Conceptual design of a re-entry analysis platform for investigation of space debris

<u>A. Turchi</u> A. Denis

O. Chazot

A. Viladegut

L. Ferracina

5th International Space Debris Re-entry Workshop December 2, 2020

IDEA-RAP.ID: ESA De-risk Activity

De-risk analysis to pave the way for a possible fully-fledged activity on the design and operation of a **re-entry platform** for in-flight observation and /or measurements of **phenomena of interest for the understanding of space debris re-entry**.

<u>Awareness</u>

Review demise-analysis tools and ground testing capabilities

Review relevant re-entry experiments

Perform a survey to identify scientific requirements based on needs of relevant players

<u>Design</u>

Identify the new-concept **technical requirements to meet the scientific requirements** Perform **test** (e.g., plasma testing) of an **identified main critical component** Obtain a **preliminary conceptual design** of the platform

Planning

Identify **potential stakeholders** Prepare a **business plan**

Added Values of in Flight Experiments

- Demise phases that cannot be reproduced on ground testing
- Relevant conditions and environment
- Testing of integrated system
- Full interaction of aerothermodynamics phenomena
- Unique opportunity for flight data for validation purposes

Identified Service Product

Recurrent re-entry service to provide an in-flight experimental framework for aerospace industries, agencies and research centers.

<u>How</u>

Customizable/modular carrier (i.e., CubeSat-like maximizing "COTS" components) featuring a survival/recording unit.

<u>What</u>

Standard mission/measurement capability (e.g., material testing similar to Plasmatron, component structural/demise testing).

<u>Why</u>

Recurrent low-cost missions can be appealing for space players seeking for relevant data on the demisability of components/parts/materials that need to be re-designed following the D4D paradigm.

This study convinced VKI that there's not alternative to a modular platform capable of recurrent "cheap" flights to exploit the commercial benefits of the space-debris emerging market.

Following a Roadmap...

Mission Statement & Objectives

[...] "the RAP.ID system will demonstrate the feasibility and added value of a small-scale, flexible, and cost-effective flight recorder for investigation of debris." [...]

Primary objective:

• Provide quantitative intrusive measurements relative to the phenomena and processes occurring during the re-entry of space debris, at low-cost and in a versatile way.

Secondary objectives:

- Be a **first step** towards a **versatile platform** for missions and researches related to re-entry.
- Leverage the expertise acquired with QARMAN project.

Platform Overview

Platform = CubeSat Carrier + re-entry Capsule

Carrier:

- Functionalities for orbital life
- = debris during re-entry
- COTS & QARMAN heritage

Capsule:

- Survival unit: record + send measurements taken on demising carrier
- Re-entry functionalities inherited from QARMAN
 → De-risked in experimental activity

The RAP.ID demonstration mission product tree

MISSION: Main mission, commissioning & tests

SAFE: Triggered by anomaly or low bat.

STANDBY: Monitoring for start of re-entry

		Mission	Safe	Standby
Carrier	EPS-1	V	V	V
	COM-1	V	V (low)	V
	ADCS	V	Х	V
	SENSE	*	Х	V
	DE-	X	Х	+
	ORB			
Capsule	OBC	V	V	V
	ACQ	*	Х	V
	EPS-2	V	V	V
	GPS	*	Х	V
	COM2	X	Х	Х

MISSION: Main mission, commissioning & tests

SAFE: Triggered by anomaly or low bat.

STANDBY: Monitoring for start of re-entry

RE-ENTRY: Data acquired & stored

		Mission	Safe	Standby	Re-entry
Carrier	EPS-1	V	V	V	Х
	COM-1	V	V (low)	V	Х
	ADCS	V	Х	V	Х
	SENSE	*	Х	V	V
	DE-	X	Х	+	Х
	ORB				
Capsule	OBC	V	V	V	V
	ACQ	*	Х	V	V
	EPS-2	V	V	V	V
	GPS	*	Х	V	V
	COM2	X	Х	Х	Х

MISSION: SAFE: Main mission, **STANDBY:** Triggered by commissioning Monitoring for anomaly or & tests start of re-entry low bat. **RE-ENTRY:** Data acquired & stored Mission Standby **Re-entry** Data transmission Safe EPS-1 V \mathbf{V} V Х COM-1 V (low) V Χ \mathbf{V} ADCS V \mathbf{V} Χ Х Carrier SENSE * Х V V DE-Х Х Х +DATA TRANSMISSION: ORB After black-out, data OBC V V V V \mathbf{V} * V V ACQ Х transmitted to MCC EPS-2 V V V \mathbf{V} Capsule \mathbf{V} GPS * Χ V V V COM2 Х Х Х Х \mathbf{V}

Acknowledgment

This activity was funded through ESA contract no. 4000127100/19/NL/BJ/va "Assessment to Prepare and De-Risk Technology Developments— Black Box Re-Entry Capsule for Satellites"

Conceptual design of a re-entry analysis platform for investigation of space debris

<u>A. Turchi</u> A. Denis

O. Chazot

A. Viladegut

5th International Space Debris Re-entry Workshop December 2, 2020