5th International Space Debris Re-entry Workshop

Design for demise applied to spacecraft structural panels and experiment for ClearSpace One platform

Alexandre A. Looten

PhD Supervisors: Prof. Véronique Michaud (LPAC) Ing. Muriel Richard (eSpace)

Research context

Project Partners and Objectives

1) Research context

ESA Network Partnering Initiative (NPI)

Coordinators

PhD student

Monthly meeting progress status

Partners

Belstead

Together ahead. RUAG

1) Research context

Project general objectives

Design high demisability structural panels

Improve materials demise simulation models

Panels integration on ClearSpace-One satellite
Launch 2025

Scope of Research

Motivation and Method

2.1) Research aim

Motivation

Reduction of spacecrafts (S/C) reentry casualty risk From components surviving uncontrolled reentry events

Demise environment

From Space to Earth => high Air/Object interactions

→ Aero-thermo-mechanical loads

Obstacle for D4D research

Difficult conditions to make in-situ measurements and to recreate artificially on-ground

Complex and dynamic reentry environment

02/12/2020

reentry.esoc.esa.int/home/recovereddebris

2.2) Research method

3 main steps

- > Evaluation of the demise behaviour at :
 - Material level → Composite material
 - System level → Sandwich panel
 - Deal with composite material main issues:
 - Typical use of high temperature resistance fiber (carbon)
 - Convective blockage of matrix extreme outgassing [1]
 - Development of complementary solutions:

Natural fiber implementation (Flax fiber)
Matrix with active particulate filler
CFRP fasteners (screw, bolts)

Project objective ---

Increase <u>overall</u> S/C demisability by material substitution and specific design

2.3) Material models improvement

Thermomechanical experiments

- \rightarrow Demise properties vs Temperature
 - → Demise behaviour, onsets

Reentry simulation material model update

Specific composite properties

→ Pyrolysis, charring, spallation

→ Oxidation

(DRAMA, SCARAB)

Optimal sandwich panel design &

S/C reentry scenario selection

Novel composite design

Sandwich Panel Facesheets and Fastener

10

3.1) Sandwich skin selection

Evaluation of 5 skin versions for the structural sandwich panel

2 Typical designs

3 Novel designs

Full flax

Hybrid Carbon/Flax
CF/FFRP

Superposition Carbon-Flax CF+FF RP

Avantages of Flax fiber:

- > Demisable under typical reentry environment
- High vibration damping properties
- > Hybrid reinforcement compatible

Particulate filler in composite matrix

High regression rate matrix pyrolysis to facilitate ablation/spallation of the plies

→ Aluminium micro/nano particles

11

3.2) Composite fastener

→ Higher overall demisability by passive earlier structural panel release

Baseline fastener materials

Stainless steel Ti-6Al-4V Al 7075v

Composite alternative

CF/PEEK

Icotec CF/PEEK screws M6x30

Avantages of CF/PEEK fasteners over typical material:

- ➤ Higher strength/mass ratio
- > Lower loosening temperature
- > High vibration damping properties

Possibility to implement simple active releasable fastening system

For high altitude panel release, to favor the demise

Thermomechanical testing

13

4) Thermomechanical testing

Testing steps for material selection and reentry environment simulation

TGAThermogravimetry analysis

DMA
 Dynamic mechanical analysis Current status

- High heat flux creep/ stress relaxation
 IR lamp heater and basic environmental chamber
- PWT (aero-thermo dynamics)
 Plasma wind tunnel @IRS (Germany)

UTM setup, F_{max} 100 kN

Testing parameters:

- Initial preload
- Constant displacement
- Rough vacuum, 10^{-3} mbar
- Heat flux $\sim 100 \ kW/m^2$

Output parameters:

- Timing onset of the structural properties loosening at defined threshold
- High temperature degradation behaviour (optical/thermal camera)

Expected results

alexandre.looten@epfl.ch 02/12/2020

Conclusion

To Conclude Then

Conclusion

- Reentering space debris is a Worldwide problem
- Reentry conditions complex to recreate for testing

Project aims to develop:

- Scientific response to the current incomplete understanding on demise behavior at material and system level for composites
- Interconnection between experiments and demise models (DRAMA)
- Novel composite demisable structural panel and release system

Bcomp flax fiber demonstration structural panel, 2019

bcomp.ch/news/

