

PADRE: Probabilistic Assessment of Destructive Re-entry

James Beck, Ian Holbrough; Belstead Research, Jim Merrifield; Fluid Gravity Engineering, Simone Bianchi, TAS-I, Daniel Briot; Airbus DS, Martin Spel; R.Tech, Edmondo Minisci; University of Strathclyde, Pierre Omaly; CNES, Stijn Lemmens; ESA 5th International Space Debris Re-entry Workshop, Webex, 2nd December 2020 PR00051/D86

Executive Overview

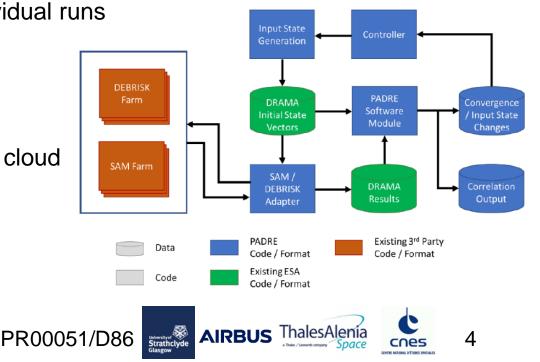
- Probabilistic Assessment of Destructive Re-entry
 - Team blends scientific experts and large system integrators
- Objective: Pragmatic stochastic assessment of casualty risk consistent with research findings
 - Comprehensive assessment of the uncertainties
 - Environmental and modelling
 - Mathematical framework to probabilistically assess re-entry risk
 - Keep focus on physics by restricting output to mass and object number
 - Assessment of capturing design for demise effects
 - Comprehensive test campaign
 - Formulation of risk assessment procedure consistent with current regulatory framework

Uncertainty Modelling

- Complete Uncertainty Model Produced
 - Key sensitivities determined as:
 - Aerothermodynamic heating (±30%)
 - Emissivity (±25%)
 - Effective melt temperature (±50K)
 - Fragmentation altitude
- Impact of Engineer Designing the Model
 - Spacecraft modeller selections can dominate uncertainty
 - Much larger than the code-to-code differences
 - Consistent rules required for consistent application
 - Capture convex heating area (dominates over shape)
 - Capture small parts of critical materials (often unmodelled)
 - Handling unmodelled masses

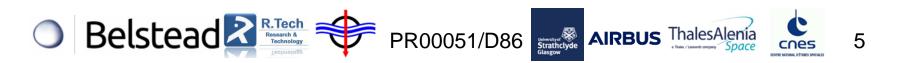
R.Tech

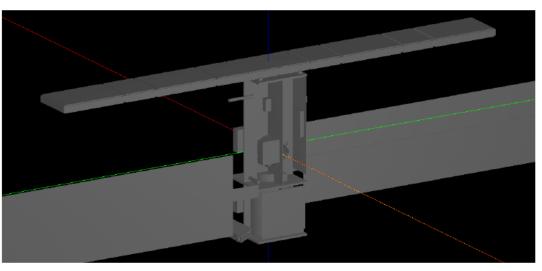
Belstea

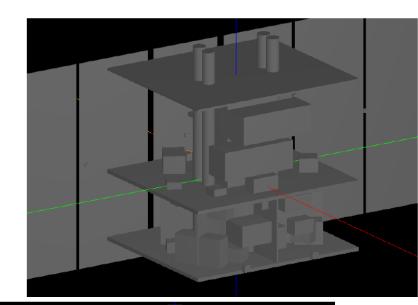

PADRE Software

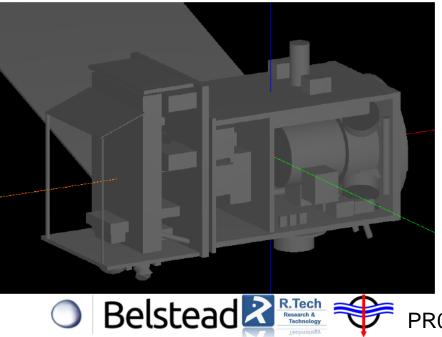
- Stochastic process description of re-entry (Monte-Carlo baseline)
- Designed as a wrapper for current tools
 - Tested on DRAMA, DEBRISK and SAM within this study
- Allows comparison between tools
 - Tools show good agreement statistically
 - Difficult to show from individual runs
- Tool agnostic

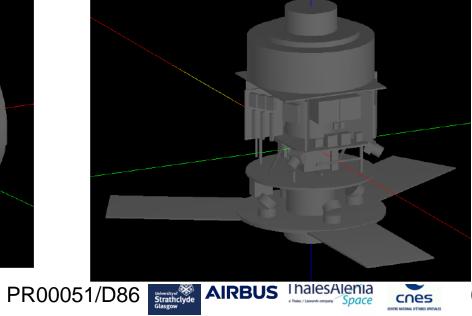
Belsteac

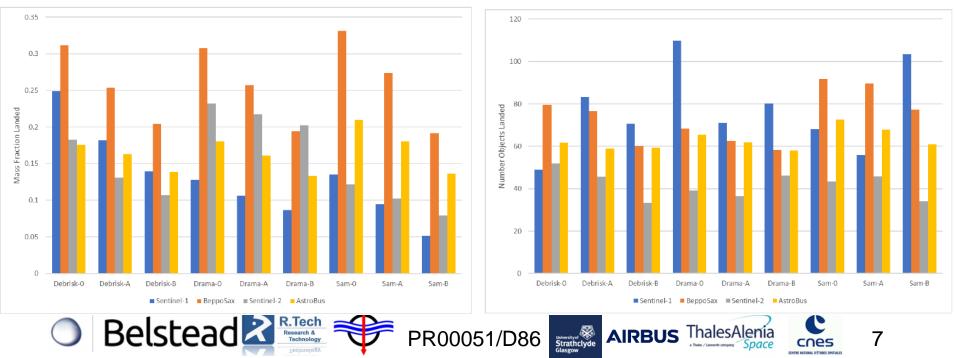

- Adapters can be written
- Service could be provided
 - Simulations performed on cloud

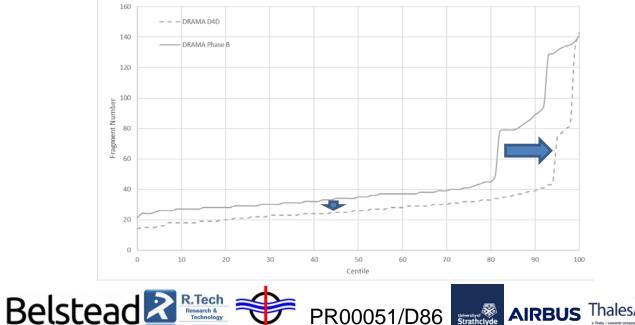

R.Tech




Test Cases Overview


- Full Range of Test Cases
 - Uncontrolled, semi-controlled, controlled and interplanetary entry
 - Four baseline spacecraft (2 TAS-I, 2 ADS) used
 - Step through the design phases (0/A/B), simulate knowledge levels
- Three Trajectory Codes Used
 - DRAMA (baseline), DEBRISK, SAM (full discrepancy analysis)
- Huge Number of Simulations
 - 16 test cases; Phase 0/A/B simulations; 3 re-entry codes
 - 9 sub-cases per test case
 - Each sub-case has a minimum of 2000 spacecraft simulations
 - Between 100 and 200 components per simulation
 - Order 550,000 spacecraft simulations
 - Order 90 million component simulations




Results Overview

- Landed Mass / Landed Fragment Count (Uncontrolled re-entry)
 - Mean mass landed from 5-30% of spacecraft mass
 - Mean fragment numbers mainly in 30-80 range
- Modelling Impact
 - Generally consistent results across the three re-entry tools
 - Spacecraft models are key to the results; key uncertainty source

Design-for-Demise

- Component level and system level techniques applied
 - Usually material change
 - Component level techniques generally successful
- Identification of spacecraft on which system level D4D is effective
 - Effective in two cases (more demise of partially demisable objects)
 - Ineffective in two cases (fewer partially demisable objects)

Lessons Learnt

- Identification of low probability, high impact events
 - Battery cell survival at low heating
- Consistent results between tools (DRAMA/SAM/DEBRISK)
 - Identical spacecraft models used for each tool •
 - Not identifiable from a single run; but clear statistically •
- Demonstrates criticality of consistent modelling
 - Rule based approach required

Belstea

- Procedure developed to complement DIVE •
 - **Simplicity** no requirement for involvement of experts
 - Consistency set of (simple) rules for inclusion of break-up criteria, D4D techniques, representation of critical equipment
 - **Consensus** agreement from modellers, designers, regulators
- Statistical Approach Recommended for Future Assessments

