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ABSTRACT

An asteroid just been discovered has a strongly undeter-
mined orbit, being weakly constrained by the few avail-
able astrometric observations, and there is a set of possi-
ble orbits, all compatible with the observations, forming
a Confidence Region (CR) in the 6-dimensional orbital
elements space. The goal of Impact Monitoring (IM) is
to understand whether the CR contains subsets of initial
conditions leading to a collision with the Earth in the fu-
ture (Virtual Impactors, VIs) and to estimate the Impact
Probability (IP). Once defined the CR, the crucial steps
are the sampling of the uncertainty region, the propaga-
tion of the so called Virtual Asteroids (VAs) searching
for VIs and the computation of IP. Two automatic sys-
tems, CLOMON2 (at University of Pisa/SpaceDyS/ESA-
NEOCC) and Sentry (at JPL/NASA), have been devel-
oped for this purpose. Both generate VAs by applying a
1-dimensional sampling of the CR based upon the Line
Of Variations (LOV), that is a differentiable curve rep-
resenting a kind of spine of the uncertainty region. The
LOV method is very useful when the CR is elongated and
thin, but this is not the case when the observed arc is very
short: the uncertainty results to be wide in at least two
directions and the LOV is not a reliable representative
of the entire region. Unfortunately, this is precisely the
case of very small asteroids observed only shortly before
a close approach or an impact with the Earth (imminent
impactors). The problem has been faced recently and
three systems were developed, SCOUT (at JPL/NASA),
NEORANGER (at University of Helsinki) and NEOScan
(at University of Pisa/SpaceDyS): we will focus on the
latter. NEOScan consults the NEO Confirmation Page
(NEOCP) of the Minor Planet Center (MPC) every two
minutes, extracting data and running the algorithms based
on the Admissible Region (AR), a tool widely used also
in the space debris orbit determination. Once an object
goes away from the NEOCP obtaining a designation, the
IM systems switch to “classical” 1-d algorithms. In this
procedure, essentially dictated by the rules of the MPC,
there is a flaw, in the sense that there are objects, with
a very well-defined orbit, remaining on the NEOCP, and,
on the contrary, there exist designated objects with a great
uncertainty. Thus, there are a certain number of cases that
are not properly processed. In this paper, after a review
of the IM algorithms developed at the University of Pisa,

we will present the idea of a new automatic system capa-
ble, starting from the astrometric observations, to decide
what is the right algorithm in order to reach reasonable
results for each kind of orbit.
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1. INTRODUCTION

Every night professional and amateur astronomers ob-
serve the sky searching for new natural objects (asteroids,
comets) or already discovered objects. The observations
collected are sent to the Minor Planet Center (MPC),
that, under the auspices of the International Astronomical
Union (IAU), computes orbits and try to define the type of
object. New discoveries that could be NEAs (Near-Earth
Asteroids) are posted by the MPC on the NEO confirma-
tion page (NEOCP, [6]). Once additional observations are
collected and an orbit calculated, the object is added to
the catalog of known objects, and such data are released
through a Minor Planet Electronic Circular (MPEC). The
discovery of a NEA is a process requiring the distinction
between known and unknown objects, and then follow-
ing up (obtaining additional observations) any unknown
targets with the aim of extending the arc of observations
and determining the orbit ([20]). Once an asteroid is dis-
covered, it is important to clarify if it represents a risk
for the Earth in a near or remote future: this is the goal
of Impact Monitoring (IM), a relative young field of re-
search. Since a significant amount of new observations
are submitted every day, this activity requires an auto-
matic system scanning continually the NEA catalog. This
requirement has been achieved by CLOMON2 and Sen-
try, two independent IM systems that are operational at
the University of Pisa/SpaceDyS/NEOCC (since 1999)
and at NASA Jet Propulsion Laboratory (since 2002), re-
spectively. During the time span over which observations
are collected, CLOMON2 and Sentry outcomes ([9]),
eventually with the announcement that some asteroid has
the possibility of impacting, are published on the web:
CLOMON2 results are published in the on-line infor-
mation system NEODyS (newton.spacedys.con/neodys)
and in the ESA portal (neo.ssa.esa.int), while Sentry re-
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sults are available at CNEOS (cneos.jpl.nasa.gov/sentry).
These two systems, whose output is carefully compared,
now guarantee that the potentially dangerous objects are
identified very early and followed up. The input data
comes from the MPEC, thus an object is processed once
is a confirmed NEO. Unfortunately there is the possi-
bility that a small object discovered and listed on the
NEOCP would strike the Earth in a near future. These
objects are called imminent impactors and deserve a dif-
ferent treatment. For this reason, new mathematical algo-
rithms and three automatic systems were developed re-
cently, SCOUT (at JPL/NASA, [4]), NEORANGER (at
University of Helsinki, [13]) and NEOScan (at Univer-
sity of Pisa/SpaceDyS, [14]).

In this paper, after a brief review of IM tools and tech-
niques (Section 2), we will focus on the problem of immi-
nent impactors describing the algorithms implemented in
NEOScan and showing how it worked in a real case (Sec-
tion 3). In Section 4 we will explore some possible future
developments and the idea of building an unique auto-
matic system capable of treat both imminent impactors
and classical IM cases.

2. IMPACT MONITORING OVERVIEW

Impact Monitoring (IM) is the set of mathematical tools
and techniques used to study the possibility of impact of
an asteroid/comet with our planet. The output of an IM
algorithm is a Virtual Impactor (VI) representative, that
is an explicit set of initial conditions compatible with ob-
servations and leading to a collision at a given date. The
main goal of IM is to solicit astrometric follow-up to ei-
ther confirm or more likely dismiss the announced risk
cases: this is achieved by communicating the impact date,
the impact probability and the estimated impact energy.
The steps of an IM procedure are the following.

1. Acquisition of astrometrical data. The observa-
tional data are acquired through the MPEC or scan-
ning the NEOCP.

2. Orbit Determination (OD). Starting from the as-
trometry, it is possible to compute a preliminary
orbit, using for example classical methods like the
Gauss’ one ([11]). Then a weighted Least Squares
(LS) method has to be performed searching for a
minimum x∗ of the target function

Q(x) =
1

m
ξ(x)TW ξ(x)

where ξ = (ξi), i = 1, . . . ,m is the vector of as-
trometrical residuals (depending on the orbital pa-
rameters x) and W is a square, symmetric, positive-
definite m × m matrix reflecting the a priori RMS
and correlations of the observation errors.

If such minumum x∗ does exist, we can expand the

target function in a neighborhood of x∗:

Q(x∗) = Q(x∗) +
1

m
(∆x)T C (∆x) + . . .

= Q(x∗) + ∆Q(x) ,

where C = BT W B si the normal matrix and its
inverse is the covariance matrix Γ = C−1. A Con-
fidence Region (CR) Z(χ) is defined by setting an
upper limit to the penalty ∆Q:

Z(χ) =
{
X | ∆Q(X) ≤ χ2/m

}
.

If the CR and the residuals are small, then all the
higher order terms in the target function are negligi-
ble and the confidence region is well approximated
by the confidence ellipsoid ZL(χ) defined by the
quadratic inequality

ZL(χ) =
{
x : ∆xT C(x∗) ∆x ≤ χ2

}
.

This geometrical object is just used for local com-
putations because the hypothesis on the smallness
of the residuals is not applicable in general.
However the previous algorithms could fail, when,
for example, we have to process a Very Short Arc
(VSA), that is a sequence of typically 3 to 5 obser-
vations with one hour between the first and the last
observation. In most of these cases the arc is too
short for a full orbit determination (computation of
a LS orbit). When this is the case, the set of obser-
vations is called a Too Short Arc (TSA). As it is well
known from the theory of preliminary orbit determi-
nation, when three observations are used to compute
an orbit, the curvature of the arc appears as a divisor
in the orbit solution of Gauss’ method. The smaller
is the curvature, the less accurate is the orbit; taking
into account the observational errors, in most cases
it turns out to be impossible to apply the usual al-
gorithm, consisting of a preliminary orbit determi-
nation by means of Gauss’ method followed by a
differential correction to obtain a LS orbit. When
starting from a TSA, either Gauss’ method fails or
the differential correction procedure does not con-
verge. For this reason the TSAs are not considered
discoveries, but just detections. This does not in-
dicate that the observed object is fictitious, but just
that its nature cannot be determined with the infor-
mation available, that is not possible to discriminate
among different classes of object. In [7], the authors
faced the problem created by the existence of large
databases of TSAs proposing a solution with the in-
troduction of the concept of attributable. A TSA is
recorded as a set of N observations, which means
that a set of points on a straight line is what is actu-
ally detected, with deviations from alignment com-
patible with the random observational error. Thus
we can compute the straight line, using a linear re-
gression or something similar. Then a TSA is repre-
sented by an attributable, defined in this way:

Definition 1. We call attributable a vector

A = (α, δ, α̇, δ̇) ∈ [−π, π)× (−π/2, π/2)× R2,



representing the angular position and velocity of the
body at a time t̄ in the selected reference frame.

The attributable could also contain an average ap-
parent magnitude h, if there is at least one measure-
ment of the apparent magnitude available. Note that
the information contained in an attributable leaves
unknown the topocentric distance ρ (the range) and
the radial velocity ρ̇ (the range rate) of the object
at the reference epoch. If ρ and ρ̇ were known,
we would have a full description of the asteroid’s
topocentric position and velocity in polar coordi-
nates (α, δ, α̇, δ̇, ρ, ρ̇), called also attributable ele-
ments, which can be easily converted to a Cartesian
heliocentric state if the position and velocity of the
observer are known.
Given an attributable A, we define the following
conditions on ρ and ρ̇:

(a) D1 = { (ρ, ρ̇) : E⊕ ≥ 0 } (A is not a satellite
of the Earth);

(b) D2 = { (ρ, ρ̇) : ρ ≥ RSI } (the orbit of A is
not controlled by the Earth);

(c) D3 = { (ρ, ρ̇) : E� ≤ 0 } (A belongs to the
Solar System);

(d) D4 = { (ρ, ρ̇) : ρ ≥ R⊕ } (A is outside the
Earth).

Definition 2. Given an attributable A, we define as
Admissible Region (AR) the domain

D = { D1 ∪ D2 } ∩ D3 ∩ D4.

The AR is a compact set, being the inside of a finite
number of closed continuous curves, and it can have
at most two connected components (proof in [7]).
Note that in setting the conditions (a)-(d) we have
introduced the following assumptions:

– The observer is assumed to be at the geocenter.
– The orbits of asteroids passing close to the

Earth are affected by both the attraction of the
Sun and that of the Earth; taking into account
a complete three-body model would be very
complicated. Thus conditions (a) and (b) are
approximated, and indeed there are objects in
heliocentric orbit experiencing temporary cap-
ture as satellites of the Earth, with E⊕ < 0.
However, this can happen only for very low
relative velocities Earth-asteroid, and the ob-
jects found in these conditions are often artifi-
cial.

– When the object is much farther away from the
Earth than the Moon, that is ρ >> 60R⊕, we
should use for µ⊕ the ratio between the mass
of the Earth-Moon system and the mass of the
Sun.

– In computing the radius of the sphere of influ-
ence we are neglecting the eccentricity of the
orbit of the Earth.

3. Sampling of the uncertainty region using a
swarm of Virtual Asteroids (VAs). Once the OD
procedure is complete (either with a LS orbit and
a CR or only with an AR) we would like to ex-
plore the uncertainty region (that in both cases is
defined as a compact set) sampling it with a finite
set of orbits, called Virtual Asteroids (VAs). But
how to select the VAs? There are essentially two
classes of methods: random or Monte Carlo (MC)
ones, and geometric sampling methods. The MC
methods use the probabilistic interpration ([11]) of
the least squares principle, and, when the computa-
tional resources are not a problem and the error mod-
els are reliable, they are more rigorous and complete
with respect to the geometrical methods. Currently,
the operative IM systems use the Line Of Variations
(LOV) to sample the CR when a LS orbit is avail-
able. The LOV is a differentiable curve representing
essentially the direction of greater uncertainty, the
definition adopted ([8]) is the following.

Definition 3. The LOV is the set of points X such
that

V1(x)||D(x)

where V1 is the unit eigenvector of the normal matrix
C(x∗), computed at the nominal solution, relative
to the smallest eigenvalue and D = −BTWξ =

−m2
∂Q
∂x

T
.

The equation V1(x)||D(x) corresponds to five scalar
equations in six unknowns, thus it has generically a
smooth one parameter set of solutions, i.e., a dif-
ferentiable curve. However, we do know an an-
alytic or anyway direct algorithm neither to com-
pute the points of this curve nor to find some nat-
ural parameterization (e.g., by the arclength). An al-
gorithm to compute the LOV by continuation from
one of its points X is the following. The vector field
F (x) = k1(x) V1(x), deduced from the weak di-
rection vector field V1(x), is orthogonal to H(x).
A step in the direction of F (x), such as an Eu-
ler step of the solution of the differential equation
dx/dσ = F (x), that is x′ = x + δσ F (x), is not
providing another point on the LOV, unless the LOV
itself is a straight line; this would be true even if
the step along the solutions of the differential equa-
tion is done with a higher order numerical integra-
tion method, such as a Runge-Kutta. However, x′
will be close to another point x′′ on the LOV, which
can be obtained by applying the constrained differ-
ential corrections algorithm ([9]), starting from x′

and iterating until convergence.
If x was parameterized as x(σ), we can parameter-
ize x′′ = x(σ + δσ), which is an approximation
since the value σ+ δσ actually pertains to x′. As an
alternative, if we already know the nominal solution
x∗ and the corresponding local minimum value of
the cost function Q(x∗), we can compute the χ pa-
rameter as a function of the value of the cost function
at x′′:

χ =
√
m · [Q(x′′)−Q(x∗)] .



In the linear regime, the two definitions are related
by σ = ±χ, but this is by no means the case in
strongly nonlinear conditions. Thus we can adopt
the definition σQ = ±χ, where the sign is taken to
be the same as that of σ, for an alternate parameter-
ization of the LOV.
In the last year a new method to sample the LOV
has been implemented in CLOMON2 ([2], [3]) be-
cause, considering that the probability density on the
LOV is p(σ) := 1√

2π
e−

σ2

2 , the uniform step in σ
adopted in the LOV sampling is not optimal; in fact,
the probability of each sampling interval would be
high around σ = 0, whereas it becomes too low
near the LOV endpoints. Therefore a better choice
would be to use a step-size that is inversely propor-
tional to the probability density, small in the points
around the nominal solution, and larger towards the
points with lower probability. This new sampling
procedure is such that the probability of the inter-
val among two consecutive points of the sampling
is constant. This means that if σi,i=1,...,N are the
sampling nodes, then

P([σi, σi+1]) :=

∫ σi+1

σi

p(σ) dσ

does not depend on i. Moreover, to avoid too long
intervals around the LOV endpoints, when the in-
terval length exceeds a certain threshold ∆σmax the
step-size is set as uniform to this threshold value;
this choice is necessary because if the step-size be-
came too large, the last sampling node could fall af-
ter the sampling interval endpoints, loosing a portion
of the LOV of about the same length of the last step-
size.
The LOV method is very useful when the CR is
elongated and thin, but this is not the case when
the observed arc is very short (≤ 1◦). When the
set of observations of an object covers only a very
short arc, the confidence region results to be wide
in at least two directions and the LOV is not rep-
resentative of the entire region: moreover its defini-
tion strongly depends upon the coordinates and units
used in the OD. In this case, both CLOMON2 and
Sentry do not perform very well and a 2-dimensional
manifold should be used ([15]), as in the case of im-
minent impactors that will be described in Section
3.

4. Propagation of the VAs. Once a set of VAs have
been selected, each orbit is propagated forward to
some time in the future, storing all the close ap-
proach information obtained during the numerical
integration. CLOMON2 propagates VAs until 2100
and maps the linearized uncertainties, represented
by the confidence ellipsoids, for all the VAs to the
time of each close encounter, allowing an early and
quick assessment of whether a potential close en-
counter could be threatening. The first output of
the propagation is a collection of Earth encounters
that have been detected for each VA during the time

span of interest. If the close encounters set is not
empty, the systems perform a sorting of the encoun-
ters by date, splitting them into sets that are clustered
in time, called showers; then, according to the VAs
LOV index, they re-sort the showers into contigu-
ous LOV segments, called trails (or returns). Each
close approach is carefully analysed on the corre-
sponding Target Plane (TP), that is a plane passing
through the Earth’s center and orthogonal to the un-
perturbed velocity of the asteroid, i.e., orthogonal to
the incoming asymptote of the hyperbola defining
the two-body approximation of the trajectory at the
time of closest approach ([19], [16]).

5. Analysis of close approach and detection of Vir-
tual Impactors (VIs). When there are many points
on the TP in a given return it is easy to understand
the LOV behaviour because the linear theory is lo-
cally applicable. On the contrary, in strong non-
linear cases the LOV has strange behaviours ([15])
and a local analysis is necessary in the neighborhood
of each VA. The key point is that the VAs are not just
a set of points but they sample a smooth curve, al-
lowing us to interpolate between consecutive sample
points. For instance, let us suppose that two consec-
utive VAs xi and xi+1 have TP trace points yi and
yi+1 straddling the Earth impact cross section. If the
geometry of the TP trace is simple enough (princi-
ple of simplest geometry), an interpolation method
provides apoint on the LOV xi+δ with 0 < δ < 1
and such that yi+δ is inside the Earth impact cross
section: then, around xi+δ there is a VI.

6. Computation of Impact Probability. If a VI has
been found, by computing the probability density
function with a suitable Gaussian approximation
centered at xi+δ , it is possible to estimate the proba-
bility integral on the impact cross section: this is the
impact probability associated with the given VI.

3. IMMINENT IMPACTORS

Small asteroids are expected to strike the Earth every few
years and, since such objects are likely to be observed
only shortly before the impact, it is important to succeed
in an early recognition of hazardous objects. When an
object is first observed, the available data are so few that
the differential corrections procedure of finding a least-
squares orbit could fail and thus they could not permit
the determination of a well-constrained six-parameter or-
bit. Therefore, the short arc OD is a crucial issue and the
timing is essential because we are interested in a rapid
follow up of the object, to investigate whether could be or
not an imminent impactor. Three automatic systems were
developed recently, SCOUT (at JPL/NASA, [4]), NEOR-
ANGER (at University of Helsinki, [13]) and NEOScan
(at University of Pisa/SpaceDyS, [14]). We will focus on
the last one.

NEOScan consults the NEOCP of the MPC every two
minutes, extracting data and running the algorithms based



on the AR (see previous sections), a tool widely used also
in the space debris orbit determination ([18]). In par-
ticular, the OD algorithm implemented in NEOScan has
two choices: it explores a suitable grid in the topocen-
tric range and range-rate space, producing a set of at-
tributable elements, or uses a cobweb sampling of the
confidence region to obtain a set of VAs (if a least square
orbit does exist). The combination of this two techniques
provides a robust short term orbit determination method,
which ends with the computation of the Manifold Of
Variations (MOV, [17]), a 2-dimensional compact man-
ifold parameterized over the AR. The MOV represents
the 2-dimensional analogue of the LOV, thus it is used to
sample the set of possible orbits as a starting point for the
short term impact monitoring. The goal of NEOScan is
to detect all the possible VIs down to a probability level
of about 10−3, called completeness level ([3]): the choice
of 10−3 has been done because we are not interested in
lower probability values, given that it is fundamental to
avoid unjustified alarms.

Summarizing the algorithm, the steps are the following.

• Scanning of the NEOCP. The scan is every two
minutes: new and old cases just updated are imme-
diately run, to be confirmed or discarded.

• Computation and sampling of the AR. The algo-
rithm provides a two-dimensional representation in
the (ρ, ρ̇) plane with either a cobweb, if a reliable
nominal solution is available, or a double-iteration
grid if not. A reliable nominal solution is a nominal
orbit (i.e., obtained by full differential corrections)
with a geodesic curvature signal-to-noise ratio (S/N)
χgeod greater than 3.

• Computation of the MOV and generation of a set
of VAs. Given a subset K of the AR, we define
the MOV M as the set of the points (A∗(ρ0),ρ0)
in the orbital elements space such that ρ0 ∈ K
and A∗(ρ0) is the local minimum of the function
Q|ρ=ρ0 ; in addition, the value of the RMS of the
residuals is less than a given treshold Σ. In general,
the MOV is a two-dimensional manifold, such that
the differential of the map from the sampling space
toM has rank 2. In our case, K is the AR, scanned
with this first regular semi-logarithmic or uniform
grid. For each sample point ρ0 = (ρ0, ρ̇0) we fix
ρ = ρ0 and ρ̇ = ρ̇0 in the target function, and then
we search the local minimumA∗(ρ0) with the same
procedure used for classical systematic ranging, that
is by means of the doubly constrained differential
corrections. That procedure works in a similar way
as the classical differential correction process, tak-
ing into account that two variables are fixed and
so working with four-dimensional subspaces: Thus,
the normal equation to solve is

CA∆A = DA,

where

CA = BTAWBA, DA = −BTAWξ, BA =
∂ξ

∂A
.

We indicate asK ′ the subset ofK on which the dou-
bly constrained differential corrections converge; in
this way, the sampling of the MOV is performed
over K ′. For each point x on the MOV, we also
compute a χ value

χ(x) =
√
m(Q(x)−Q∗), (1)

where Q∗ is the minimum value of the target func-
tion: Q(x∗) if a reliable nominal solution x∗ exists,
or the minimum value of Q(x) over K ′ otherwise.

• Propagation and detection of VIs. The VAs orbits
are progated in the future, currently for 30 days, and
an analysis on the Modified Target Plane (MTP) is
performed in order to find possible impacts. We se-
lect as VIs the VAs that, on the MTP, are inside the
impact cross section D⊕.

• IP computation. If a VI has been found on the
MTP, it is associated with an IP computed in this
way. We begin assuming that the residuals are a
Gaussian random variable ξ, with zero mean and co-
variance Γξ = W−1. Hence the probability density
function on the residuals space is

pΞ(ξ) = N(0,Γξ)(ξ) =

√
detW

(2π)m/2
exp

(
−mQ(ξ)

2

)
=

√
detW

(2π)m/2
exp

(
−1

2
ξTWξ

)
.

(2)

The method consists in a rigorous propagation of
the density function according to the probability the-
ory without any a priori assumption. The Proba-
bility Density Function (PDF) is propagated from
the residual space to the orbital elements space (pre-
cisely, on the MOV), and then to the sampling space,
according to the Gaussian random variable transfor-
mation law. The fundamental difference in using
this approach instead of the uniform prior distribu-
tion (as done in [4]) is that we compute the Jacobian
determinant of the transformation and it is not equal
to 1. Anyway, the results are similar because, as a
matter of fact, the Jacobian determinant is always a
number near to unity. To compute the PDF on S
(the space of the sampling variables), we start con-
sidering the following chain of continuously differ-
entiable maps

S
fσ−→ R+ × R ⊇ K ′ fµ−→ x ⊇M F |M−−−→ V.

where

– K ′ is the subset of the points of the AR such
that the doubly constrained differential correc-
tions give a point on the MOV,

– M is the MOV,
– V = F (x) is the manifold of the possible

residuals, which is a six-dimensional subman-
ifold of Rm,



and we consider the product of the Jacobian deter-
minants. Using the maps fµ and fσ , the VI is asso-
ciated with a subset V ⊆ S of the sampling space,
and hence its probability is given by

P(V) =

∫
V
pS(s) ds =

∫
V exp

(
−χ

2(s)
2

)
detMµ(ρ(s)) detMσ(ρ(s)) ds∫

f−1
σ (K′)

exp
(
−χ

2(s)
2

)
detMµ(ρ(s)) detMσ(ρ(s)) ds

If for a given object we find impacting solutions, we
assign to the object an impact flag, which is an inte-
ger number related to the computation of the impact
probability ranging from 0 to 4 and depending on IP
and geodetic curvature (see [14] for more details).

• Computation of object-category score. Each cat-
egory of objects (NEO, MBO, DO, SO), given by
conditions on the orbital elements, corresponds to a
subset V ⊆ S of the sampling space, and hence the
system has the capability to compute the probability
of the object to belong to each category making use
of the previous formalism.

At the end, the scan is re-scheduled after 2 minutes. The
time required to run one target strictly depends on the
characteristics of the object, but usually it is between 15
and 20 minutes. When predicting possible imminent im-
pacts, one of the most important requirements to fulfill is
to minimize the number of unjustified alarms. It is de-
noted as nonsignificant case an object for which there are
less than three observations or the arc length is less than
30 minutes, unless there exists a nominal solution with
a geodesic curvature S/N greater than 1. The classifica-
tion of an object as nonsignificant does not mean that the
computation is skipped; all the steps of the algorithm are
performed in any case and the score and the impact flag
are assigned to the object. Nevertheless, being nonsignif-
icant automatically decreases the priority of the object in
case of an alarm. Unfortunately, these techniques are not
enough to remove all the spurious cases, they only lower
the number. In fact, spurious cases usually occur when
the astrometry is either known to be erroneous or noisy, or
anyway not reliable. We cannot solve this problem, and
we acknowledge that the astrometric error models based
on large number statistic are not sufficient to distinguish
erroneous and accurate astrometry in a small sample.

3.1. The latest impactor: 2018LA

Last year NEOScan had the opportunity to be real time
tested on a real case of an imminent impactor: the aster-
oid 2018 LA. This object, known as ZLAF9B2 prior to
being designated, was a small Apollo-type NEA that im-
pacted Earth’s atmosphere at roughly 16:44 UTC (18:44
local time) on 2 June 2018 over Botswana, near South
Africa border, at the altitude of about h = 50 km. The
asteroid produced an explosion with an intensity of about

1 kiloton, which suggests an estimated size for the aster-
oid of 3 to 5 meters in diameter, and it was discovered
only 8 hours prior the impact by Richard Kowalski at the
Mount Lemmon Survey. The object approached the Earth
with a relative velocity of approximately 17 km/s from
the night side: due to its size and high entry velocity, it
could not have been spotted before it was very close to the
Earth, and it could only be detected on its final plunge to
Earth. Indeed, when it was first detected, the asteroid was
nearly as far away as the Moon’s orbit and appeared as a
streak in the series of time-exposure images taken by the
Catalina telescope.

The first observations data were immediately submitted
to the MPC and published on the NEOCP. In the follow-
ing hours additional observations were made and, accord-
ing to the system results, as the number of the observa-
tions was increasing, it became extremely probable that
the object would have collided with the Earth.

During the follow up, 4 tracklets of observations were
obtained: the first one was of 3 observations, the sec-
ond and the third of 11 and 12 observations, respectively,
and the last of 14 observations. Table 1 shows the out-
comes of the software while observations were flowing
in. Table 1 shows how the IP increased as new observa-

# of observations Impact Probability
3 0.08%

11 5.1%
12 38.3%
14 100%

Table 1. Number of observations and corresponding val-
ues of IP, impact flag and the score.

tions were added. By using the last tracklet, consisting
of 14 observations, the system estimated that the impact
would have certainly occurred (IP = 100%), and thus,
according also to the arc quality, gave the impact flag the
maximum value.

Table 2 displays additional information for each track-
let: details upon the corresponding arcs and results of the
software by means of the number of grid and MOV points
and, among them, the impacting points. We recall that κ
is the geodesic curvature and η̇ is the along-track accel-
eration, while Overall indicates their chi2-value χ2

c . The
item Arc Type in Table 2 indicates an integer number N
defined as follows. An observed arc is an Arc of Type N if
it can be split into exactly N disjoint TSAs in such a way
that each couple of TSAs consecutive in time, if joined,
would show a significant curvature. The computation of
the arc type value depends upon the method by which
the observed arcs are to be split into TSAs; the values in
Table 2 have been computed by using the algorithm dis-
cussed in [10].

We now report the results obtained by NEOScan for each
one of these observed arcs, thus revealing how the aware-
ness of an impacting object increased as the observations
were flowing in ([1]).



Significance of curvature

#
Obs.

Time
span
(h)

Arc
Type κ η̇ Overall # of

points
MOV
points

Impacting
points

3 0.38 1 0.22 1.78 1.82 10000 5304 166
11 1.42 2 -0.42 61.21 61.39 10000 634 168
12 1.42 2 -1.91 63.47 63.56 10000 584 177
14 3.78 3 187.67 -369.07 409.56 10000 8811 8811

Table 2. For each tracklet, number of observations, arc data and specific results.

First observed arc: 3 observations The first three ob-
servations were made in the early morning of Saturday
2 June 2018, and covered a time span of 22.8 minutes;
the absolute magnitude of the body was estimated be-
tween a minimum value Hmin = 31.29 and a maximum
valueHmax = 34.39, thus indicating a small object. This
batch of observations was immediately submitted to the
MPC NEOCP, where the object was temporarily denoted
as ZLAF9B2; the NEOScan run started at 09:04 UTC
and ended at 09:18 UTC. We refer to Table 1 and Ta-
ble 2 for the main results and arc data. The observed arc
was an arc of type 1, since it had a non significant cur-
vature. In this case, only the double grid sampling of the
AR could be adopted because the observational data were
too poor to compute a nominal solution; in particular, the
software computed a uniform densified grid in log10(ρ)
for the AR.

Figure 1. Grid sample of the AR in the (ρ, ρ̇) space for
the first 3 observations of 2018 LA.

Figure 1 shows the uniform AR grid sampling obtained
with NEOScan for the three observations tracklet:

• the red solid line represents the level curve of the
heliocentric energy equal to −k2/(2amax), namely,
the outer boundary of the AR;

• the green dashed line shows where the geocentric
energy is equal to 0, also taking into account the
condition about the radius of the Earth sphere of in-
fluence;

• the magenta dashed line (which is parallel to the ρ̇
axis) represents the shooting star limit condition;

• the magenta solid lines (which are parallel to the ρ̇
axis) represent different values of the absolute mag-
nitude;

• the dots are indicated in blue if χ(x) ≤ 2, green if
2 < χ(x) ≤ 5 and black if χ(x) > 5;

• the points corresponding to a VI are represented
with red circles.

The grid consists of 10000 points while, as displayed in
Table 2, the corresponding MOV consists of 5304 points
(the coloured points in Figure 1); among them, there are
166 impacting points (the red circles in Figure 1), which
lead to an impact probability value IP = 0.08%. There-
fore, due to this IP value, the system assigned impact flag
1 to the object. Furthermore, with such a grid sampling,
the score of the object to be classified as a NEA was
100%. In Figure 2 it is easy to see that there are some

Figure 2. Projection on the MTP of the VAs obtained with
the first 3 observations of 2018 LA.

blue points leading to an impact, and thus corresponding
to a VI.

With these first three observations available only, the ob-
ject was claimed as nonsignificant because the arc length
was ∆t = 22.8 min, that is less than the minimum estab-
lished (30 minutes) in order to avoid unjustified alarms.
Nonetheless, the impact flag value 1 and NEA score



100% produced an alert for the observers, and a follow
up of the object was immediately started.

Second observed arc: 11 observations Within two
hours, additional observations of the object ZLAF9B2
were provided, giving an amount of 11 total observations;
the arc covered a longer time span, ∆t = 85.2 min, and
then the object was no longer classified as a nonsignif-
icant case. The observed arc resulted an arc of type 2,
with a significant curvature; moreover, the value of the
geodesic curvature S/N was χgeod < 3.

Figure 3. Grid sample of the (ρ, ρ̇) space for 11 observa-
tions of 2018 LA.

Figure 4. Projection on the MTP of the VAs obtained for
11 observations of 2018 LA.

The NEOScan software run started at 11:41 UTC and
ended at 11:57 UTC, giving results as displayed in Ta-
ble 1 and Table 2. Again, a reliable nominal solution
could not be obtained and thus the software had to ap-
ply the double grid sampling of the AR, computing a uni-
form densified grid in log10(ρ). With such a grid sam-
pling, the score of the object to be classified as a NEA
was 100%. Figure 3 shows the uniform AR grid sam-
pling obtained for this eleven observations tracklet; the

used colour scheme is the usual. Again, the grid con-
sists of 10000 points while, as displayed in Table 2, the
corresponding MOV consists of 634 points only; among
them, there are 168 impacting points, which lead to an
impact probability value IP = 5.1%. Hence, according
to this IP value and to the fact that χgeod < 3, the sys-
tem assigned impact flag 3 to the object, thus increasing
its priority in the follow up activities. Figure 4 represents
the projection on the MTP of the VAs. The colours of
the points indicate their χ-value, according to the usual
colour code, while the dark green circle centerd in (0, 0)
is the Earth cross section. Figure 4 clearly shows a num-
ber of projected MOV points inside the Earth cross sec-
tion, which form a VI and thus correspond to the red cir-
cles in Figure 3.

Third observed arc: 12 observations In a matter of
minutes, one additional observation was provided; thus,
with a total of 12 observations, the observed arc still cov-
ered a time span ∆t = 85.2 min, and was an arc of type
2, with a significant curvature. Indeed, its curvature is
very slightly different from the one of the tracklet with
11 observations. NEOScan run started at 14:10 UTC and
ended at 14:26 UTC. Again, since it still could not be
obtained a reliable nominal solution, the software had to
apply the double grid sampling of the AR, and computed
a uniform densified grid in log10(ρ) consisting of 10000
points; with such a grid sampling, the score of the object
to be classified as a NEA was 100%.

Figure 5. Grid sample of the (ρ, ρ̇) space for 12 observa-
tions of 2018 LA.

Figure 5 shows the uniform AR grid sampling obtained
for this tracklet with 12 observations. According to Ta-
ble 2, with a single additional observation the software
was able to compute a MOV consisting of 584 points,
where the impacting points were 177, thus decreasing the
number of VAs while increasing the number of impact-
ing points. As a consequence, the impact probability in-
creased significantly, reaching the value IP = 38.3%.
Figure 6 represents the projection on the MTP of the VAs,
using the usual colour scheme and a dark green circle
centerd in (0, 0) representing the Earth cross section; it
clearly shows a number of projected MOV points inside



Figure 6. Projection on the MTP of the VAs obtained for
12 observations of 2018 LA.

the Earth cross section, thus leading to an impact. These
orbits form a VI and correspond to the red circles in Fig-
ure 3. Again the system assigned impact flag 3 to the
object, since the observed arc still had χgeod < 3, and at
that point it was clear that every single additional obser-
vation would have been critical to ascertain whether the
impact would occur or not.

Figure 7. The AR in the (ρ, ρ̇) space for 14 observations
of 2018 LA.

Fourth observed arc: 14 observations In about two
hours, two additional observations of ZLAF9B2 were ob-
tained, giving an amount of 14 total observations and de-
termining a tracklet that covered a time span ∆t = 226.8
min. This tracklet was an arc of type 3, and allowed the
system to compute a reliable nominal solution x∗ with
RMS = 0.571. Using the new observations, the abso-
lute magnitude of the body was estimated more precisely,
between Hmin = 30.55 and Hmax = 30.59, thus the
small object resulted slightly bigger than was expected
initially with only 3 observations. NEOScan run started
at 14:13 UTC and ended at 14:40 UTC; since a reliable
nominal solution was available, the software performed
a cobweb sampling of the AR in a neighborhood of x∗.

Figure 8. Cobweb sampling of the (ρ, ρ̇) space for 14
observations of 2018 LA.

Figure 9. Cobweb sampling of the (ρ, ρ̇) space for 14
observations of 2018 LA. Here the impacting points are
shown.

Figure 10. Projection on the MTP of the VAs obtained for
14 observations of 2018 LA.

In Figure 7 is shown the AR obtained with this tracklet
of 14 observations; around the point denoted with the or-
ange star (that is the orbit with the minimum χ2 value)
there are the points of the cobweb sampling, which is
very small with respect to the whole AR and thus it is
not visible in this graphic. Figure 8 and Figure 9 provide
a zoomed representation of the cobweb sampling inside
the AR. Figure 8 shows the cobweb sampling by denoting



points with colours indicating their χ-value; on the other
hand, Figure 9 shows the cobweb sampling indicating the
impacting orbits with red circles. The sample consists
of 10000 points while the MOV consists of 8811 points,
which are all impacting orbits, as one can see in Table 2;
indeed, the MOV is represented by green and blue dots
(that is, the orbits having χ ≤ 5), and by comparing Fig-
ure 8 and Figure 9 it is easy to see that all the MOV points
are denoted with the red circles, that is they are all im-
pacting orbits. Therefore, NEOScan computed an impact
probability value IP = 100%, and then, obviously, as-
signed impact flag 4 to the object. Figure 10 represents
the projection on the MTP of the VAs; it shows that all the
projected MOV points are inside the Earth cross section,
thus pointing out that the impact would certainly occur.
At that point it was necessary to rapidly predict the im-
pact corridor ([2]), to outline possible impact locations
in such a way to allow the organisation of quick security
measures.

4. FUTURE OF IMPACT MONITORING

At the moment there are two types of automatic systems
dealing with IM of NEOs:

(1) those for already designated orbits, like CLOMON2
and Sentry, and

(2) those for the detections of imminent impactors
(SCOUT, NEORange, NEOScan).

Systems of class (1) use data from MPEC, and a geo-
metrical sampling of the CR with the LOV, while those
of class (2) scan the NEOCP and use systematic ranging
methods and/or geometric sampling with a 2-dimensional
manifold.

The born of this two classes of systems has been essen-
tially dictated by the history of searching for NEOs, by
the grow of observational facilities and by the amount of
data available. When CLOMON2 and Sentry started their
activities the scientific and public communities were in-
terested in big objects that could have caused global dam-
age, while, at the moment, the attention has moved to
small objects and meteorites. Probably, the differentia-
tion in this two classes are due also to the rules of the
MPC, or better, how the automatic systems catch the data
from it. In this processes there could be a flaw, in the
sense that there are objects, with a very well-defined or-
bit, remaining on the NEOCP, and, on the contrary, there
exist designated objects with a great uncertainty. Thus,
there are a certain number of cases that are not properly
processed: object with a very well defined orbit should
be processed like ordinary cases using, for example, LOV
methods, while designated objects would deserve a treat-
ment using a different sampling of the CR.

What we propose and what we will try to develop in the
next years is an unified system that, starting from NEOCP

data of an object, could decide the type of orbit and what
is the more corrected algorthm of OD to extract as much
information as possible.

The starting step should use the NEOScan algorithms to
give a first insight to the observational data and to under-
stand, using the score of the detection, the type of orbit.
The score is the probability that an object belongs to the
classes listed below:

• NEO: Near-Earth Object, an object with perihelion
distance q < 1.3AU ;

• MBO: Main Belt Object, an object belonging either
to the Main Belt or to the Jupiter Trojans. In partic-
ular, it has to fulfill the conditions{

1.7AU < a < 4.5AU

e < 0.4
∨
{

4.5AU < a < 5.5AU

e < 0.3

where a is the semimajor axis (in AU) and e is the
eccentricity;

• DO: Distant Object, characterized by q > 28AU
(for instance, a Kuiper Belt Object);

• SO: Scattered Object, not belonging to any of the
previous classes.

In case of a NEO probability greater than some thresold,
the algorithms for searching VIs should start. The choice
of the more convenient algorithm should be based on
some facts and quantities:

• type of observational arc;

• geodetic curvature;

• presence or not of a reliable LS orbit.

Knowing the previous input, the system must be able to
decide:

a) the way to sample the uncertainty region (AR or
CR);

b) the duration of propagation;

c) how to detect potential impactors after the propaga-
tion and the projection on the TP of an encounter.

Concerning a), a possible improvement is the use of a
Monte Carlo (MC) sampling of the CR, when a nominal
solution exists. MC method start from a given probability
distribution of initial conditions and propagated forward
in time while recording the number of impacts. This kind
of method has the advantage of making no simplifying
assumptions on how the orbital uncertainties are mapped
into the future. However, MC method is a very compu-
tationally expensive technique because it requires prop-
agating a large number of VAs, typically of the order of



the inverse of the target probability resolution. However,
due to increase in the speed of processors, new MC-type
methods are being studied ([12]) in order to replace ge-
ometrical sampling. A new automatic system, like what
we have in mind, should have the capability of use both
a geometrical sampling or MC method and above all un-
derstand when to use one and when the other.

5. CONCLUSIONS

In the last twenty years there has been a huge progress in
the problem of assessing the asteroid impact hazard. But,
as pointed out in [5], the story is not finished, the research
in this field must go on. Due to LSST and GAIA, there
will be a significant increase in the amount and quality of
data and, both the mathematical algorithms and the pro-
cessing strategies, should be improved. In this paper we
presented the state of art of IM systems, higlighting the
features of classical IM (LOV geometrical sampling) and
discussing a new generation system, NEOScan, treating
imminent impactors. We showed also the analysis of a
real case, 2018LA. At the end we proposed some possi-
ble future developments in the field of IM, and the idea of
developing a unique automatic system capable of summa-
rize the features of CLOMON2 and NEOScan in itself.
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