

 $\partial y = \frac{\partial p}{\partial z} + \operatorname{div}(\mu \operatorname{grad} w) + S_{M}$ $= p \operatorname{div} u + \operatorname{div}(k \operatorname{grad} T) + \Phi + S_{M}$

Here and a subsection form of the subsection of the subsectio

REACTION WHEEL SCARAB/PAMPERO

R.Tech

November 23th 2020

PR-RW-PRES-201120-2844-RTECH

The French Space Operation Act (2008) enforces the assessment of prospective risks

CNES is in charge of ensuring the right application of the law

CNES develops its own certification tool and spacecraft-oriented tools

DEBRISK and **PAMPERO**

Space Debris Reentry Tools

DEBRIS

DEBRISK : French certification tool (100% CNES)

- Provided to the aerospace companies and operators
- Designed to perform rapid survivability analyses of fragments from space vehicles during their atmospheric reentry
- Based on an **object-oriented** approach

PAMPERO : French spacecraft-oriented tool (100% CNES)

- Validate assumptions used in object-oriented tools
- Perform computations for sensitive objects reaching the ground close to the 14J limit
- Perform computations for very **complex objects** (not available within object-oriented tools)
- Perform **D4D computations** for future missions
- Support experts for the fragmentation modelling
- Since 2020, R.TECH has an exclusive license of PAMPERO in order to achieve state of the art studies for customers of the industry

3

 $\frac{\partial p}{\partial y} + div(p v u) = -\frac{\partial p}{\partial z} + div(\mu \ grad \ w) + S_{M}$ $= -\frac{\partial p}{\partial z} + div(\lambda \ grad \ T) + \Phi + S_{M}$

Mar (14) Each (and provide the first of the

1 – Geometry and mesh

- 2 Validation
 - 3 Results
- 4 Discussions

M. Data data and product in the control of the contro

Geometry :

- Total mass : 7,79 kg

<u> 3 meshes :</u>

- coarse : 7 303 cells
- medium : 59 144 cells
- fine : 199 611 cells

Thermic convergence :

scarab <u> 3 meshes :</u> - coarse : 7 303 cells medium : 59 144 cells - fine : 199 611 cells MaterialId 1.0e+00 1000 2000 3000 4000 6.3e+03 medium fine coarse

9

 $\frac{\partial E + div(y) = \partial y}{\partial y} + div(\mu \ grad \ w) + S_{M}$ $+ div(\rho w) = -p \ div \ u + div(k \ grad \ T) + \Phi + S_{m}$

M. And Andre and Antiparticiparti de tenenticipartite de tenenticiparticiparticiparticipartici

1 – Geometry and mesh

2 - Validation

3 – Results

4 – Discussions

Validation of the drag coefficient/ pressure distribution capture at low speed :

Very important to **insure a great accuracy** on the **impact energy** that could influence the **casualty area** of the debris.

Good match between PAMPERO, the CFD code OPENFOAM and experiments for different generic debris

Pressure comparison over a cylinder at low speed with PAMPERO and OPENFOAM

Drag coefficient comparison (CD) over a cube at low speed with PAMPERO, OPENFOAM and experiments (*)

Drag coefficient comparison (CD) over a plate at low speed with PAMPERO, OPENFOAM and experiments (*)11

Validation Aerodynamics for Concave Geometry

Improvement to the Modified Newton method

Automatic identification of concave regions

Validation of the aerodynamic coefficients on a concave shape very challenging for simplified aerodynamics softwares (concave shapes, unsteady phenomena)

Better agreement of PAMPERO with a CFD code (MISTRAL) and experiments (VKI Longshot)

J Annaloro, S. Galera, C Thiebaut, Martin Spel, Pierre Van Hauwaert, G G, S P, O C, P O Aerothermodynamics modelling of complex shapes in the DEBRISK atmospheric reentry tool: Methodology and validation, Acta Astronautica, Volume 171, 2020, Pages 388-402

 $\frac{\partial E}{\partial y} + div(P \otimes \mathbf{u}) = \frac{\partial P}{\partial z} + div(\mu \text{ grad } \mathbf{w}) + S_{\mathbf{x}\mathbf{b}}$ $+ div(P \otimes \mathbf{u}) = -\frac{\partial P}{\partial z} + div(k \text{ grad } T) + \Phi + S_{\mathbf{x}\mathbf{b}}$ $div(P \otimes \mathbf{u}) = -p \text{ dis } \mathbf{u} + div(k \text{ grad } T) + \Phi + S_{\mathbf{x}\mathbf{b}}$

M. Saka and generalization control of the second sec

1 – Geometry and mesh

2 - Validation

3 – Results

4 – Discussions

Results Released conditions

Released conditions :

5 main altitudes with 25 attitudes For each altitudes, 2 secondary altitudes with 10 attitudes each

Results Global results

Surviving mass :

[1] P. Kärräng, T. Lips, T. Soares, Demisability of critical spacecraft components during atmospheric re-entry, 69th International Astronautical Congress, 2018

[1] P. Kärräng, T. Lips, T. Soares, Demisability of critical spacecraft components during atmospheric re-entry, 69th International Astronautical Congress, 2018

Results Altitude 96km results

Ground fragments for 25 cases :

- Altitude = 96,4 km
- Variable : attitude

А	В	С	D	E	F	G	Н	J	К	L	М

How many times (out of 25) these parts are found on ground ? Mean surviving mass [kg, % of initial mass] ?

			-	-								
Impact probability	0	25 %	1	100 %	0	0	0	0	4 %	4 %	4 %	0
Surviving mass [kg]		1.89 10 ⁻³	1.16 10 ⁻⁵	1,306					8.84 10 ⁻²	1.39 10 ⁻¹	9.81 10 ⁻⁴	
% of initial mass		12 %	0 %	32 %					49 %	65 %	0,6 %	

- Most popular on ground :
 - D in steel (initial mass = 4,1 kg)
 - B in titan (initial mass = 16 g)

Results Altitude 87km results

Ground fragments for 25 cases :

- Altitude = 86,5 km
- Variable : attitude

А	В	С	D	E	F	G	Н	J	К	L	М

How many times (out of 25) these parts are found on ground ? Mean surviving mass [kg, % of initial mass] ?

Impact probability	0	40 %	0	100%	0	0	0	0	0	0	0	0
Surviving mass [kg]		5.34 10 ⁻⁴		1,342								
% of initial mass		3 %		33%								

- Two parts on ground :
 - D in steel (initial mass = 4,1 kg)
 - B in titan (initial mass = 16 g)

Results Altitude 78km results

Ground fragments for 25 cases :

- Altitude = 78 km
- Variable : attitude

A	В	С	D	E	F	G	Н	J	К	L	М

How many times (out of 15) these parts are found on ground ? Mean surviving mass [kg, % of initial mass] ?

Impact probability	0	0	0	100 %	0	0	0	13 %	0	0	0	20 %
Surviving mass [kg]				1.747				0.003				0.006
% of initial mass				43 %				0,4 %				2 %

Results Altitude 69km results

Ground fragments for 25 cases :

- Altitude = 69 km
- Variable : attitude

A	В	С	D	E	F	G	Н	J	К	L	М

How many times (out of 24) these parts are found on ground ? Mean surviving mass [kg, % of initial mass] ?

Impact probability	4 %	0 %	0 %	100 %	0 %	100 %	0 %	100 %	79 %	83 %	87 %	100 %
Surviving mass [kg]	0.022			3.830		0.123		0.375	0.007	0.025	0.013	0.115
% of initial mass	5 %			94 %		27 %		49 %	4 %	12 %	8 %	42 %

Results Altitude 60km results

Ground fragments for 25 cases :

- Altitude = 60,2 km
- Variable : attitude

А	В	С	D	E	F	G	Н	J	К	L	М

How many times (out of 25) these parts are found on ground ? Mean surviving mass [kg, % of initial mass]?

Impact probability	52 %	100 %	36 %	100 %	28 %	100 %	56 %	100 %	100 %	100 %	100 %	100 %
Surviving mass [kg]	0.022	0.015	0.029	4.075	0.017	0.158	0.043	0.747	0.165	0.154	0.168	0.264
% of initial mass	5 %	94 %	4 %	100 %	7 %	35 %	18 %	98 %	92 %	72 %	97 %	96 %

 $\frac{\partial E}{\partial y} + div(p_{W}u) = -\frac{\partial p}{\partial z} + div(\mu \text{ grad } w) + S_{M}$ $= div(p_{W}u) = -p \text{ div } u + div(k \text{ grad } T) + \Phi + S_{M}$

M. Sala and an advance of the second s

1 – Geometry and mesh

2 - Validation

3 – Results

4 – Conclusions

Conclusions

- Good agreement between SCARAB and PAMPERO results of the surviving mass evolution
- Differences more important for the casualty area
- Influence of the attitude more important with PAMPERO, results more dispersive
- Emissivity could be one of many causes of differences and more generally material data