.005. This is applicable to the initial Gaussian

distribution as well as to all the components of the GMM.
A simulation is performed with the GEO orbit defined
in Table 2. The initial position uncertainty corresponds
to a 1-sigma value in the radial direction of 3000 m and
500 m for the along-track direction. With these values,
the Hellinger distance reaches the threshold value after,
approximately, 39.5 orbital periods. Observe in Figure
5 that this initial uncertainty lies between the iso-lines
of 30 and 50 orbital periods. The Gaussian distribution
is then split into a GMM of 5 components, and the
propagation of uncertainty resumes until reaching 200
orbital periods. In the interval where the distribution is
described by the GMM, none of the components arrive
to the threshold value in its own Hellinger distance.
The propagated uncertainty distribution can then be
compared with the results of a Monte Carlo simulation.
Such a comparison is done in Figure 6. The agreement
between distributions is remarkable, both in size than in
shape.
In order to assess the gain in performance in the un-
certainty propagation with the proposed approach, we
compare the computational time required for the simu-
lations of Figure 6. All computations are performed on
a laptop, 2.50 GHz Intel R© CoreTM i5-7200U and 8 GB
RAM. The Monte Carlo simulation takes around 7 mn
and 30 s (450 s), and the Gaussian Mixture Model with
linear propagation and splitting based on the Hellinger
distance needs 15 s to perform the simulations. That is to
say, in this example, the proposed approach is 30 times
faster than a MC simulation.

6. CONCLUSIONS

The Gaussianity validity time has been assessed in
the frame of orbital uncertainty propagation by means
of different multivariate normal statistical tests. In
particular, Henze-Zirkler and Royston-92 tests have
been used along with graphical methods. Monte Carlo
simulations for two orbital regimes, GEO and circular
LEO, have been performed in the case of an initial
position uncertainty in accordance with the expected
accuracy of the Two-Line Element catalogue of resident
space objects. The importance of the linearity of the gov-
erning equations of motion for holding the Gaussianity
assumption a longer time has been evaluated by choosing
a judicious coordinates system representation. With
unperturbed two-body dynamics, Equinoctial elements
representation leads the Gaussianity validity time around
three order of times longer than in the case of Cartesian
coordinates.
Linearity of the system is assessed by comparing the
uncertainty distribution propagated linearly with the
State Transition Matrix and non-linearly with the State
Transition Tensor of second order. This comparison is
performed by means of a distance metric, the Hellinger
distance, which is scale-invariant. For different test cases,
a clear relationship between this Hellinger distance and
the results of the statistical tests is observed. Hence, the
Hellinger distance that measures the non-linearity with
the State Transition Tensor can also be used as a measure
of the departure from normality. A threshold is set on
the Hellinger distance to define the time of Gaussianity
breakdown. This threshold value can be used as the
criterion to split a single Gaussian distribution into a
Gaussian Mixture Model.
A simulation of uncertainty propagation is carried out
with a Gaussian Mixture Model including the splitting
mechanism triggered by the Hellinger distance threshold.
A comparison with the equivalent Monte Carlo simula-
tion is performed showing good agreement. Therefore,
our work shows that, for the unperturbed two-body



motion dynamics, the Hellinger distance based on the
non-linearities captured by the STT can be used instead
of the MC to detect the departure from Gaussianity.
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