Presentation at the 5th Space Debris Re-entry Workshop, Dec 3 2020

TO EXPLORE HOW OUR ATMOSPHERE INTERACTS WITH SPACE

━ ▮ ▶ # = # 1 1 = = = | | | = = # = | | | = + + + + + + + +

→ THE EUROPEAN SPACE AGENCY

One of three candidate missions for Earth Explorer 10

- Three mission concepts have been in phase 0 studies from July 2019 to September 2020
- Assessment by ESA's Advisory Committee for Earth Observation this week
- Up to two missions will go into phase A in early 2021
- One mission to be selected to be implemented in September 2022
- Launch foreseen in the 2028-2030 timeframe
- The other two candidates are synthetic aperture radar missions: Harmony and Hydroterra

Electric currents from the magnetosphere, along magnetic field lines

Current closure in the ionosphere leading to frictional heating of the neutral gas

Upward propagating waves and tides

Energetic particles, precipitating in the neutral upper atmosphere

Solar EUV

LTI variability as a response to geomagnetic activity

Quiet conditions

500 500 b) C) d) a) 400 400 Altitude (km) 300 300 200 200 100 100 lons or electrons lons lons N2 02 Neutrals Neutrals Neutrals 0 0 -500-250 250 500 750 1000 0.2 0.8 400 800 1200 1600 2000 0 10³ 10⁶ 10⁹ 10¹² 0.0 0.4 0.6 1.0 0 Temperature (K) Zonal wind (m/s) Neutral composition Number density (cm⁻³)

2015-03-16 20:39 UTC, quiet

WACCM-X / TIE-GCM profiles over Nordkapp, Norway (71°N, 26° E)

LTI variability as a response to geomagnetic activity

Active conditions

WACCM-X / TIE-GCM profiles over Nordkapp, Norway (71°N, 26° E)

2015-03-16 20:39 UTC, quiet
2015-03-17 20:39 UTC, storm

Observation Concept and Mission Requirements

Geophysical Observables

lonosphere

thermosphere

fields

ЕРР

Derived Products

Abbreviation	Geophysical Observable		
\overline{v}_i	lon Drift velocity	(0	Jou
T _i	Ion Temperature	rces	Ohr
T _e	Electron Temperature	nos	
Ni	Ion Number Density	, gu	Fric
N _e	Electron Number Density	eatii	Poy
TEC	Total Electron Content	Ť	Ene
n _{ix}	Ion Composition		Por
\vec{u}_n	Neutral Wind Velocity	(0	Fei
N _n	Neutral Number Density	ent:	Per
ρ	Neutral Mass Density	Curr	Ма
α_{ng}	Non-gravitational acceler.	0	Fial
T _n	Neutral Temperature		
n _{nx}	Neutral Composition	ties, ions	Cor
\overrightarrow{B}	Magnetic Field	uctivit Sect	lon-
\vec{E}	Electric Field	ondr	lon-
Fl _e , Fh _e , Fl _i , Fl _e	Energetic Precipitating Particles (ions, electrons)	00	1011

Derived Product	Derived Product Symbolism	
Joule Heating	$q_j = eN_e(v_{i\perp} - a_{n\perp}) \cdot (E + a_n \times B)$	
Ohmic Heating	$q_{\Omega} = \sigma_p \left \vec{E} + \vec{u}_n \times \vec{B} \right ^2$	
Frictional Heating	$q_f = m_i v_{in} N_e v_{i\perp} - u_{n\perp} ^2$	
Poynting Vector	$S = \vec{E} \times \Delta \vec{B} / \mu_0$	
Energetic Particle Precip. heating	$\boldsymbol{q}_{EPP} = \pi \Sigma_i F_i(E) E_i dE_i$	
Perpendicular current (via v_i, v_e)	$\vec{J}_{\perp} = eN_e \left(\vec{v}_{i,\perp} - \vec{E} \times \vec{B} / B^2 \right)$	
Perpendicular current (via J_P, J_H)	$\vec{j}_{\perp} = \vec{j}_P + \vec{j}_H = \sigma_P \left(\vec{E} + \vec{u}_n \times \vec{B} \right) + \sigma_H \hat{b} \times \left(\vec{E} + \vec{u}_n \times \vec{B} \right)$	
Magnetic Forcing	$\vec{f}_{mag} = \vec{j} \times \vec{B}$	
Field Aligned Currents	$\vec{J}_{FAC} = (1/\mu_0)(\Delta \vec{B}/\Delta x)$	
Conductivities	$\sigma_{P}, \sigma_{H}, \sigma_{\#}$	
Ion-Neutral Cross Sections	$\sigma_{in} = v_{in} N_n^{-1} (2k_B T_i/m_i)^{-1/2}$	
Ion-Neutral Collision Frequencies	$\nu_{in} = (e/m_i) \left \vec{E}_{\perp} + \vec{v}_i \times \vec{B} \right / \left \vec{v}_{i\perp} - \vec{u}_{n\perp} \right $	

Phase 0 concepts

Figures by ADS and TAS, courtesy of ESA

Observation Concept and Mission Requirements

• Atmosphere Explorers AE-C/D/E (1973-1981) – neutrals, plasma

Total observation time < 200 km: 60.3 hours (Unified Abstract data)

Observation Concept and Mission Requirements

• Daedalus concept coverage based on 3-year Science Study orbit

Total time < 200 km over 3 years: 1993.5 hours

Particle-in-cell and Direct Simulation Monte Carlo simulations of effects at very low altitudes

We want to build a broad community, so please get in touch!

Daedalus website: http://daedalus.earth/

Report for Assessment (138 pages) and journal publications: https://daedalus.earth/docs-refs/

My email: <u>eelco.doornbos@knmi.nl</u>, or Theodoros Sarris: <u>tsarris@ee.duth.gr</u>

Thank you for your attention!