
PROVISION OF SST AS A SERVICE BASED ON A
DATA-STREAM-CENTRIC ARCHITECTURE

S. Müller, C. Kebschull, and J. Radtke

OKAPI:Orbits GmbH @ Institute of Space Systems, TU Braunschweig, 38108 Braunschweig, Germany,
Email: {sven.mueller, christopher.kebschull, jonas.radtke}@okapiorbits.space

ABSTRACT

Space is becoming a domain in which commercial and
institutional entities operate side by side. Launch
costs are decreasing because of new launch concepts
and the miniaturization of satellite hardware. In
the US, an effort is made to establish space traffic
management as an analogue to air traffic manage-
ment under the control of Department of Commerce.
The private sector grabs opportunities that open up.
Its actors plan to put a vast amount of new satel-
lites into orbit which work in tandem. Not only big
players are on the field, but many new space com-
panies put their feet into the door (“NewSpace”).
All the while, digitalization is progressing, making
place for new technologies and paradigms. One of the
paradigms emerging is Software as a Service (SaaS),
which aims to provide software as something that
is connected to on demand. Instead of download-
ing and installing software on one’s own systems,
software runs somewhere else and is used via net-
work. Common implementations allow users to con-
nect via web browser and/or allow the user’s sys-
tems to connect via Representational State Transfer
(REST) Application Programming Interface (API).
The latter allows an automation of the usage of pro-
vided software. This approach yields the possibility
for space operators to integrate exactly what they
need for their Space Surveillance and Tracking (SST,
US pendant is Space-situational Awareness (SSA))
needs into their own ground-based software systems.
An algorithm can be provided, but so can a core
SST functionality like statistical orbit determination
or even a whole catalogue maintenance system. Also,
new sensors and catalogues keep coming online push-
ing the need to be able to cope with Big Data. Scala-
bility and adjustability are key to provide NewSpace
actors exactly what they need. This can be achieved
by allowing external SST experts to easily adjust a
scalable SST processing system which provides SST
as a Service (SSTaaS).

This paper presents OKAPI:Orbits’ SSTaaS provi-
sion based on a Data Stream Management System
(DSMS) architecture. DSMS allow the definition of
the data flow within the system via a script language.

They don’t save data permanently, but rather expect
continuous data stream input and produce continu-
ous data stream output. DSMS work in RAM only,
are suitable for working with uncertain Big Data and
are inherently modular. It is shown what SST ex-
perts can do with the architecture presented to tailor
the service provision to user’s needs.

Keywords: SST; DSMS; REST; SaaS.

1. INTRODUCTION

Not only science and exploration, but also Earth ob-
servation, reconnaissance and communication activi-
ties have been in the focus (of developments of space
technologies) since the beginning of the space age
in the second half of the 20th century. First, na-
tion states and their administrations sought access to
space. Fueled by the cold war, bold risks had been
taken to push the boundaries of what was deemed
possible and to demonstrate the feasibility of under-
takings in space. New technologies had been devel-
oped along the way, enabling commercial use of space
in the 1960s (TELSTAR 1 was the first commer-
cial satellite, launched 1962 [12]). Since then, access
to space has been eased as the prices per kilogram
launch mass have dropped ([7] for example gives a
reduction in launch cost by a factor of 20 due to
the commercialization of space launches) and proper
legislation allowing for the development of the com-
mercial space sector (commercial space policy and
enabling legislation 1984). The progressing of space
technologies has further enabled the development of
smaller satellites in the private sector, leading into
the “NewSpace” era, where startups and small com-
panies are able to launch and operate satellites – and
even satellite constellations.

This new kind of space users works under drastically
different requirements than the “classical” space ac-
tors, which, in comparison, had unlimited sources in
terms of money and personnel. NewSpace’ focus is
on the application of space systems, without hav-
ing to spend too much time and money on big soft-

Proc. 1st NEO and Debris Detection Conference, Darmstadt, Germany, 22-24 January 2019, published by the ESA Space Safety Programme Office

Ed. T. Flohrer, R. Jehn, F. Schmitz (http://neo-sst-conference.sdo.esoc.esa.int, January 2019)

ware products. They need flexibility and automa-
tion where possible. This, by the way, also applies
to space users from academia and hobbyists (for ex-
ample hobby astronomers).

Although money and personnel are very restricted
for this group, the functionalities needed are compa-
rable to those of the classical space actors. Alongside
a large number of different regimes, this also involves
the field of Space Surveillance and Tracking (SST).
The underlying backbone of every SST system is a
very capable and efficient orbit propagator, based
on which a large set of functionalities can be built.
Among others:

• A satellite pass prediction, interesting for
ground station and sensor operators (such as
telescopes, laser ranging stations, radars etc.).

• Orbit determination, needed by satellite oper-
ators, universities and other research organiza-
tions, but also sensor operators.

• Conjunction detection / collision avoidance ser-
vices including manoeuvre plan recommenda-
tions, used by satellite operators, especially con-
stellation operators.

Of course, the propagation might also be needed
without added functionalities.

One obvious way to have SST capabilities as easily
accessible and usable as possible is to just release the
algorithms involved. This allows users to translate it
into the programming language they happen to use
and to run it. However, the example of the NASA
Breakup model [14] shows that such an approach can
result in many different-behaviouring algorithm im-
plementations. Also, there is the question of validat-
ing and maintaining ones own algorithm implementa-
tions. It’s the responsibility of the user to ensure the
correctness of the code. Additionally, implementing
capabilities which comprise of multiple algorithms
can be cumbersome and needs a fitting software ar-
chitecture to manage the capabilities.

Another possibility is to release the source code of
implemented algorithms. This way, users can copy
the code into their own software and do modifications
as necessary. Although this is a very fine approach
for fostering collaboration, we see that there are users
who don’t want to be bothered with downloading the
code, getting all necessary dependencies with the cor-
rect versions, integrating the code (which may need
glue code to cross programming languages), modify-
ing it, testing it and maintaining it.

Another obvious way is to release a ready-to-use soft-
ware package in the form of libraries. This approach
is a lot better for users in terms of easy access. How-
ever, the dependencies need to be managed in any

case and the libraries need to be accessible from the
programming language of the user. This means ei-
ther that the provider of the software packages needs
to distribute its software for as many different sys-
tems as possible or that users need, again, to cross
language boundaries.

Then, of course, the algorithms can be made avail-
able in the form of executables. However, providers,
again, need to take multiple software platforms into
account and using the tools may encompass writing
of input files, calling the tool on the command-line
(if possible), reading output files and so on. Another
disadvantage lies in this approach’s limits in terms
of automation and flexibility. gpredict, for example,
is a wonderful tool to predict passes. However, it
lacks automation and software integration capabili-
ties. Users also may have to build what they need
based on multiple tools bundled together. Another
example is OreKit which takes into account different
usage platforms by being written in Java. However,
integration with other software still is not that easy
and the tool is rather complex and extensive which
can make it difficult to just use one simple function.

Also, with the IT world rapidly evolving, it becomes
clear that software, in the long run, will more of-
ten communicate with other software via web-based
techniques. This decoupling of software programs,
i.e. the separation of software programs and/or com-
ponents in terms of location and technical dependen-
cies, makes it possible for the used software to be
hosted and maintained on a different machine which
may even be located on the other side of Earth.
The means of web-based communication are well-
standardized and widely available. Although the de-
coupling, of course, has disadvantages that need to
be taken into account, its ease of use lets this so-
called Software as a Service (SaaS) increase in pop-
ularity.

Apart from the above-mentioned challenges, a prob-
lem that arose during our work as project scientists
was software scalability. Whenever we finished the
development of simulation software and/or its config-
uration, the time came to execute many simulations,
e.g. Monte-Carlo runs. There always was the ques-
tion of where to execute them. Normally, many cores
were needed as well as lots of RAM and persistent
storage. For this purpose, servers were bought, set
up, installed, maintained. Of course, servers can also
be rent and/or servers that are available for research
purposes be used. But getting, installing, setting up
and integrating external software components is still
a hassle. Also, there are still boundaries to what can
be done, because of the resource limits of the server.
If more parallization is used, more RAM is neces-
sary for execution of, e.g., numerical full-force orbit
propagation and scripts need to be built to distribute
the work load on many servers. Or, maybe there al-
ready exists a mechanism for distributing execution
on multiple machines which needs to be understood

and configured. This is the reason that the IT world
currently thinks about so-called serverless comput-
ing, or, in other words, Function as a Service (FaaS)
[9] where the cloud provider adds server resources
automatically when necessary. To be concrete, if nu-
merical, full-force orbit propagation was available via
SaaS in a FaaS cloud, users could request the exe-
cution of such orbit propagation without worrying
about the technical details of server resource alloca-
tions.

In the space domain, SaaS does exist at some places.
One example is LeoLabs, who provide access to their
platform via https://platform.leolabs.space/.
Given the nature of the company, the services fo-
cus on sensor data handling. Through either a web-
based graphical user interface, a python command-
line tool or a REST API, the data as well as data
products can be retrieved. Very similar to that are
the interfaces to the CSpOC catalogue, provided via
https://www.space-track.org/.

Our long-term goal is to provide a REST API with
which scalable SST services can be executed without
a hassle from anywhere. In the long run, the services
are planned to comprise:

• Pass Prediction

• Numerical Full-Force Orbit Propagation

• Initial Orbit Determination

• Orbit Improvement

• Orbit Correlation

• Collision Avoidance Manoeuvre Plan Genera-
tion

Currently, Okapi version 0.10 beta is running with
the provision of pass prediction and numerical full-
force orbit propagation. It is still no version 1.0 and
in beta state. Also, the FaaS aspect is not realized
yet, since our focus lies on the provision of more ser-
vices and their validation through own tests and as
much feedback from as many people as possible. This
paper’s structure is roughly oriented on the software
layers (cf. Figure 1). Section 2 gives an overview
of SST algorithms for which we are currently work-
ing on a service-based provision. In Section 3, the
database-like technology used for a performant and
modular provision is described, before the service-
oriented access via REST is the topic of Section 4.
Because of the modular approach, a tailoring of the
services to a user’s needs is possible. How this can be
done is shown in Section 5, with a conclusion given
in Section 6.

Figure 1. Software layers of SST service provision.

2. SCIENTIFIC CORE

The scientific software, which is planned to be made
accessible via web services, originates from research
and development conducted at Institute of Space
Systems (IRAS) of Technische Universität Braunch-
weig (TUBS), Germany. A selection of the algo-
rithms used for the services is described in the fol-
lowing.

2.1. Pass prediction

The current pass prediction method is based on the
SGP4 implementation provided from David Vallado
[13]. Generally, it requires a TLE as input, the def-
inition of a ground station in WGS-84 as well as a
time window, for which passes are to be predicted.
The times should always be close to the epoch of
the TLE. At first, the TLE element is propagated
over the required time frame. Following, the TEME
positions returned by SGP4 are converted into the
correct SEZ coordinate frame, from which range, az-
imuth and elevation can be computed. All times, at
which the elevation is negative, are neglected, oth-
ers are aggregated as passes. For each pass, next
to the position of the object in SEZ, a time stamp,
the range-rate, illumination conditions (in-sunlight
or not), and signal delay time are calculated. A typ-
ical pass being output by a pass prediction is given
in Figure 2.

As long as the input provided are TLE, the accuracy
of this implementation is deemed sufficient. For high
accuracy applications, a future pass prediction based
on a more precise numerical propagation (cf. the
following Section) will be released.

2.2. State and covariance extrapolation

Since 2012 a numerical propagator, called NPI
Ephemeris Propagation Tool with Uncertainty Ex-
trapolation (NEPTUNE) as part of the ESA Net-
working/Partnering Initiative (NPI) programme [4]

Figure 2. A typical pass prediction.

has been developed at IRAS. The core of the prop-
agator is the optimized Störmer-Cowell integration
routine [3]. It is a variable and multi-step, double in-
tegration algorithm, with support for shadow bound-
ary transits. NEPTUNE incorporates a number of
relevant force models for highly accurate state ex-
trapolation [5]:

• EIGEN-GL04C, EGM96 and EGM2008 gravity
models,

• NRLMSISE-00 and HWM07 to estimate the
drag,

• Sun and Moon third-body perturbations,

• Solar radiation pressure,

• Visible and infrared albedo,

• IERS solid and ocean tides,

• and the IAU 2006/2000A (GCRF/ITRF) trans-
formations regarding Earth Orientation Param-
eters (EOPs).

NEPTUNE is optimized for high performance com-
puting within SST systems to extrapolate ECI state
vectors and covariances. It is applied within statisti-
cal orbit determination processes as well as conjunc-
tion, re-entry and pass prediction functions. NEP-
TUNE is modular and can be used directly as a For-
tran library, via a common Orbital Propagation In-
terface (OPI) [10] or as a stand-alone application.

2.3. Orbit Determination

As part of the Radar System Simulator (RSS) project
initiated at IRAS in 2015, multiple orbit determina-
tion algorithms have been implemented and tested
[8]. The Initial Orbit Determination (IOD) capabili-
ties for radar tracklets are achieved through different
methods:

• Gibbs,

• Herrick-Gibbs and

• Preliminary orbit determination from the
Goddard Trajectory Determination System
(GTDS).

The latter is an implementation of the algorithm
described in the GTDS report [2]. It uses multi-
ple consecutive position vectors to derive a full state
vector, estimating the velocity vector in an iterative
manner. As a starting point of the iterative pro-
cess a circular orbit is assumed. For objects with
a-priori knowledge multiple statistical orbit determi-
nation algorithms have been implemented and are
available:

• Weighted Least Squares,

• Extended Kalman Filter,

• Unscented Kalman Filter, and

• Ensemble Kalman Filter.

They produce an updated state vector as well as a
covariance to express the uncertainty from the mea-
surement and process noises. Within RSS project, a
cataloguing system has been developed, holding and
updating the states of all objects in a PostgreSQL
database. The simulation system was designed to
hold large populations and has been used for sensi-
tivity analyses with the MASTER-2009 population
[6] as the starting point.

2.4. Conjunction Analysis

One of the simulation applications with larger popu-
lations is the analysis of conjunctions. For this pur-
pose the algorithm by Alfriend & Akella as described
in [1] has been implemented.

3. DATA STREAM MANAGEMENT SYS-
TEM (DSMS) ARCHITECTURE

In order to achieve modularity and scalability, a Data
Stream Management System (DSMS) is utilized. In
comparison to conventional database systems, DSMS
can be described as management systems for data
streams instead of data tables. While queries that
are sent to conventional data base systems create and
manipulate data tables, queries to DSMS create and
manipulate data streams. Data streams are poten-
tially infinite sequences of data sets that stream in
or out of a place of interest. In a so-called relational
DSMS, a data set is the equivalent of one row that

can be found in tables of conventional databases – to-
gether with one of two markers: insertion or deletion.
Insertion data sets tell the DSMS that the data set
shall be inserted into the data table, Deletion data
sets tell it to delete it from the table. As a result,
a data stream can be seen as a data table that is
updated continuously by data sets streaming in. A
broader explanation of this can be found in [11].

Separate functions are bundled as so-called opera-
tors, self-contained modules with input and output
(cf. Figure 3). Two special kinds are data sinks and
data sources. A data source (operator) accepts in-
coming data streams, while a data sink (operator)
channels data streams out of the DSMS. By query-
ing the DSMS, the operators and their connections
are created to produce an operator graph which de-
termines the data flow in the DSMS. There are op-
erators for the selection, aggregation, branching and
merging of data. What’s important is that a DSMS
works continuously on a data-set-per-data-set basis.
Each data set is processed and its results are pro-
duced, (if any), before the next incoming data set
is looked at. This way, big bulks of data are not
processed in one batch, but rather one data point at
a time. Also, the CPU time is distributed over all
operators by a scheduler. Because of this, a quasi-
parallelization and a conveyor-belt-like processing is
realized leading to responsive and scalable process-
ing. Since all functionalities are incorporated by one
or multiple operators, DSMS are inherently modu-
lar, their internal data flow can be modified quickly
by changing queries saved in a script file.

4. SOFTWARE-AS-A-SERVICE PROVI-
SION VIA REST

4.1. REST API Provision

SaaS can normally be accessed by other software via
an Application Programming Interface (API), which
is often either SOAP- (Simple Object Access Proto-
col) or REST-based (Representational State Trans-
fer). As to REST-based APIs, in many cases, us-
ing such an API requires only a few lines of code
- or a Firefox add-on - or two commands on linux
command-line (one for the installation of, say, wget).
It’s using the same technology and standards as the
WWW - HTTP or HTTPS requests are sent, an
HTTP or HTTPS response is delivered. Requests
and responses are HTML documents. Instead of be-
ing interpreted to render a web page, they carry bare
information and/or data, ready to be read and used
by other programs and software.

Our REST API utilizes HTML body text formatted
in Java Script Object Notation (JSON). JSON li-
braries are widely available and JSON text is human-
readable, even more readable than XML. It is also

a structured language meaning that it is possible
to express structures containing values and/or other
structures. The current workflow for using the ser-
vices is explained using the pass prediction. First,
users request service execution:

1 {
2 ” t l e ” : s t r i ng ,
3 ” groundLocation ” : {
4 ” l ong i tude ” : f l o a t ,
5 ” l a t i t u d e ” : f l o a t ,
6 ” a l t i t u d e ” : f l o a t
7 } ,
8 ”timeWindow” : {
9 ” s t a r t ” : ISO−8601 timestamp ,

10 ”end” : ISO−8601 timestamp
11 }
12 }

The request indicates the use of TLE data and ex-
pects the two lines of a TLE as a string. Following is
a sensor definition using longitude, latitude and the
altitude of the sensor. The JSON formatted configu-
ration concludes with the definition of the start and
end time of the time window for which the request
is placed. The response to this HTTP request con-
tains a request ID, which is put into the address of
the second request for retrieving the service execu-
tion results. This separation of requesting execution
and requesting execution results is to prevent block-
ing in software that uses a service. Depending on the
extensiveness of the request, service execution could
take some time which is why the software that made
the execution request should be free to do something
else, while the service execution can run in parallel.
Currently, two different aggregations of the pass pre-
diction output are provided: The first one includes
an overview of characteristics of the passes by giv-
ing the values for each parameter at the beginning,
mid, and end of each pass as well as the minima and
maxima:

1 {
2 ”azimuth” : {
3 ”atEnd” : f l o a t ,
4 ”atMid” : f l o a t ,
5 ” a tS ta r t ” : f l o a t ,
6 ”max” : f l o a t ,
7 ”min” : f l o a t
8 } ,
9 ” e l e v a t i o n ” : {

10 . . .
11 } ,
12 ”timeWindow” : {
13 ”end” : ISO−8601 timestamp ,
14 ” s t a r t ” : ISO−8601 timestamp
15 }
16 . . .
17 }

The second possibility is to retrieve a complete track-
ing file, which includes all values as time series, cur-

rently fixed to one value per second.

The full propagation is currently kept very simple.
A service execution request contains only the state,
epoch, object characteristics, and the time span of
the propagation:

1 {
2 ” i n i t i a l S t a t e ” : {
3 ” area ” : f l o a t ,
4 ”mass” : f l o a t ,
5 ”x” : f l o a t ,
6 ”y” : f l o a t ,
7 ”z” : f l o a t ,
8 ”xDot” : f l o a t ,
9 ”yDot” : f l o a t ,

10 ”zDot” : f l o a t ,
11 ”mjd” : f l o a t
12 } ,
13 ” reque s t ” : {
14 ” propagat ionDurat ion ” : f l o a t
15 }
16 }

The execution results response simply contains the
new state, propagated over the required time frame.
For example:

1 {
2 ” m j d o f s t a t e ” : 57599.02210648 ,
3 ” output s ta t e do tx ” :

−0.04964944547075876 ,
4 ” output s ta t e do ty ” :

−7.292983108675719 ,
5 ” o u t p u t s t a t e d o t z ” :

1 .636736163248116 ,
6 ” o u t p u t s t a t e x ” :

−431.5592424195601 ,
7 ” o u t p u t s t a t e y ” :

1527.4145096469522 ,
8 ” o u t p u t s t a t e z ” :

6937.437009491794
9 }

The current implementation serves evaluation pur-
poses, as important parameters such as the reference
frame are not defined. Future releases will implement
CCSDS standards to fill this gap.

4.2. Access from Programming Languages

Here, the example of sending a service request and
retrieving the result is given, using the REST API
from Matlab. The first request is sent as a so-called
POST request, for which Matlab provides the follow-
ing function:

1 re sponse = webwrite (ur l , request body
, opt ions) ;

The url contains the complete address to the re-
source, to which the request is posted. The request
body contains the actual request (cf. previous Sub-
section), for example a state to be propagated, or an
object and ground-station combination, for which a
pass prediction is to be made. The options need to
be defined to fit the server. For Okapi, the following
options are needed:

1 opt ions = weboptions (’ RequestMethod
’ , ’ post ’ , ’ MediaType ’ , ’ a p p l i c a t i o n /
json ’ , ’ HeaderFie lds ’ ,{ ’ Accept ’ ’
a p p l i c a t i o n / json ’ ; ’ a cce s s token ’
a c c e s s t ok en ; ’ e x p i r e s i n ’
s t r i n g w i t h t i m e t o e x p i r a t i o n ; ’
token type ’ s t r i n g w i t h t o k e n t y p e
}) ;

In short, the HTTP method is defined (POST), the
media-type which is to be used to exchange the data,
as well as optional header fields, for which the most
important is an access token, which has to be re-
trieved beforehand. Once the request is sent, the
response contains a request ID which is used to iden-
tify the results. Retrieving the result works analo-
gous, but as the request is retrieved using the GET
method instead of POST, webread is used:

1 r e s u l t = webread (ur l , opt ions) ;

The options have to be adapted by changing the Re-
questMethod to ’get’. The result then contains the
solution to the previously sent request, thus a prop-
agated state or the prediction of a satellite passing
over a ground station.

4.3. Programming Language Connectors

To ease the use of the provided API, it made sense
to provide a connector to the API, which takes over
the communication with the REST API and makes
it accessible as any other Matlab function:

1 % perform log in , i n i t i a l i z e a l l
opt i ons

2 PicardLogin = Okapi In i t (u r l t o s e r v e r
, user name , password) ;

3

4 % send a reque s t to the s e r v e r
5 r e q u e s t s =

OkapiSendPropagationRequest (
PicardLogin , request body) ;

6

7 % r e t r i e v e a r e s u l t
8 r e s u l t = OkapiGetResult (PicardLogin ,

r e q u e s t s) ;

5. TAILORING

The described architecture makes it rather easy, to
adapt the services to different users or changed user
needs. As an example, the functionality to create
pass predictions can be used. A general overview of
the pass prediction implemented in Picard is given in
Section 2.1. Based on a user requirement, the first
iteration of the pass prediction created an overview
of key characteristics of a pass over a certain ground
station. Therefore, in the first iteration, a pass pre-
diction operator was written that delivers exactly
these kind of outputs as result. Following, for a dif-
ferent application, a complete tracking file of each
satellite pass was needed. Thus, instead of provid-
ing characteristics per pass, azimuth, elevation, etc.
had to be provided continuously (i.e. in one-second
steps) over the complete duration of the pass. To
achieve this, a second iteration of the pass prediction
was performed, by doubling the pass prediction op-
erator and its corresponding REST source and sink
operators plus the adaption of some of their outputs.
While this is a working solution, it is not very effi-
cient and furthermore doubles large amounts of the
code. Therefore, the third iteration is going to be
the reversion to one pass prediction operator chain,
which provides the full output of each pass (thus a
tracking file), and forward this output to further op-
erators, which perform filtering tasks, such as build-
ing averages, minima, maximum, etc. The great ad-
vantage of this approach is that once filter operators
have been written, they can be used for any kind
of input from any kind of other operators. All that
needs to be done is to specify the path the data has to
take in a script file. Thus, now, any changes to the
output of the pass prediction can be performed by
simply adding and/or adapting filters. If the filters
are available, this is achievable without the need of
doing code changes. Also, changes to the data flow
are planned to be possible during run-time which
achieves even more flexibility. The concept of the
described iterations is shown in Figure 3.

Figure 3. Schematic approach of iteratively tailoring.

This example highlights the great advantage of using
a DSMS: once the complex functionalities have been
implemented, it is very easy to tailor the output in re-
gard to the user’s requirements or also a user’s access
rights. A second example, which is yet to be fully im-
plemented, is the propagation of objects. Depending
on the clearance level, one user might be eligible to
orbital data with a low accuracy, while another user
might be eligible to data with very high accuracy.
Using Chebyshev interpolation, as described in [5],
the ephemerides are created once, but aggregation
operators post-process the results according to user
clearance.

Just as it is very straight forward to exchange the
outputs provided, it is, from the architectural point
of view, easy to add different operators with anal-
ogous functionalities. Going back to the example
of the pass prediction, the current implementation
provides a basic solution. To upgrade it with an ad-
vanced solution, only the processing operator, which
actually performs the pass prediction, needs to be
exchanged. The remaining process stays exactly the
same. Which type of pass prediction to choose can
be defined either in the script file or be defined based
on criteria contained in the input data.

6. CONCLUSION

For certain types of SST users like NewSpace com-
panies, hobby astronomers and research institutions,
the wish for easy, automatable, flexible and scalable
access to SST services seems to exist. Acquisition of
huge, complex software products is often not an op-
tion due to budget constraints. Integration of open-
source software is often possible, but can come with a
lot of work for which not all users can find the time.
Freely-available programs sometimes don’t have all
the capabilities needed. At places where these types
of concerns can be found, a Software-as-a-Service-
based usage of SST capabilities can be a viable op-
tion.

With pass prediction and numerical full-force prop-
agation already available as beta, a possibility to
try out the algorithms described via the DSMS and
the REST interface described, is possible and very
welcome. The authors are happy to get in contact
via mail or other means. Additionally, through co-
creation agreements, we currently seek to collect as
much feedback as possible.

We feel committed to the idea of fostering collab-
oration through open-source software which is why
we evaluate the possibility for the numerical, full-
force orbit propagator NEPTUNE can become open-
source. Such a development would begin with a
light” version of NEPTUNE being augmented with
new functionalities one after another. Also, we want
to make open-source SST which is already available

to also become available via SaaS. For this to hap-
pen, we intend to work together with open-source
projects.

ACKNOWLEDGMENTS

The authors would like to thank DLR and ESA,
who supported foundations for this work un-
der DLR contract AZA 50LZ1404 “Entwicklung
eines Radar-System-Simulators” and ESA contract
4000103850/11/D/JR “Network Partnering Initia-
tive: Definition of Orbit State, Orbit Ephemerides
and Orbit Covariance Formats”. Also, they would
like to thank Institute of Space Systems of Tech-
nische Unversität Braunschweig for providing all the
opportunities. The project OKAPI (03EGSNI203)
is funded by the Federal Ministry of Economics and
Energy and the European Social Fund as part of the
EXIST programme.

REFERENCES

1. Alfriend K., Akella M., Lee D., Frisbee J., and
Foster J., (1999). Probability of Collision Error
Analysis, Space Debris, 1(1), 21–35.

2. Anon., (2008). Goddard Trajectory Determina-
tion System (GTDS), Release 2008.01, https://
software.nasa.gov/software/GSC-15539-1, re-
trieved 2018-08-16

3. Berry M., (2004). A Variable-Step Double-
Integration Multi-Step Integrator, Virginia State
University

4. Braun V., Horstmann A, (2015). Networking/-
Partnering Initiative TU-BS/ESOC, TU Braun-
schweig

5. Braun V., (2016). Providing Orbit Information
with Predetermined Bounded Accuracy, TU Braun-
schweig

6. Flegel S., (2011). Final Report – Maintenance of
the ESA MASTER Model, Institute of Aerospace
Systems

7. Jones H. W., (2018). The Recent Large Reduction
in Space Launch Cost, 48th International Confer-
ence on Environmental Sciences, 8 - 12 July 2018,
Albuquerque, New Mexiko, USA

8. Kebschull C., Reichstein L., Stoll E., (2017). A
Simulation Environment to Determine the Perfor-
mance of SSA Systems, Advanced Maui Optical
and Space Surveillance Technologies Conference,
19.09 - 22.09 2017, Kihei, USA

9. Loschwitz, Martin, (2018). IT ohne Server – der
Weg vom Cloud zum Serverless Computing, Linux-
Magazin, 2018(11), 20–23

10. Möckel M., (2016). High Performance Propaga-
tion of Large Object Populations in Earth Orbits,
TU Braunschweig, http://dx.doi.org/10.5281/
zenodo.48180

11. Müller, S., Stoll, E., (2017). Data Stream-
Centric SST System Architecture Enhancement,
1st IAA Conference on Space Situational Aware-
ness (ICSSA), Orlando, FL, USA, 2017, Paper
IAA-ICSSA-17-00-01

12. NASA, (2012). July 12, 1962: The Day
Information Went Global, NASA History,
NASA Content Administrator, edited 2018,
https://www.nasa.gov/topics/technology/
features/telstar.html, retrieved 2019-01-13

13. Vallado D., (2013). Fundamental of Astrodynam-
ics and Applications, Fourth Edition, Springer

14. Johnson N. L., Krisko P. H., Liou J.-C., Am-
Meador P. D. (2001), NASA’s New Breakup Model
of Evolve 4.0, Advances in Space Research Vol. 28,
1377–1384

