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ABSTRACT

The ongoing growth of the space debris population leads
to an increasing importance of space surveillance tasks to
build and maintain knowledge about the object densities
in different Earth orbits. Due to numerous fragmentation
events, also the highly elliptical orbits contain increas-
ing amounts of space debris. For standard survey mea-
surements, objects in these orbits are either detected by
radar close to their perigee or by telescopes close to their
apogee. Usually, one single sequence of measurements,
called tracklet, is too short to obtain a reliable orbit and
instead two tracklets are combined to test if they origi-
nate from the same object. This process is called cor-
relation. If radar and optical measurements are treated
separately, only limited information about the orbit is
available. To improve the processing of these objects,
this paper proposes a method for the correlation and ini-
tial orbit determination by combining radar and optical
tracklets. The method is based on a previously devel-
oped radar-only method, which also includes corrections
of the J2-perturbations. Simulated survey measurements
are used to test the new method and compare it to the
radar-only case. It is shown that the radar-optical correla-
tion achieves satisfying results. It also matches the mea-
surements better and gives more precise orbits compared
to the radar-only approach.

Keywords: radar; optical; data fusion; tracklet correla-
tion.

1. INTRODUCTION

The continuous growth of the space debris population is
an increasing risk for operational satellites and the long-
term sustainability of orbits around Earth. Apart from the
typically mentioned regions in the low earth orbit (LEO)
and the geostationary orbit (GEO), the highly eccentric
orbits (HEO), e.g. the geotransfer orbit (GTO), also
show increasing space debris populations, mainly due to
breakup events [1]. As the HEO objects pass through
LEO and potentially also close to GEO, they pose a po-
tential collision risk for objects in both these important

regions and may even couple the overall collision risk for
objects in these distant orbits [8]. In order to mitigate
this risk at least for conjunctions involving active satel-
lites, the orbits of HEO objects have to be maintained
with the help of regular observations. One problem is that
if these objects are only observed by standard radar or op-
tical measurements, the detections are all around perigee
or apogee, respectively. This would severely limit the in-
formation available and increase the uncertainties of the
calculated orbits. Thus it is expected that a combined pro-
cessing of radar and optical measurements improves the
quality of the orbit solution. While the routine update of
an orbit stored in a database can be done involving differ-
ent measurement types, the treatment of detections which
cannot be assigned to a known object is more challeng-
ing.

The sequence of measurements from a single pass, called
tracklet, is often too short to produce a reliable result
via a classical orbit determination. In such a case two
tracklets are combined and an orbit is derived from their
merged data to test if they originate from the same ob-
ject. This process is called correlation. Various methods
for the correlation of these short tracklets have been de-
veloped for different measurement types. For the corre-
lation of optical tracklets, different approaches exist, see
e.g. [2, 4, 12], as well as methods for the correlation of
radar measurements, see e.g. [6, 11]. A method for the
radar-optical case, which is the focus of this paper, has
been proposed by [5] in the measurement space using the
approach of the integrals of motion and by [14] in the or-
bit space performing an initial orbit determination with
the radar tracklet.

In the following, a method for the direct correlation of
radar and optical measurements based on a boundary
value problem is proposed focussing on the case of ob-
jects in HEO. It was shown previously [11] that the radar-
only correlation of HEO objects has more difficulties and
errors than the LEO case, which is the main motivation
to extend it to optical measurements and check for an ad-
ditional benefit.
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2. CORRELATION METHOD

2.1. Theory

The authors of this paper previously proposed a method
for the correlation of radar tracklets, see [11], based on
a two positions boundary value problem including cor-
rection of the J2-perturbation. This method is extended
in this work to combine tracklets measured by radar and
optical systems already during the initial orbit determina-
tion and correlation process.

The measurements are processed as attributables [9],
which is a virtual measurement obtained by fitting the
measurements to a function over time, thus condensing
the information in the tracklet to reduce the influence of
noise. By combining one optical and one radar tracklet
the attributable vectors are:

Ar = {tr, ρr, ρ̇r, az, el} , (1)

Ao = {to, α, δ, α̇, δ̇} , (2)

containing the radar measurements: range ρr, range-rate
ρ̇r, azimuth az, elevation el, and the optical measure-
ments: right ascension α, declination δ and their time-
derivatives α̇, δ̇. Both are given at their respective times
tr and to. The attributable could also be extended to con-
tain further information, e.g. the location of the observer,
but this is left out here due to simplicity.

In order to apply the boundary positions method, it is nec-
essary to add a hypothesis on the range ρo at the time
of the optical measurement to. This is also an improve-
ment compared to the correlation of two optical tracklets,
which requires two hypotheses [12]. The range hypothe-
sis is combined with the range and angular measurements
to compute the orbit between the two positions.

{ρo} → Hypothesis
{ρr, az, el, ρo, α, δ} → Orbit

{ρ̇r, α̇, δ̇} → Discriminator

The remaining measurements form the so-called discrim-
inator ~x. In the discriminator, the measured elements ~xm
are compared to the elements ~xc computed from the de-
rived orbit. The difference between them, ∆~x, is related
to their covariance matrix Cm,c to give the Mahalanobis
distance Md [7]:

Md =

√
∆~xT · C−1

m,c ·∆~x. (3)

The Mahalanobis distance is a statistical distance mea-
sure which scales the difference by its uncertainty and
thus yields a normalised distance measure. Together with
a threshold value Md,thresh, the two tracklets are consid-
ered to be correlated if Md < Md,thresh.

The covariance matrix Cm,c = Cm + Cc is the sum of
the covariance due to the measurements Cm, derived via

the attributable fit, and the uncertainty due to the initial
orbit Cc, which is a mapping of the parameters’ measure-
ment uncertainty used for the orbit computation onto the
discriminator vector. The influence of these contributions
will be analysed later.

In practice, the correlation leads to an optimisation prob-
lem of finding the best hypothesis on the optical range,
i.e. the one which results in the lowest Mahalanobis dis-
tance. A search along ρo is performed using a line search
with a numerical gradient approximation to find the mini-
mum of Md. Once a value for the range ρo is set, two po-
sitions are available and thus the orbit determination via
the boundary positions method can be used. As a short
summary, this method uses a variation of the iteration on
the semi-parameter, p-iteration [3]. Additionally, correc-
tive rotations of the second measurement point are per-
formed to correct for the changes due to J2-perturbation.
One around the Earth rotation axis to correct the orbital
plane and one simple summation to correct the location of
the perigee. Internally, the propagation is performed with
the J2-corrected Keplerian mean motion to increase the
efficiency compared to the use of numerical propagation,
see [11] for more details.

2.2. Loss Function Topography

As a first step, the topography of the loss function Md

shall be analysed to test if it can be optimised easily. One
example of a loss function is given in Figure 1, which
also shows that another dimension of the problem has to
be considered. Depending on the time between the two
tracklets, the connection of the two points may be possi-
ble with different numbers of completed revolutions. In
the plot, it can be seen that there is a distinct minimum
for each number of revolutions with different minimum
values. The absolute minimum and true solution can be
found at ten revolutions in this example.
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Figure 1. Example of the loss function Md for a specific
pair of tracklets.

To analyse this further, Figure 2 depicts the Mahalanobis
distance over the hypothetical range for the absolute min-
imum from the previous plot which represents one single
optimisation problem of the correlation. A distinct mini-



mum encompassed by two nearly linear slopes is visible,
which should be found in an optimisation process using
numerically calculated gradients. Practically, the mini-
mum for each feasible number of revolutions has to be
calculated and then the one with the lowest Mahalanobis
distance is chosen as the final solution.
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Figure 2. Example of the one-dimensional optimisation
problem for one specific number of revolutions.

3. SIMULATIONS

The simulated measurements use an object population ex-
tracted from Space-Track [13] which is propagated nu-
merically [10]. Different measurement stations and ob-
ject populations in HEO are simulated with the param-
eters given in Table 1. Depending on the scenario, the
simulations have different durations ranging from three
days for a multi-station setup to eleven days for a single
station in central Europe. Different scenarios are neces-
sary because the sub-population which can be observed
at perigee by a radar and close to apogee by a telescope
at night-time is limited. In order to obtain a larger sam-
ple, the results from the different radar-optical surveys
are merged to create the following plots.

Table 1. Definition of the FoR and the measurement stan-
dard deviations σ (Radar: values at ρr = 750 km).

Size FoR, Radar 60◦ × 20◦

Angles (Radar), σ 0.17◦

Range, σ 20 m
Rate, σ 20 m

s
Angles (Optical), σ 1”

For the optical measurements, the tracklet length is 90 s
with a measurement each 15 s which is consistent with
real measurements of HEO objects at the AIUB observa-
tory in Zimmerwald. In case of the radar tracklets, their
length depends on the dwell time in the Field of Regard
(FoR), which can be up to two minutes and is approx. 40 s
on average. These tracklets are used for the radar-optical
case whereas the radar-only case employs 40 s tracklets
without FoR to increase the number of detections and true
correlations.

3.1. Mahalanobis Distance

Concerning the evaluation of the correlation experiments,
one additional filter is introduced. As given in Equa-
tion 1, the radar attributable does not contain an infor-
mation on the angular direction of motion which leads to
an increased number of false positives. This is solved by
checking if the azimuth residuals of the measured track-
lets derived from the computed orbit have a linear trend
instead of random variations and thus the orbit does not
match the tracklet. This is performed via a Student’s t-
test, similar to [4]. All results given in the following in-
clude this filtering.

The distributions of the Mahalanobis distances are plot-
ted containing the true positives (TP), which are the cor-
rectly identified correlations of two tracklets from the
same object. The other two cases, namely the false pos-
itives (FP), which are the wrongly identified correlations
of two tracklets from different objects, and the true posi-
tives with a wrong orbit (WO), which means that the two
tracklets belong together but the orbit to connect them
has the wrong number of revolutions thus a large error in
the semi-major axis, are not plotted. For all cases there
are less than 5%-10% false positives after the additional
azimuth filter.
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Figure 3. Distribution of the true positives’ Mahalanobis
distances for the radar-only case.

N
um

be
ro

fP
ai

rs

Mahalanobis Distance

TP
df=3

0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 4. Distribution of the true positives’ Mahalanobis
distances for the radar-optical case.

The distributions of the radar-only case in Figure 3 and



of the radar-optical case in Figure 4 are shown as relative
numbers to compare them to the theoretically expected χ-
distribution of the Mahalanobis distances depending on
the degrees of freedom which is equal to the number of
elements in the discriminator. Thus, the radar-only case
has two degrees of freedom and the radar-optical case has
three. As one can see, the radar-only case matches the ex-
pected χ-distribution very well, whereas the radar-optical
one is slightly shifted to lower Mahalanobis distances but
still exhibits a clear peak in the expected region.

3.2. Discriminator

This section shall analyse the influences of the different
elements in the radar-optical discriminator to test whether
the different physical measurement types have any spe-
cific influence. The following plots are also considering
only true positives. Firstly, the range-rate discrimina-
tors are compared between the cases for radar-only and
the radar-optical in Figure 5. Although the plot is two-
dimensional, the range-rate discriminator for the radar-
optical case is only one-dimensional and thus plotted
along the x-axis. It is clear that the range-rate discrim-
inators are similar in magnitude for both cases, which
is also consistent with the assumed measurement noise.
Additionally, it shall be noted that the two-dimensional
distribution of discriminators for the radar-only case is
consistent with a normal distribution, showing no biases
or preferences to any direction, which implies that both
range-rates have similar distributions of their differences
in the discriminator. This is consistent with the orbit de-
termination method, because it does not prefer one of the
two positions and thus the discriminators should be dis-
tributed evenly. The same is true for the radar-optical case
as the majority of the points are close to zero.
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Figure 5. Distribution of the differences of the range-
rate discriminators comparing the radar-only and radar-
optical case.

Additionally, for the radar-optical case the discriminators

in the optical part are compared in Figure 6. Also here,
the discriminators are evenly distributed between the two
angular rates within the same order of magnitude.
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Figure 6. Distribution of the differences of the angular
rates discriminators for the radar-optical case.

In order to analyse the influence of the discriminator in
the radar-optical case in more detail, the covariance ma-
trix Cm,c, thus also the Mahalanobis distance, is sepa-
rated into the different elements of the discriminator and
the uncertainties are split in their two contributing parts.
This is achieved by assuming a diagonal correlation ma-
trix without cross-correlations between the different dis-
criminators, which is not fully achieved but can be used
as an approximation. The overall covariance matrix Cm,c
of the discriminators is the sum of the measurement and
computed orbit covariance as explained earlier:

Cm,c = σ2
ρ̇r,m

+ σ2
ρ̇r,c

0 0
0 σ2

α̇,m + σ2
α̇,c 0

0 0 σ2
δ̇,m

+ σ2
δ̇,c

(4)

In combination with Equation 3 this leads to the follow-
ing simplification for the calculation of the Mahalanobis
distance:

Md,total =
√
M2
d,ρ̇r

+M2
d,α̇ +M2

d,δ̇
. (5)

The Mahalanobis distance for one discriminator x is cal-
culated as:

M2
d,x =

∆x2

σ2
x,m + σ2

x,c

(6)

With some algebraic transformations, this can be gener-
alised to:

1

M2
d,x

=
1

M2
d,x,m

+
1

M2
d,x,c

, (7)



with Md,x,m and Md,x,c as the Mahalanobis distances
only due the measurement or orbit computation:

M2
d,x,m/c =

∆x2

σ2
x,m/c

. (8)

These relations are used in the following for further anal-
yses.
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bit uncertainties to the Mahalanobis distance at the op-
tical measurement in the radar-optical case. Lines of
constant combined Mahalanobis distance are added for
Md = {0.5, 1.0, 1.5, 2.0}.

Figure 7 depicts the range-rate discriminator split in its
components, i.e. the measurement and orbit uncertainty.
Lines of constant combined Mahalanobis distance are
added to the plot according to Equation 7. It is visible
that both components contribute approx. equally to the
total Mahalanobis distance of the radar measurement. In
contrast to that, Figure 8 compares the same values for the
angular rates. In this case, the Mahalanobis distance due
to the orbit is larger than the one due to the measurement.
The lines of constant total Mahalanobis distance are pre-
dominantly acting as vertical straight lines, thus the total
Mahalanobis distance is dominated by the measurement,

see Equation 7. Effectively this means that σ2
c � σ2

m,
yielding M2

d,c �M2
d,m. The uncertainty due to the orbit

computation is smaller than the one due to the measure-
ment and contributes less to the total uncertainty when
they are added.

Finally the influence of the different discriminators is
compared according to Equation 5. Also here the lines of
constant Mahalanobis distance are added which form an
arc of a circle. Figure 9 compares the two optical discrim-
inators, i.e. the angular rates. It is visible that considering
the entire population both parts contribute equally to the
total optical Mahalanobis distance.
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Figure 9. Contributions of the optical measurements to
the total Mahalanobis distance in the radar-optical case.
Lines of constant combined Mahalanobis distance are
added for Md = {0.5, 1.0, 1.5, 2.0, 2.5}.

The comparison between the radar-discriminator and the
two optical discriminators is shown in Figure 10. Also
here, it is visible that both measurement types contribute
equally to the total Mahalanobis distance. Combining
this information with the one derived from Figure 9, it is
concluded that all three discriminators contribute equally
to the total Mahalanobis distance.

3.3. Orbits

In Figure 11, the correlation results are compared with
regard to the standard deviations for the estimation of the
orbital elements semi-major axis a, eccentricity e, incli-
nation i, right ascension of the ascending node Ω and ar-
gument of perigee ω, which are derived from their respec-
tive ground truth. It can be seen that the radar-optical
measurements have better results than radar-only in all
cases. Especially the location of the perigee and the esti-
mation of the orbital plane is significantly better.
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mation errors of the orbital elements when compared to
the ground truth.

4. DISCUSSION

The results presented in the previous section shall be fur-
ther discussed and explained in the following. It was
seen that while the radar-only case matches its theoret-
ically expected χ-distribution very well, the one of the
radar-optical case is slightly shifted towards smaller Ma-
halanobis distances. Possible explanations for this mis-
match are e.g. the observation geometry for specific
simulations, the estimated uncertainties from the least
squares fit of the attributable or the linear transformation
of the covariance matrix.

Concerning the details of the radar-optical correlation,
one could see that the discriminators are all evenly dis-
tributed and their separated Mahalanobis distances are of
similar magnitude. Thus, it can be concluded that nei-
ther of the discriminators is dominating the uncertainties
and the method considers all in a similar way. It was
also shown that the Mahalanobis distance of the angu-
lar rates is mainly dominated by the measurement un-
certainty compared to the uncertainty of the computed
orbit. This implies that the angular rates are rather ro-
bust against the noise in the parameters used for the orbit
estimation, at least when compared to the measurement
noise. To conclude this part, it is clear that neither of the
uncertainties can be ignored to reduce the computational
burden of the correlation process, because all contribute
equally to the result even with different physical measure-
ment types.

Considering the orbits, the main improvement of the
radar-optical case is due to the better coverage of the
orbit. The radar measurements are always close to the
perigee, while the optical telescopes can add measure-
ments close to apogee. This improves especially the esti-
mation of the orbital plane and the shape of the ellipse as
the angle between the two radius vectors used in the or-
bit determination increases. Concerning the semi-major
axis, it was also estimated more precisely in the radar-
optical case for a large data sample, but if the radar and
optical measurements are close together, i.e. during the
same revolution within a few hours, the estimation of the
semi-major axis becomes significantly worse.

Finally, this approach also suffers from a degradation if
the measurements are close to be on exactly opposite
sides of the orbit, thus roughly 180◦ apart. In this case,
problems may arise due to the rotations during the J2-
correction because the definition of the orbital plane is
very sensitive to small changes in this region.

5. CONCLUSION

This paper proposed a method for the fusion of radar and
optical measurements during the correlation and initial
orbit determination process of space surveillance mea-
surements. It was shown that the method works for sam-
ples of simulated survey measurements using different



scenarios. In general, this also leads to a better orbit
quality than for the radar-only case, because the mea-
surements cover a larger part of the orbit. One chal-
lenge of applying this to practical space surveillance is
that the population of objects which can be observed at
the perigee by a radar and at night-time at apogee by a
telescope is very limited for single stations. Thus, this
observation fusion method is probably most effective in
multi-station networks which can reliably observe a ma-
jority of the relevant near-Earth regions.
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