

Implementation and assessment of a new blended whole atmosphere model in re-entry services for space surveillance & tracking operations as part of SWAMI H2020 project

Daniel LUBIAN ARENILLAS, Deimos Space SLU (Spain) daniel.lubian@deimos-space.com

Raúl Domínguez González, Noelia Sánchez Ortiz, Sandra Negrín (Deimos Space) Sean Bruinsma (CNES), David Jackson (MetOffice), Claudia Stolle (GFZ-Postdam)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776287

5th International Space Debris Re-entry Workshop // 2 Dec 2020

Space Weather Atmosphere Models and Indexes

2020

HORL

≫ Met Office

GFZ

H2020 European Union research activity

From January 2018 to March 2021

Objectives:

- To provide an improved and comprehensive representation of the neutral atmosphere from the surface to 1500 km altitude by developing the new whole atmosphere model (MOWA)
- MOWA is based on a coupling between existing models that represent different parts of the near-Earth space environment
- New high-cadence geomagnetic indices (Hp) will be developed and used to drive the model, enabling accurate phasing of storm events

MOWA: Model of the Whole Atmosphere

Evaluation of DTM2020

- 1. Integrate the DTM2020 into a numerical propagator
- 2. Use a couple of test cases to compare these models against precise reference ephemeris
- 3. Do large-scale comparison against TLE data points

Comparison vs SP reference data

Name	NORAD	COSPAR	Epoch	Mass [kg]	Area [m2]	Perigee alt. [km]	Apogee alt. [km]
GRACE-FO-1/2	43476	2018-047A		600	1.89	491	499
STSAT-2C	39068	2013-003A		100	0.92	263	527
Swarm-B	39451	2013-067A	2019-09-17	473	2.65	498	516
Starlette	7646	1975-010A		47	0.05	798	1109
CryoSat-2	36508	2010-013A		720	5.69	704	736

Mass and area from DISCOS

DTM2020	JB2008	MSISE2000					
Atmosphere models to compare							

Comparison vs SP reference data

Comparison against TLE catalogue: dataset deimos

elecnor group

Comparison against TLE catalogue: dataset

- 394 objects
- 6 epochs
 - January 2016
 - October 2016
 - July 2017
 - April 2018
 - January 2019
 - October 2019
- 3 atmosphere models: DTM2020, JB2008, MSISE2000
- Paired subsequent TLEs between epoch and 10 days after

deimos

elecnor group

Comparison against TLE catalogue: results

Comparison against TLE catalogue: results

- At this time, DTM2020 does not seem to do better, although TLE data is not very good in this altitude range
- DTM2020 seems to be more expensive computationally
- The difference between models appear in the VLEO region
- □ Use SP instead of TLE for bulk assessment. TLEs have lower precision
- □ Integrate the new blended MCM model when it is ready
- □ SWAMI final model will also provide density uncertainty \rightarrow Useful for re-entry analysis
- □ Use measured propagation and re-entry data points to evaluate effectively the new model

Implementation and assessment of a new blended whole atmosphere model in re-entry services for space surveillance & tracking operations as part of SWAMI H2020 project

Daniel LUBIÁN ARENILLAS, Deimos Space (Spain) daniel.lubian@deimos-space.com

5th International Space Debris Re-entry Workshop // 2 Dec 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776287